JPH10340115A - Hollow recognition method for turning nc data - Google Patents

Hollow recognition method for turning nc data

Info

Publication number
JPH10340115A
JPH10340115A JP18761498A JP18761498A JPH10340115A JP H10340115 A JPH10340115 A JP H10340115A JP 18761498 A JP18761498 A JP 18761498A JP 18761498 A JP18761498 A JP 18761498A JP H10340115 A JPH10340115 A JP H10340115A
Authority
JP
Japan
Prior art keywords
shape
line segment
point
depression
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18761498A
Other languages
Japanese (ja)
Inventor
Hiromitsu Kato
裕光 加藤
Kiyokuni Kawashima
清洲 川嶋
Youji Ishii
養次 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP18761498A priority Critical patent/JPH10340115A/en
Publication of JPH10340115A publication Critical patent/JPH10340115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Abstract

PROBLEM TO BE SOLVED: To automatically recognize the hollows of a turning machining product and to decide a tool that is suitable to the hollow machining. SOLUTION: The finishing shape of a turning machining product is successively defined as segments AB, BC, CD... at a single end A of the finishing shape and traced for each of branch points B, C, D... at and after an intersection point A. If the machining product moves in its axial direction and also in the direction (minus direction of axis Z) opposite to the axial direction, the section set between both directions is decided as an end face hollow. If the machining product moves in the direction perpendicular to its axial line (axis X) and also in the direction opposite to the vertical direction, the section set between both directions is decided as the radial direction hollow. In such a way, the hollows are recognized for the turning NC data.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、旋削NCデータ自動
作成方法に関する。更に詳しくは、任意素材形状から加
工領域と仕上形状のくぼみを自動的に決定および認識す
ることができる、旋削NCデータのくぼみ認識方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for automatically generating turning NC data. More specifically, the present invention relates to a method for recognizing a dip in turning NC data, which is capable of automatically determining and recognizing a dimple in a machining area and a finished shape from an arbitrary material shape.

【0002】[0002]

【従来技術】NC工作機械は、工具の経路をプログラム
により指令される。この経路は、手動によりプログラム
される。この手動プログラミング、すなわち人が工具の
経路を計算してプログラムするものはプログラミング作
業に工数がかかる。近年、このプログラム工数を減少さ
せるためCRT画面を用いて対話形式によりデータを入
力し、設計図面から簡単な操作でNCデータを作成する
自動プログラミング装置が使われている。旋削のための
NCデータを自動的に作成する方法は、種々提案されか
つ実施されている。例えば、特開昭61-103213
号公報には、あらかじめ分類された素材形状データと、
仕上形状データから必要な加工工程の順序、加工領域を
自動的に決定することができるNCデータ作成方法が記
載されている。
2. Description of the Related Art In NC machine tools, the path of a tool is commanded by a program. This path is manually programmed. This manual programming, that is, one in which a person calculates and programs a tool path, requires a lot of programming work. In recent years, in order to reduce the number of program steps, an automatic programming apparatus has been used which inputs data interactively using a CRT screen and creates NC data from a design drawing by a simple operation. Various methods for automatically creating NC data for turning have been proposed and implemented. For example, JP-A-61-103213
In the official gazette, material shape data classified in advance,
An NC data creation method capable of automatically determining a necessary processing step order and a processing area from finish shape data is described.

【0003】[0003]

【発明が解決しようとする課題】前記したNCデータ作
成方法は、加工領域を自動的に決定している。丸棒、穴
あき丸棒など比較的簡単な形状の場合は、加工領域の決
定は比較的簡単である。しかし、鍛造品などの任意形状
の素材を用いる場合、切削する箇所と切削しない箇所が
存在する。空切削がないように効率的に切削するには、
切削する領域と、切削しない領域を正確に特定しなけれ
ばならない。
According to the above-described NC data creating method, a machining area is automatically determined. In the case of a relatively simple shape such as a round bar or a perforated round bar, the determination of the processing area is relatively simple. However, when a material having an arbitrary shape such as a forged product is used, there are portions to be cut and portions not to be cut. For efficient cutting without empty cutting,
The area to be cut and the area not to be cut must be accurately identified.

【0004】また、旋削品の仕上形状は、外周面、内孔
の内周面、端面などに溝部、凹部分、すなわちくぼみが
存在するものが多い。従来のNCデータ作成方法は、く
ぼみの形状を正確に分類し、認識していない。このた
め、くぼみ加工に最適な工具が選択できず加工能率が低
下したり、加工方法を自動的に決定できないという問題
があった。この発明は、これらの問題点に着目してなさ
れたものであり、次の課題を達成する。
[0004] In many cases, the finished shape of the turned product has a groove or a concave portion, that is, a depression on the outer peripheral surface, the inner peripheral surface of the inner hole, the end surface, or the like. The conventional NC data creation method does not accurately classify and recognize the shape of the depression. For this reason, there has been a problem that the most suitable tool for the concave machining cannot be selected, and the machining efficiency is reduced, and the machining method cannot be automatically determined. The present invention has been made in view of these problems, and achieves the following objects.

【0005】この発明の目的は、任意素材形状の旋削加
工において、自動的に切削領域を決定するNCデータの
加工領域自動決定方法を提供することにある。
An object of the present invention is to provide a method for automatically determining a machining area of NC data for automatically determining a cutting area in turning of an arbitrary material shape.

【0006】この発明の更に他の目的は、旋削加工品の
くぼみを自動的に認識するための旋削NCデータのくぼ
み認識方法を提供することにある。
Still another object of the present invention is to provide a method for automatically recognizing a dimple in a turned NC data for automatically recognizing a dimple in a turned product.

