JPH10339041A - Method and device for repairing structure in nuclear reactor - Google Patents

Method and device for repairing structure in nuclear reactor

Info

Publication number
JPH10339041A
JPH10339041A JP9151888A JP15188897A JPH10339041A JP H10339041 A JPH10339041 A JP H10339041A JP 9151888 A JP9151888 A JP 9151888A JP 15188897 A JP15188897 A JP 15188897A JP H10339041 A JPH10339041 A JP H10339041A
Authority
JP
Japan
Prior art keywords
pressure
joining
covering plate
plate
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9151888A
Other languages
Japanese (ja)
Other versions
JP3225890B2 (en
Inventor
Keiichi Urashiro
慶一 浦城
Hisanobu Okamura
久宣 岡村
Toshimi Matsumoto
俊美 松本
Hisataka Satsuta
寿隆 薩田
Mitsuo Nakamura
満夫 中村
Akira Konuma
昭 小沼
Tsutomu Konuma
勉 小沼
Takahiko Kato
隆彦 加藤
Yasukata Tamai
康方 玉井
Junichiro Morisawa
潤一郎 森沢
Kunihiko Suzuki
国彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15188897A priority Critical patent/JP3225890B2/en
Publication of JPH10339041A publication Critical patent/JPH10339041A/en
Application granted granted Critical
Publication of JP3225890B2 publication Critical patent/JP3225890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of cracks in a joined part by fixing a covering plate to a structure in which a crack-shaped defect is generated, flowing the current while the pressure is locally applied, and achieving the joining with the generated resistance heat to reduce the heating time during the execution. SOLUTION: A covering plate 3 is installed on a structure 2, and fixed by a fixing jig 24. A power source, a transformer 12, etc., are installed above the water level, and the execution is remotely achieved using a slide mechanism 26 where an arm 28 or an electrode 10 is movable in a horizontal/vertical direction. A support pillar 27 is fixed above the water level to form a pressure supporting part. The pressure is applied to a contact part of the covering plate 3 immediately below the electrode 10 with the structure 2 by a pressure applying mechanism 14, energization is achieved under the pressure, and a joined part 15 is formed through local fusing by the resistance heat. After one joining is completed, the electrode 10 is successively moved to form continuously joined parts. The resistance welding may be achieved using a rotary electrode. A series of executions are monitored by a monitoring mechanism. Development of cracks attributed to the stress corrosion, etc., can be prevented thereby.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、原子力発電プラン
トの供用機器の期間中における、原子炉圧力容器内部を
構成する構造物及び機器の補修方法に係り、特に中性子
照射を受けておりかつ亀裂状の欠陥の発生している構造
物及び機器に対し、補修後の健全性に関し信頼性の高い
補修を可能にするための、板材を被覆して構造物と接合
させる補修方法とその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for repairing a structure and equipment constituting the interior of a reactor pressure vessel during service equipment of a nuclear power plant, and more particularly to a method for repairing a neutron-irradiated and cracked structure. The present invention relates to a repair method and a device for covering a plate material and joining it to a structure in order to enable highly reliable repair of soundness after repair for a structure and equipment in which a defect has occurred.

【0002】[0002]

【従来の技術】原子炉圧力容器内部の構造物及び機器
は、高温高圧水等の環境において応力腐食割れなどの経
年的な亀裂状欠陥の発生が懸念されている。応力腐食割
れは、材料自身の局部的な組成変化などの劣化因子,溶
接施工などで構造物に負荷されている引張残留応力の応
力因子、及び高温高圧水での腐食環境因子の重畳によっ
て発生し、また亀裂は進展する。この亀裂が上記構造物
及び機器を貫通すると、上記原子力プラントの重大な事
故につながる恐れがあり、亀裂が発生した構造物に対し
て、亀裂貫通を防止する補修技術が必要とされる。
2. Description of the Related Art There is a concern that cracks and aging defects such as stress corrosion cracking may occur in structures and equipment inside a reactor pressure vessel in an environment such as high temperature and high pressure water. Stress corrosion cracking is caused by superposition of deterioration factors such as local composition change of the material itself, stress factors of tensile residual stress applied to the structure by welding, etc., and corrosion environment factors in high temperature and high pressure water. , And cracks grow. If this crack penetrates the above-mentioned structure and equipment, it may lead to a serious accident of the above-mentioned nuclear power plant, and a repair technique for preventing crack penetration of the cracked structure is required.

【0003】このような亀裂貫通を防止する補修技術と
して、図33(a)に示すように、亀裂状の欠陥1を含
む領域に板材3を被覆して板材3の縁部と構造物2と
を、フィラー材5を添加しつつアーク放電6による入熱
を利用してスミ肉溶接することにより、該欠陥1を腐食
環境から隔離して亀裂の進展を防止する補修方法が知ら
れている。
As a repair technique for preventing such crack penetration, as shown in FIG. 33 (a), an area including a crack-like defect 1 is covered with a plate material 3, and an edge of the plate material 3 and the structure 2 are formed. A method is known in which the defect 1 is isolated from a corrosive environment to prevent the growth of a crack by welding the fillet using the heat input by the arc discharge 6 while adding a filler material 5.