【0007】この発明の更に他の目的は、旋削加工にお
いてくぼみの加工に適した工具を決定するための旋削N
Cデータのくぼみ認識方法を提供することにある。
Still another object of the present invention is to provide a turning N for determining a tool suitable for forming a recess in a turning operation.
An object of the present invention is to provide a method for recognizing a depression of C data.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するため
この発明は、次の手段をとる。第1の手段は、被旋削品
の仕上形状の一端から仕上げ形状を分岐点ごとにトレー
スし、前記仕上形状の軸線方向への移動とこの移動と逆
方向への移動が発生するとこの領域を端面くぼみと判定
し、前記仕上形状の軸線方向に対して垂直方向への移動
とこの移動と逆方向への移動が発生するとこの領域を径
方向くぼみと判定し、前記認識したくぼみの入口点と出
口点を定義し、前記認識したくぼみを削るための片刃工
具を選択し、前記入口の前記分岐点から前記くぼみを加
工する片刃工具の形状から加工可能な角度を定めた直線
を定義し、選択した前記片刃工具で前記くぼみを旋削す
るように前記直線を境に前記くぼみを2分割して認識す
る旋削NCデータのくぼみ認識方法である。
To solve the above-mentioned problems, the present invention takes the following means. The first means traces the finished shape from one end of the finished shape of the workpiece to be turned at each branch point, and when the movement of the finished shape in the axial direction and the movement in the opposite direction to this movement occur, this area is faced. When it is determined as a depression, when movement in the direction perpendicular to the axial direction of the finished shape and movement in the direction opposite to this movement occur, this region is determined as a radial depression, and the entrance point and exit of the recognized depression are recognized. Define a point, select a single-edged tool to cut the recognized dent, define a straight line that defines an angle that can be machined from the shape of the single-edged tool that cuts the dent from the branch point at the entrance, and select This is a method of recognizing the turning NC data for recognizing the hollow by dividing the hollow into two parts on the straight line so that the hollow is turned by the single-edged tool.

【0009】前記第1の手段において、前記選択した片
刃工具で切削して削り残した部分を、前記選択した片刃
工具と逆向きの工具を自動的に選択して切削する切削N
Cデータのくぼみ認識方法である。
[0009] In the first means, a portion which is left uncut after cutting with the selected single-edged tool is automatically selected as a tool opposite to the selected single-edged tool.
This is a method for recognizing depressions of C data.

【0010】[0010]

【作用】被旋削品の仕上形状の一端から前記仕上形状を
分岐点ごとにトレースし、前記被旋削品の軸線方向への
移動方向とこの移動方向と逆方向への移動が発生すると
この区間を端面くぼみと判定し、前記仕上形状の軸線と
垂直方向への移動と逆方向への移動が発生するとこの区
間を径方向くぼみと判定する旋削NCデータのくぼみ認
識方法である。
According to the present invention, the finish shape is traced from one end of the finish shape of the work to be turned at each branch point, and when the movement direction of the work to be turned in the axial direction and the movement in the direction opposite to this movement direction occur, this section is determined. This method is a method of recognizing a dip in the turned NC data in which a section is determined to be a radial dip when it is determined to be a dip in the end face and a movement in a direction opposite to a direction perpendicular to the axis of the finished shape occurs.

【0011】[0011]

【発明の実施の形態】NCデータ作成装置 図1に示すものは、この発明のNCデータ作成装置の実
施例を示すブロック図である。中央処理装置(以下、C
PUと称する)1は、このNCデータ作成装置全体を統
括し制御するものである。このCPU1には、バス2を
介してグラフィックディスプレイ装置3、キーボード装
置からなる入力装置4が接続されている。加工情報メモ
リ5は、RAMメモリであり、被削材の材質、素材形
状、仕上形状、加工工程順など被削材の加工に関する情
報を記憶している。制御プログラムメモリ6はROMで
あり、このデータ作成装置の制御プログラム、後述する
加工領域を決定するプログラム、くぼみを発見するプロ
グラムなど必要なプログラムが記憶されている。NCデ
ータ出力装置7は、作成されたNCデータを紙テープ、
バブルカセット、ICカードなどの外部記憶媒体に出力
するための出力手段である。切削領域メモリ8は、後述
する方法にしたがって決めた切削領域の位置、形状を記
憶するRAMメモリである。
DETAILED DESCRIPTION OF THE INVENTION those shown in NC data creation apparatus Figure 1 is a block diagram showing an example of the NC data creating apparatus of the present invention. Central processing unit (hereinafter C
The PU 1) controls and controls the entire NC data generating apparatus. A graphic display device 3 and an input device 4 including a keyboard device are connected to the CPU 1 via a bus 2. The processing information memory 5 is a RAM memory, and stores information related to processing of a work material such as a material of the work material, a material shape, a finished shape, and a processing step order. The control program memory 6 is a ROM, and stores necessary programs such as a control program of the data creating apparatus, a program for determining a machining area described later, and a program for finding a hollow. The NC data output device 7 outputs the created NC data to a paper tape,
Output means for outputting to an external storage medium such as a bubble cassette or an IC card. The cutting area memory 8 is a RAM memory that stores the position and shape of the cutting area determined according to a method described later.

【0012】くぼみメモリ9は、同様に後述する方法に
したがって決めたくぼみの位置、形状を記憶するRAM
メモリである。作成データメモリ10は、入力されたデ
ータ、処理結果、作成されたNCデータなどを一時的に
記憶するRAMメモリである。
The depression memory 9 is a RAM for storing the position and shape of the depression similarly determined according to a method described later.
Memory. The creation data memory 10 is a RAM memory that temporarily stores input data, processing results, created NC data, and the like.

【0013】加工領域決定方法の原理 図2に示す実線は、旋削加工のときの仕上形状を示す例
で半分の断面図である。以下、図2に示す実施例にした
がって、この発明の原理を説明する。一点鎖線で示す図
は素材の形状を示し、実線はこの素材を切削して加工さ
れる仕上形状を示す輪郭線である。仕上形状および素材
形状は、加工情報メモリ5に記憶されている。素材形
状、仕上形状の記憶は、次のようにされている。線分
A′Lを素材線分1、線分LD′を素材線分2…と名前
を付けて、順次線分を定義する。
Principle of Working Area Determination Method The solid line shown in FIG. 2 is a half sectional view showing an example of a finished shape at the time of turning. Hereinafter, the principle of the present invention will be described with reference to the embodiment shown in FIG. The figure shown by the dashed line indicates the shape of the material, and the solid line is the contour line indicating the finish shape to be machined by cutting this material. The finished shape and the material shape are stored in the processing information memory 5. The storage of the material shape and the finished shape is performed as follows. Line segments A′L are named as material line segments 1 and line segments LD ′ are named as material line segments 2.

【0014】この定義はX、Z座標での直線式と、その
直線式の始点と終点で定義されている。同様に、仕上形
状も、線分ABを仕上線分1、線分BCを仕上線分2…
と名前を付けて順次線分を定義し、命名する。Z軸線
は、旋盤の主軸の中心線と同一であり、X軸線は半径方
向を指す。まず、仕上形状の始点、角部すなわちA点を
起点としてK点まで線上を移動すると考えた場合、X軸
線方向のプラス方向の線分すなわち、X軸線と平行なプ
ラス方向の線分を境にして図の例では、第I〜Vの要素
(以下、たて要素という)に、仕上形状を分割する。たて
要素Iより以下の順序で、切削領域を決定する。始点A
点を起点にして、X軸のマイナス方向(以下、第1方向
という)の線分と素材形状の輪郭線とが交差する交点が
あるか否か探す。図の例ではこの第1方向に交点がない
ので、反時計方向に90度回転させて、同様にZ軸のプ
ラス方向(以下、第2方向という)に交点を探す。第2方
向では、交点A′が見つかる。言い換えると、素材形状
の線分1の始点A′と交差することになる。この時点で
A点側からの交点のサーチを停止する。このA点側から
のサーチの停止は、たて要素I内の第3方向すなわち1
80度まで交点が見つかるまで行う。
This definition is defined by a straight-line equation at the X and Z coordinates, and a start point and an end point of the straight-line equation. Similarly, for the finishing shape, the line segment AB is the finishing line segment 1, the line segment BC is the finishing line segment 2,.
And sequentially define the line segments and name them. The Z axis is the same as the center line of the lathe main axis, and the X axis points in the radial direction. First, when it is considered that the starting point of the finished shape, the corner, that is, the point A as a starting point, moves on the line to the point K, a line segment in the positive direction of the X-axis direction, that is, a line segment in the positive direction parallel to the X-axis line is used as a boundary. In the example of FIG.
(Hereinafter referred to as “vertical elements”). The cutting area is determined in the following order from the vertical component I. Starting point A
Starting from the point, a search is made as to whether there is an intersection where a line segment in the minus direction of the X-axis (hereinafter, referred to as a first direction) intersects the contour line of the material shape. In the example shown in the figure, there is no intersection in the first direction, so the camera is rotated 90 degrees in the counterclockwise direction, and the intersection is similarly searched for in the plus direction of the Z axis (hereinafter, referred to as the second direction). In the second direction, an intersection A 'is found. In other words, it intersects with the starting point A 'of the line segment 1 of the material shape. At this point, the search for the intersection from the point A side is stopped. The stop of the search from the point A side is performed in the third direction, ie, 1
Repeat until an intersection is found up to 80 degrees.

【0015】次に、たて要素Iの終点であるB点、すな
わちたて要素I内の仕上形状の終点B点から交点のサー
チを開始する。B点を起点にして、最初にX軸線のプラ
ス方向(第1方向という)に素材形状の輪郭線との交点を
探す。この結果、図の例では素材形状の線分2と交点
B′で交差する。このB点を起点とするサーチも通常9
0度単位で線分を延長し、たて要素I内の180度まで
探す。たて要素Iの始点A、終点Bからの交点が見つか
ると、次に切削領域を決定する。
Next, a search for an intersection is started from the end point B of the vertical element I, that is, the end point B of the finished shape in the vertical element I. Starting from the point B, an intersection with the contour line of the material shape is first searched for in the plus direction (first direction) of the X-axis. As a result, in the example shown in the figure, the line intersects the line segment 2 of the material shape at the intersection B '. Search starting from point B is usually 9
The line segment is extended in units of 0 degrees, and a search is made up to 180 degrees in the vertical element I. When an intersection from the start point A and the end point B of the element I is found, a cutting area is determined next.

【0016】最初に、仕上形状A点からB点までの仕上
線分1、線分BB′、素材形状の素材線分2中の線分
B′L、素材線分1である線分LA′、線分A′Aと順
次時計回りに回転するように囲まれた領域となる。結
局、切削領域は、仕上形状の輪郭線と素材形状の輪郭線
で囲まれた領域、すなわち矩形のA、B、B′、L、
A′となる。
First, the finishing line segment 1 from the finishing shape point A to the point B, the line segment BB ', the line segment B'L in the material line segment 2 of the material shape, and the line segment LA' which is the material line segment 1 , And a region surrounded by the line segment A'A so as to sequentially rotate clockwise. After all, the cutting region is a region surrounded by the contour line of the finish shape and the contour line of the material shape, that is, rectangular A, B, B ', L,
A '.

【0017】工具を移動する方向、言い換えると切削方
向の決定は、線分AB′/AA′の比によりX軸線方向
に削るか、Z軸方向に削るかを決定する。これで第1工
程の加工領域と切削方向が決定する。たて要素IIの場合
は、次のように決定する。たて要素Iの場合と同様にB
点を起点としてマイナスのX軸線方向に交点を探す。し
かし、交点は存在しないので更に反時計方向に90度回
転して探すが、たて要素IIの領域には交点は存在しな
い。更に90度反時計方向に回転して交点を探す。
The direction in which the tool is moved, in other words, the cutting direction, is determined by the ratio of the line segment AB '/ AA' whether to cut in the X-axis direction or in the Z-axis direction. Thus, the processing region and the cutting direction in the first step are determined. In the case of element II, it is determined as follows. As in the case of element I, B
Search for an intersection in the negative X-axis direction starting from the point. However, since there is no intersection, it is further rotated 90 degrees in the counterclockwise direction to search, but there is no intersection in the area of the element II. Further turn 90 degrees counterclockwise to find the intersection.

【0018】このようにして、素材形状の輪郭線との交
点は、交点B′で交差する。なお、仕上形状に仕上代分
オフセットされているので、実際に切削する領域は、仕
上形状に仕上代分オフセットした残りの部分を荒切削す
る。次にたて要素IIの終点Eから交点を探すが、仕上形
状線分ED間は、入力された加工工程上あらかじめ削る
必要のない旨定義されているので、D点から交点を探
す。D点でX軸のプラス方向に素材形状の輪郭線を探
す。
Thus, the intersection with the contour line of the material shape intersects at the intersection B '. Since the finishing shape is offset by the finishing allowance, in the area to be actually cut, the remaining portion offset by the finishing allowance to the finishing shape is roughly cut. Next, an intersection is searched for from the end point E of the element II. However, since it is defined in advance that there is no need to cut between the finish shape segments ED in the input machining process, the intersection is searched for from the point D. At the point D, a contour line of the material shape is searched in the plus direction of the X axis.

【0019】しかし、仕上形状に仕上代分オフセットさ
せてあるので、結局素材形状の輪郭線との交点は見つけ
ることができない。次にC点を起点とする交点は、第1
方向X軸方向すなわちC′点を交点として交差する。こ
のようにして、切削領域は、仕上形状と素材形状に囲ま
れた領域の略ΔBCC′B′となる。また、切削方向は
X軸、Z軸の長さ方向の比、すなわち線分BB′/B′
C′の比により決定する。
However, since the finishing shape is offset by the finishing allowance, the intersection of the material shape and the contour cannot be found. Next, the intersection starting from point C is the first
They cross each other in the direction X-axis direction, that is, the point C '. In this manner, the cutting area becomes substantially ΔBCC'B 'of the area surrounded by the finished shape and the material shape. The cutting direction is the ratio of the X-axis and Z-axis length directions, that is, the line segment BB '/ B'
Determined by the ratio of C '.

【0020】たて要素IIIは次のように決定する。線分
EFの区間は入力された定義により削る必要のない区間
であり、E点を起点とする交点は発見できない。F点も
削り代がないので交点を発見できない。なお、F点でZ
軸線方向に輪郭線と交点があるが、交点の途中は空間で
あり一体でないのでここでは交点とはしない。同様に、
G点も見つけることができない。H点を起点とすると、
Z軸方向に交点H′を求めることができる。
The factor III is determined as follows. The section of the line segment EF is a section that does not need to be cut off according to the input definition, and an intersection starting from the point E cannot be found. The intersection cannot be found because point F has no cutting allowance. At point F, Z
Although there is an intersection with the contour line in the axial direction, the intersection is not an intersection here because it is a space and not integral with the intersection. Similarly,
I can't find point G either. Starting from point H,
The intersection point H 'can be obtained in the Z-axis direction.

【0021】次にたて要素IIIの終点Iを起点に前記法則
で交点を探していく。この結果、交点I′が求められ
る。最終的には、前記同様に仕上形状と素材形状で囲ま
れた領域である矩形のH、I、I′、M、H′が切削領
域となる。なお、仕上代は、線分IH、線分HH′間に
設けてある。以下、前記同様にたて要素IV以下を決め
る。なお、前記の方法で素材を探すので図3(a)に示
すように素材形状にへこみ部分Wがあれば、このへこみ
は、認識できないのでこのへこみWがないものとして、
図3(b)のように切削領域を決定し取り扱う。
Next, starting from the end point I of the element III, the intersection is searched for according to the above-mentioned rule. As a result, an intersection point I 'is obtained. Eventually, the rectangular areas H, I, I ', M, and H', which are areas surrounded by the finished shape and the material shape, are the cutting regions. The finishing margin is provided between the line segment IH and the line segment HH '. Hereinafter, elements IV and below are determined in the same manner as described above. Since the material is searched for by the above-described method, if there is a dent W in the material shape as shown in FIG. 3A, the dent cannot be recognized and it is assumed that there is no dent W.
The cutting area is determined and handled as shown in FIG.

【0022】切削領域のNCデータ作成順序 図4は、実際に前記方法にしたがってNCデータを作成
するフローを示す。最初に任意素材形状のワークか否か
判断し、任意素材形状であれば、仕上形状をあらかじめ
記憶保持されている加工情報メモリ5のファイルから読
み込む。読み込んだ仕上形状がたて要素であるか否か判
断し、たて要素でない場合は次の仕上形状を読み込み、
たて要素の場合には読み込みを終了する(ステップ
1、P2、P 3)。なお、ステップ1において任意素材
形状のワークでないと判断された場合には、他の素材形
状(丸材、穴あき材)のプログラムへ移る。
[0022]NC data creation order of cutting area Figure 4 actually creates NC data according to the above method
The following shows the flow of processing. First, whether the work is of an arbitrary material shape
Judgment, if the shape is arbitrary, finish shape in advance
Read from the file of the processing information memory 5 stored and held
See in. Determine whether the read finish shape is a vertical element
If it is not a vertical element, read the next finished shape,
If the element is a fresh element, finish reading (step
P1, PTwo, P Three). Note that in step 1
If it is determined that the workpiece is not a shape,
Move to the shape (round, perforated) program.

【0023】読み込まれた仕上形状に仕上代をつける
(P4)。読み込まれた仕上形状が外径かどうかを判断
し、外径でない場合には、内径用加工領域決定プログラ
ムへ移る(P5)。なお内径用加工領域決定プログラム
も、外径用加工領域決定プログラムの交点を求める方法
は同一であるため説明は省略する。前記した方法にした
がって開始側よりX軸線方向の直線を定義する
(P6)。図2の例ではA点より直線を定義する。
A finishing margin is given to the read finished shape (P 4 ). Loaded finish shape is determined whether the outer diameter, if not the outer diameter, moves to the inside diameter for machining area determination program (P 5). The method for determining the intersection of the outer diameter machining area determination program is the same for the inner diameter machining area determination program, and a description thereof will be omitted. A straight line in the X-axis direction is defined from the start side according to the method described above (P 6 ). In the example of FIG. 2, a straight line is defined from point A.

【0024】たて要素Iにある素材側の形状の最初の線
分1、例えば図2の例では素材線分1である線分A′L
を読み込み、交点を求める(P7、P8)。交点がなけれ
ば、素材側の形状の次の線分、即ち図2の例では素材線
分2である線分LD′を読み込み、交点が見つかるまで
繰り返す。素材のたて要素のすべての線分を読み込んで
も交点が見つからなければ、90度回転させた次の直線
を定義する。この直線で前記同様に順次交点を探す。
The first line segment 1 of the material side shape in the vertical element I, for example, the line segment A'L which is the material line segment 1 in the example of FIG.
Is read to determine the intersection (P 7 , P 8 ). If there is no intersection, the next line segment of the material-side shape, that is, the line segment LD 'which is the material line segment 2 in the example of FIG. 2, is read and repeated until an intersection is found. If the intersection is not found even when all the line segments of the vertical element of the material are read, the next straight line rotated by 90 degrees is defined. The intersection is sequentially searched for on this straight line as described above.

【0025】もし、この交点がなかったら前記の原則に
したがって次の開始点に移動して、同様に交点を求め
る。開始側に交点が見つかれば、次にたて要素Iの終点
側より第1方向の直線を定義する(P9)。素材形状の
線分をたて要素Iの最後より読み込み、前記同様に交点
を探す(P10)。この線分と第1方向の直線との交点が
あるか否か判断する(P11)。交点が発見できなけれ
ば、素材形状の終点より2番目の次の直線を読込み、交
点を探す。たて要素Iの線分すべてを読み込んでも交点
がなければ、時計方向に回転させた次の直線を定義し
て、前記同様に素材形状との交点を探す。
If the intersection does not exist, the process moves to the next starting point according to the above-described principle, and the intersection is similarly obtained. If an intersection is found on the start side, a straight line in the first direction is defined from the end point side of the element I (P 9 ). A line segment of the material shape is read from the end of the element I, and an intersection is searched for in the same manner as described above (P 10 ). It is determined whether there is an intersection between this line segment and the straight line in the first direction (P 11 ). If the intersection cannot be found, the next straight line next to the end point of the material shape is read to search for the intersection. If there is no intersection even when all the line segments of the vertical element I are read, the next straight line rotated clockwise is defined, and the intersection with the material shape is searched for as described above.

【0026】これらの後、切削領域を決定し切削領域を
記憶する(P12)。次に、前記したように切削領域の縦
横比を求め(P13)、この比にしたがってZ軸方向、X
軸方向か、いずれかの方向に工具を送って加工するかを
決定する(P14)。以上の作業が終了すると、作成デー
タメモリ10に出力する(P15)。以上の作業が終了す
ると、素材形状から前記加工領域を決定した部分を除い
た形状のデータを作成する(P16)。このデータの作成
後、新しく作成した素材形状を素材形状ファイルに登録
する(P17)。この作業を仕上形状が最後になるまで行
う(P18)。
After these steps, the cutting area is determined and the cutting area is stored (P 12 ). Next, as described above, the aspect ratio of the cutting area is obtained (P 13 ), and according to this ratio, the X-axis direction, X
Or axially, to determine whether to process send tool in either direction (P 14). When the above operation is completed, the data is output to the creation data memory 10 (P 15 ). When the above operation is completed, data of a shape excluding the part where the processing region is determined from the material shape is created (P 16 ). After the creation of this data, to register the newly created material shape to the material shape file (P 17). Performed until the shape finishing this work is the last (P 18).

【0027】くぼみ認識方法 次に、仕上形状にへこみのある形状(以下、くぼみとい
う)の場合の切削工具、切削領域を決定する実施例につ
いて述べる。図5は、工作物の片断面図を示す例であ
る。この例では、くぼみIからくぼみVIIIまであり、外
周面、内周面、端面、これらの混在したものである。く
ぼみIは、内径の奥の端面に形成してある。くぼみII
は、内径の内周面に形成してある。くぼみIIIは外径の
前端面に、外径にはくぼみIV、V、VIが、外径の後端面
にはくぼみVII、VIIIが形成してある。くぼみVIとくぼ
みVIIは、端面と外周面との境界に位置している。
The recess recognition method Next, the shape with a recess in the finish shape (hereinafter, referred to as recesses) cutting tool in the case of, describes examples of determining a cutting region. FIG. 5 is an example showing a sectional view of a workpiece. In this example, there are recesses I to VIII, and the outer peripheral surface, the inner peripheral surface, the end surface, and a mixture thereof. The recess I is formed on the end face at the back of the inner diameter. Hollow II
Is formed on the inner peripheral surface of the inner diameter. The depression III has depressions IV, V and VI on the front end face of the outer diameter, and depressions VII and VIII on the rear end face of the outer diameter. The depression VI and the depression VII are located at the boundary between the end surface and the outer peripheral surface.

【0028】仕上形状は、線分AB、BC、CD…と順
次定義し、線分を命名して入力してある。まず、内径内
の中心線(Z軸線)との交点A点より出発して、内径と
外径の前端面の交点Iに向けて輪郭線に沿ってトレース
する。A点から出発するとB点への線分ABは、X軸線
に平行な直線となり、Z軸線方向への変動はない。B点
からC点への線分BCは、Z軸のマイナス方向になる。
このZ軸方向のマイナスが発生するとフラグを立てる。
線分CDは、X軸線と平行でありZ軸方向には変動がな
い。線分DEは、Z軸方向のみのプラス方向となる。線
分BCと逆方向で線分BC以上の量が発生すると、前記
フラグを倒す。
The finish shape is sequentially defined as line segments AB, BC, CD,..., And the line segments are named and input. First, starting from the point A of intersection with the center line (Z-axis line) in the inner diameter, tracing is performed along the contour line toward the intersection I of the front end face of the inner diameter and the outer diameter. Starting from the point A, the line segment AB to the point B becomes a straight line parallel to the X-axis, and does not change in the Z-axis direction. A line segment BC from point B to point C is in the minus direction of the Z axis.
When a minus in the Z-axis direction occurs, a flag is set.
The line segment CD is parallel to the X-axis and does not fluctuate in the Z-axis direction. The line segment DE is a plus direction only in the Z-axis direction. If an amount equal to or greater than the line segment BC occurs in the direction opposite to the line segment BC, the flag is defeated.

【0029】結局、Z軸方向の変動のみに着目すると、
線分BCのマイナスと線分DEのプラスとが交互に同じ
長さ(絶対値)が発生すれば、矩形BCDD′で囲まれ
た領域はくぼみと判断する。なお、線分DD′は、線分
BCと長さ(絶対値)が等しい線分である。このくぼみ
をくぼみIと名付け、くぼみメモリ9にその形状、位置
を登録する。中心(Z軸線を中心に)にくぼみがある場
合は、最初にプラスが出現し、次にマイナスが出現す
る。この場合は最初をくぼみと判断する。
After all, when focusing only on the fluctuation in the Z-axis direction,
If the minus length of the line segment BC and the plus length of the line segment DE alternately have the same length (absolute value), the area surrounded by the rectangle BCDD 'is determined to be a hollow. The line segment DD 'is a line segment having the same length (absolute value) as the line segment BC. This depression is named depression I, and its shape and position are registered in the depression memory 9. If there is a depression at the center (centered on the Z axis), then a plus appears first, and then a minus appears. In this case, the first is determined to be a depression.

【0030】線分E…I間は、Z軸方向のくぼみすなわ
ち、Z軸線方向のプラス、マイナスの出現がないので、
この区間は端面でのくぼみが存在しないものと判断す
る。次に、内径の径方向(X軸方向)のくぼみを探す。
内径の径方向、すなわち内周面のくぼみは、I点より出
発してA点に向かって探す。線分IHはZ軸と平行であ
り、X軸線方向の変化はない。線分HGはX軸線方向に
プラスの方向である。ここで、メモリ内にフラグを立て
る。線分GFは、Z軸と平行でありX軸線方向には変化
していない。線分FEは、X軸線方向にマイナスの方向
である。マイナスが発生すると、前記メモリ内のフラグ
を倒す。
Since there is no depression in the Z-axis direction between the line segments E...
In this section, it is determined that there is no dent at the end face. Next, a hollow in the radial direction (X-axis direction) of the inner diameter is searched for.
The radial direction of the inner diameter, that is, the depression on the inner peripheral surface is searched for from the point I toward the point A. The line segment IH is parallel to the Z axis and does not change in the X axis direction. The line segment HG is a plus direction in the X-axis direction. Here, a flag is set in the memory. The line segment GF is parallel to the Z axis and does not change in the X axis direction. The line segment FE is a minus direction in the X-axis direction. When a minus occurs, the flag in the memory is defeated.

【0031】このようにして、X軸線方向にプラス、マ
イナスの順序で出現すると、線分HGFEで囲まれた矩
形は、くぼみと判断し、これをくぼみIIと名付けてこの
領域を記憶する。区間I…Aには、このように、内径の
内周方向にくぼみIIが存在すると判断する。前記同様に
最外周Z点からI点までの区間のくぼみを探す。前記内
径端面のくぼみと同様の原則でZ軸方向のマイナス、プ
ラスが交互にあらわれるとその区間を端面のくぼみと判
断する。結局、端面のくぼみIII、VII、VIIIを捜し出
す。
In this manner, when the rectangle appears in the X-axis direction in the order of plus and minus, the rectangle surrounded by the line segment HGFE is determined to be a depression, and this region is stored as a depression II. In the section I... A, it is determined that the depression II is present in the inner circumferential direction of the inner diameter. In the same manner as described above, a depression in the section from the outermost peripheral point Z to the point I is searched. When minus and plus in the Z-axis direction appear alternately on the same principle as the recess on the inner diameter end face, the section is determined to be a recess on the end face. Eventually, seek out hollows III, VII, and VIII on the end face.

【0032】次に、I点よりZ点までの区間の外径周面
のくぼみを捜す。前記と同様の原則のX軸線方向のプラ
ス、マイナスの符号の変化に着目すると、くぼみIVを最
初に認識し、次にくぼみVを認識する。この認識は次の
ように行う。最初に線分KLはX軸方向にマイナス方向
なのでフラグを立てる。線分LMはZ軸に平行でありX
軸方向の変化はない。線分MNはX軸方向にプラス方向
なので線分MNの深さだけくぼみと認識する。しかし、
線分MNの大きさは、線分KLの大きさより小さいの
で、くぼみIVの領域はこの段階では決定しない。
Next, a depression on the outer peripheral surface in the section from the point I to the point Z is searched for. Focusing on the change of the plus and minus signs in the X-axis direction based on the same principle as above, the depression IV is recognized first, and then the depression V is recognized. This recognition is performed as follows. First, a flag is set because the line segment KL has a minus direction in the X-axis direction. The line segment LM is parallel to the Z axis and X
There is no axial change. Since the line segment MN has a positive direction in the X-axis direction, it is recognized as a depression only by the depth of the line segment MN. But,
Since the size of the line segment MN is smaller than the size of the line segment KL, the region of the depression IV is not determined at this stage.

【0033】線分NOは、X軸方向の変化はない。線分
OPは、線分KLの長さだけ戻さないで再度X軸方向に
マイナスしているので、前記フラグと違う別の第2のフ
ラグを立てる。線分PQは変化せず、線分QRがプラス
方向に戻すので第2フラグは倒し、くぼみVを前記同様
の原理で認識する。くぼみVを認識したのち線分STだ
けプラス方向に戻すので、ここで初めてくぼみIV全体を
認識する。次に、くぼみVIを認識する。これらは、いず
れも番号を付してくぼみメモリ9に記憶される。
The line segment NO has no change in the X-axis direction. Since the line segment OP is subtracted again in the X-axis direction without returning by the length of the line segment KL, a second flag different from the above flag is set. Since the line segment PQ does not change and the line segment QR returns in the plus direction, the second flag is turned down, and the depression V is recognized based on the same principle as described above. After the indentation V is recognized, the line segment ST is returned in the plus direction, so that the entire indentation IV is recognized for the first time. Next, the depression VI is recognized. These are all stored in the indentation memory 9 with numbers.

【0034】端面のくぼみと外周面のくぼみが重なった
場合は、外端くぼみと定義し次のように認識する(図6
は拡大図)。外周のくぼみVIの出口の線分WXは、端面
のくぼみVIIの領域に入っている。くぼみVIは、入口の
線分UVと出口の線分WXの間に、端面のくぼみVIIの
線分VWが挿入されている。すなわち、くぼみVIの入口
の線分UVの線分番号と出口の線分WXの線分番号の間
に、くぼみVIIの出口の線分WVの線分番号があるかな
いかで判断する。このようにして、このくばみVIとくぼ
みVIIの重なりのくぼみを外端くぼみと定義し、加工処
理する。
When the recess on the end face and the recess on the outer peripheral face overlap, it is defined as an outer recess and recognized as follows (FIG. 6).
Is an enlarged view). The line segment WX at the exit of the outer peripheral recess VI is in the region of the recess VII on the end face. In the depression VI, a line segment VW of the depression VII on the end face is inserted between the entrance line UV and the exit line WX. That is, it is determined whether or not there is a line segment number of the exit line segment WV of the depression VII between the line segment number of the entrance line segment UV and the exit line segment WX of the depression VI. In this way, the overlapping recesses of the recesses VI and VII are defined as outer-side recesses, and are processed.

【0035】くぼみの切削領域決定方法 図7は、片刃バイトで削るときの外径くぼみの切削領域
決定の概要を示す略図である。くぼみIVの入口の点Kか
ら角度αで線分を定義し線分LMとの交点K′を求めて
領域a、領域bとの2つに分ける。この角度αは、図に
示すように工具の副切込み角である。一方のくぼみVも
同様に領域c、領域dに二分する。副切込み角αを有す
る工具による切削領域は、領域a+cの領域となり最初
にこの領域を切削する。残ったb、dの切削領域は、前
記工具と逆向きの工具を自動的に選択して切削する。内
径の端面のくぼみも同様の方法で切削領域を区分して切
削する。
The recess of the cutting area determination method Figure 7 is a schematic diagram showing the outline of the cutting area determine the recess outer diameter when cut with a single-edged bytes. A line segment is defined at an angle α from the point K at the entrance of the depression IV, and an intersection K ′ with the line segment LM is obtained to divide the region into two regions a and b. This angle α is a sub-cutting angle of the tool as shown in the figure. Similarly, one of the depressions V is bisected into a region c and a region d. The cutting area by the tool having the sub cutting angle α becomes the area a + c, and this area is cut first. For the remaining cutting areas b and d, a tool in the opposite direction to the tool is automatically selected and cut. The recess in the end face of the inner diameter is cut in a similar manner by dividing the cutting area.

【0036】両方にまたがる外端くぼみは、このような
区分をせず直接仕上加工をしている。これは、両方にま
たがるくぼみは比較的小さいくぼみであることが多いた
めである。
The outer end recesses extending over both are directly finished without such division. This is because depressions that span both are often relatively small depressions.

【0037】くぼみサーチのフロー 図8は、くぼみを探す動作のフロー図である。仕上形状
により外径、内径を区別する(P1)前記した方法にし
たがって、内径の終点、すなわち中心線と内径の輪郭線
との交点から線分を記憶されているデータから読み込み
を開始する。図5の例では、線分ABから開始する(P
2、P3)。この入力値から内径の端面くぼみIを探す
(P4)。次に、内径の始点、すなわち図8の例では、
I点から出発してA点までの区間で内径の周面の径方向
のくぼみIIを探す。
[0037] depression flow of search Figure 8 is a flow diagram of the operation to search for a recess. The outer diameter and the inner diameter are distinguished by the finished shape (P 1 ) In accordance with the method described above, reading is started from the data storing the line segment from the end point of the inner diameter, that is, the intersection of the center line and the contour line of the inner diameter. In the example of FIG. 5, the process starts from the line segment AB (P
2, P 3). Find I depression end face of the inner diameter from the input value (P 4). Next, at the starting point of the inner diameter, that is, in the example of FIG.
In the section starting from point I to point A, search for a radial depression II on the inner peripheral surface.

【0038】内径内に両方に端面くぼみと内周面とがク
ロスしているものはないか探し(P 7)このくぼみを内
端くぼみと定義する。更に、各くぼみごとにくぼみの中
のくぼみを探す(P9)。これらが終了すると内径関係
の各くぼみは、くぼみメモリ9にそれぞれを登録する
(P10)。外径くばみも前記同様にくぼみを探し、登録
する(P11)。内径くぼみを削るための工具1本を、あ
らかじめ登録されている加工情報メモリ5の工具ファイ
ルから決定する(P12)。しかし、前記工具で加工した
場合に前記したような削り残しが発生すると、この残部
分を削る逆向きの工具を1本決定する(P13、P14)。
Both the inner surface and the inner surface of the inner diameter are closed.
Look for anything lost (P 7) Inside this hollow
Defined as an edge depression. In addition, inside each hollow
Search for hollows (P9). When these are finished, the inner diameter relationship
Each of the depressions is registered in the depression memory 9.
(PTen). As for the outer diameter cavity, search for the cavity as above and register
Yes (P11). Insert a tool to cut the inner diameter
The tool file stored in the machining information memory 5
(P12). However, it was processed with the tool
In this case, if the above-mentioned uncut part occurs,
Decide one reverse tool to cut the minute (P13, P14).

【0039】内径部と同様の方法で内径端面、外径、外
径端面などの加工に必要な工具を決定する。これらのく
ぼみが決定すると、図7で説明したような方法にしたが
って、くぼみごとに切削領域を決定する(P16)。この
決定の後、NCデータファイルに記憶しておく
(P17)。
The tools necessary for machining the inner diameter end face, outer diameter, outer diameter end face, etc. are determined in the same manner as the inner diameter portion. When these depressions are determined, a cutting area is determined for each depression according to the method described with reference to FIG. 7 (P 16 ). After this determination, it is stored in the NC data file (P 17 ).

【0040】[0040]

【発明の効果】以上、詳記したように、仕上形状から切
削領域をたて要素に分割したので、空切削の少ない領域
が決定できる。切削方向を切削領域の形状をみて決定す
るので、効率的な切削ができる。また、くぼみを分類す
ることにより、そのくぼみに合った工具、切削領域、切
削方法が決定できる。
As described in detail above, since the cutting area is divided into vertical elements based on the finished shape, an area with less empty cutting can be determined. Since the cutting direction is determined based on the shape of the cutting area, efficient cutting can be performed. In addition, by classifying the depression, a tool, a cutting area, and a cutting method that match the depression can be determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、NCデータ作成装置の概要を示す機能
ブロック図である。
FIG. 1 is a functional block diagram illustrating an outline of an NC data creating apparatus.

【図2】図2は、旋削加工の時の仕上形状と素材の形状
の例を示す図である。
FIG. 2 is a diagram showing an example of a finished shape and a shape of a material at the time of turning.

【図3】図3(a)、(b)は、素材に特殊なへこみが
ある形状のときの認識を示す図である。
FIGS. 3A and 3B are diagrams showing recognition when a material has a shape having a special dent. FIGS.

【図4】図4は、NCデータを切削領域決定のフローを
示す図である。
FIG. 4 is a diagram showing a flow of determining a cutting area of NC data.

【図5】図5は、くぼみのある工作物の仕上形状の例を
示す断面図である。
FIG. 5 is a cross-sectional view showing an example of a finished shape of a recessed workpiece.

【図6】図6は、端面のくぼみ、外周のくぼみが重なっ
た例を示す図である。
FIG. 6 is a diagram illustrating an example in which a depression on an end face and a depression on an outer periphery overlap each other.

【図7】図7は、くぼみの切削加工領域を示す図であ
る。
FIG. 7 is a diagram showing a cut processing area of a depression;

【図8】図8は、くぼみを探す動作のフローを示す図で
ある。
FIG. 8 is a diagram illustrating a flow of an operation of searching for a depression.

【符号の説明】[Explanation of symbols]

1…CPU 5…加工情報メモリ 6…制御プログラムメモリ 7…NCデータ作成装置 8…切削領域メモリ 9…くぼみメモリ 10…作成データメモリ DESCRIPTION OF SYMBOLS 1 ... CPU 5 ... Processing information memory 6 ... Control program memory 7 ... NC data creation device 8 ... Cutting area memory 9 ... Recess memory 10 ... Creation data memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被旋削品の仕上形状の一端から仕上げ形状
を分岐点ごとにトレースし、 前記仕上形状の軸線方向への移動とこの移動と逆方向へ
の移動が発生するとこの領域を端面くぼみと判定し、 前記仕上形状の軸線方向に対して垂直方向への移動とこ
の移動と逆方向への移動が発生するとこの領域を径方向
くぼみと判定し、 前記認識したくぼみの入口点と出口点を定義し、 前記認識したくぼみを削るための片刃工具を選択し、 前記入口の前記分岐点から前記くぼみを加工する片刃工
具の形状から加工可能な角度を定めた直線を定義し、 選択した前記片刃工具で前記くぼみを旋削するように前
記直線を境に前記くぼみを2分割して認識する旋削NC
データのくぼみ認識方法。
1. A finish shape is traced from one end of a finish shape of a workpiece to be turned at each branch point, and when the finish shape moves in an axial direction and in a direction opposite to this movement, this area is depressed in an end face. When movement in the direction perpendicular to the axial direction of the finished shape and movement in the opposite direction to this movement occur, this area is determined to be a radial depression, and the entrance point and the exit point of the recognized depression. Defining a single-edged tool for shaving the recognized dent, defining a straight line defining an angle that can be machined from the shape of the single-edged tool for machining the dent from the branch point of the entrance, Turning NC for recognizing the hollow by dividing the hollow into two parts so as to turn the hollow with a single-edged tool
Data dent recognition method.
【請求項2】請求項1において、前記選択した片刃工具
で切削して削り残した部分を、前記選択した片刃工具と
逆向きの工具を自動的に選択して切削する切削NCデー
タのくぼみ認識方法。
2. The concave recognition of cutting NC data according to claim 1, wherein a portion which is left uncut after cutting with said selected one-edge tool is automatically selected and cut in a direction opposite to said selected one-edge tool. Method.
JP18761498A 1998-07-02 1998-07-02 Hollow recognition method for turning nc data Pending JPH10340115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18761498A JPH10340115A (en) 1998-07-02 1998-07-02 Hollow recognition method for turning nc data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18761498A JPH10340115A (en) 1998-07-02 1998-07-02 Hollow recognition method for turning nc data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1036112A Division JPH0769736B2 (en) 1989-02-17 1989-02-17 Turning NC data machining area automatic determination method and dent recognition method

Publications (1)

Publication Number Publication Date
JPH10340115A true JPH10340115A (en) 1998-12-22

Family

ID=16209199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18761498A Pending JPH10340115A (en) 1998-07-02 1998-07-02 Hollow recognition method for turning nc data

Country Status (1)

Country Link
JP (1) JPH10340115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397981B1 (en) * 2000-12-26 2003-09-19 현대자동차주식회사 Method for grouping a tool path

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100397981B1 (en) * 2000-12-26 2003-09-19 현대자동차주식회사 Method for grouping a tool path

Similar Documents

Publication Publication Date Title
EP0166783B1 (en) Machining step determination method for automatic programming
US7027889B2 (en) Automatic programming apparatus for generating a numerical control program for controlling a cutting tool
EP0078856B1 (en) Numerical control device
JP2514191B2 (en) Method for creating NC part program for laser machining
US4951217A (en) System and process for generating a tool path offset
US6247006B1 (en) Automatic programming method for punch press and apparatus for the same
KR900007161B1 (en) Region machining method
JP3679110B2 (en) CAD / CAM system for sheet metal working, program and recording medium recording program
JPH10340115A (en) Hollow recognition method for turning nc data
JPH0720920A (en) Method for generating tool track data
JPH0769736B2 (en) Turning NC data machining area automatic determination method and dent recognition method
JPH027105A (en) Method for preparing offsetting shape
EP0198927A1 (en) Method of preparing nc data
JP2753365B2 (en) How to create numerical control information
EP0148947A1 (en) Data input method
JPS62140741A (en) Division processing device for machining region in automatic machine
JPH05228786A (en) Automatic generating device for nc data in nc machine tool
JPH084992B2 (en) Grooving method decision method in numerical control information creation function
JPH06104292B2 (en) Method and device for automatically dividing machining process in automatic programming device
JP3343826B2 (en) Numerical control information creation device
JPH06102914A (en) Method for generating machining program for numerical controller
JP3082232B2 (en) Axial feed cutting method
JPH10307615A (en) Automatic generating method for machining path of recessed groove position for cam
JPS62208857A (en) Part programming device in machining center
JPS62166407A (en) Data constitution for graphic information of machine tool