【0004】しかしながら、中性子の照射を受けた構造
物は、材料構成元素の核変換でHeが発生し、発生した
Heを内部に含有している。このようなHeを含有した
材料に対し、上に述べたように板材を被覆して板材の縁
部と構造物とをスミ肉溶接する場合、アーク放電等によ
る溶接等の従来技術では、フィラー材および母材や板材
の一部を溶融せしめるだけの入熱量が不可避的に投入さ
れるため、図18〜図33に示すように、亀裂状の欠陥
1の発生している中性子の照射を受けた構造物2に対
し、板材3を構造物2とスミ肉溶接するような補修を行
うと、補修部分においてスミ肉溶接部7の周囲の構造物
側の熱影響部8が新たな欠陥9の発生部になってしまう
恐れがあった。
[0004] However, a structure irradiated with neutrons generates He by transmutation of a material constituent element, and contains the generated He inside. In the case where such a material containing He is covered with a plate material as described above and the edge of the plate material and the structure are spot-welded, in a conventional technique such as welding by arc discharge or the like, a filler material is used. In addition, since a heat input amount enough to melt a part of the base material and the plate material is inevitably supplied, as shown in FIGS. 18 to 33, irradiation with neutrons having crack-like defects 1 was performed. When repair is performed on the structure 2 such that the plate 3 is welded to the structure 2 by spot welding, the heat-affected zone 8 on the structure side around the spot weld 7 at the repaired portion generates a new defect 9. There was a risk of becoming a department.

【0005】上記問題点は、例えばオーステナイト系ス
テンレス鋼に対し、Journal ofMaterial Science Vol.
26(1991),p2063−2070で報告されてい
るように、積算的に1.0×1020n/m2以上の全中性
子が照射された状態で生成Heが内包された上記合金製
の材料に対し、熱を与えて溶接施工した場合、溶融部周
囲の溶接熱影響部が高温に加熱され熱活性化によってH
eの結晶粒界への拡散が容易になり、かつ粒界に集まっ
たHe気体は集合してμm単位の大きさの気泡を形成
し、そのため粒界の強度が低下して、さらに溶接後の凝
固収縮に伴う引張応力が加わった際に非溶融熱影響部で
粒界割れが発生する認識に基づいたものである。
[0005] The above-mentioned problem arises, for example, in the case of austenitic stainless steels as described in Journal of Material Science Vol.
26 (1991), pp. 2063-2070, a material made of the above alloy containing generated He in a state where total neutrons of at least 1.0 × 10 20 n / m 2 are irradiated cumulatively. On the other hand, when welding is performed by applying heat, the weld heat affected zone around the fusion zone is heated to a high temperature and activated by thermal activation.
The diffusion of e into the crystal grain boundaries is facilitated, and the He gas collected at the grain boundaries aggregates to form bubbles having a size of μm unit, so that the strength of the grain boundaries is reduced, and furthermore, after welding, It is based on the recognition that grain boundary cracks occur in the non-molten heat affected zone when a tensile stress accompanying solidification shrinkage is applied.

【0006】ここで本発明の目的である亀裂状欠陥が発
生した構造物の補修施工において、板材を被覆してスミ
肉溶接する従来技術による補修方式では、板材と構造物
とを密着させて板材縁部側面と構造物表面の両面に接す
るような形でフィラーワイヤーを供給しつつ熱エネルギ
ーを投入し、フィラーワイヤー及び板材縁部側面と構造
物表面を溶融させて溶接するので、構造物に加わる入熱
量が局所的に高くなる場合がある。このような溶接条件
下では、上述したように、溶接熱影響部が高温に加熱さ
れ熱活性化によってHeの結晶粒界への拡散が容易にな
り、構造物側の熱影響部が新たな不具合の発生部になっ
てしまう恐れがあった。
In the repairing of a structure having a crack-like defect, which is the object of the present invention, in the repairing method according to the prior art in which the plate is covered and the fillet is welded, the plate is brought into close contact with the structure. Heat energy is supplied while supplying filler wire in such a way as to be in contact with both sides of the edge side and the surface of the structure, and the filler wire and plate material are melted and welded to the edge side and the surface of the structure, so they join the structure The heat input may locally increase. Under such welding conditions, as described above, the heat-affected zone is heated to a high temperature and thermal activation facilitates diffusion of He to the crystal grain boundaries, and the heat-affected zone on the structure side causes a new problem. There was a risk of becoming a generation part.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記の従来
技術の補修方法の問題点を考慮し、中性子の照射を受け
た原子炉圧力容器内部を構成するステンレス鋼,Ni基
合金,低合金鋼製の構造物及び機器に発生した応力腐食
割れなどの亀裂状欠陥を補修する際、補修部の健全な補
修方法とその装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems of the prior art repair method, and has been developed in consideration of the above problems, such as stainless steel, Ni-based alloy, and low alloy which constitute the interior of a reactor pressure vessel irradiated with neutrons. It is an object of the present invention to provide a sound repair method for a repaired part and a device for repairing crack-like defects such as stress corrosion cracks generated in steel structures and equipment.

【0008】[0008]

【課題を解決するための手段】本発明は原子力発電プラ
ントの供用期間中における、原子炉圧力容器内部を構成
するステンレス鋼,Ni基合金,低合金鋼製の0〜5.
0×1027n/m2の中性子照射を受けておりかつ亀裂
状の欠陥の発生している構造物及び機器に対し、亀裂状
の欠陥の発生している部分を含む領域に板材を被覆し、
上記被覆板材と構造物との接合面に局所的に圧力を付与
し、発生する抵抗によって生じるエネルギーを駆動力と
して接合することを特徴とする原子炉炉内構造物の補修
方法にある。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a reactor pressure vessel of stainless steel, Ni-base alloy and low alloy steel, which is carried out in a period of service of a nuclear power plant.
A plate material is applied to an area including a portion where a crack-like defect is generated in a structure and an apparatus which has received a neutron irradiation of 0 × 10 27 n / m 2 and has a crack-like defect. ,
A method for repairing an internal structure of a nuclear reactor, characterized in that a pressure is locally applied to a joint surface between the coated plate member and the structure and the energy generated by the generated resistance is joined as a driving force.

【0009】また、本発明は、上記の接合を行う手段と
して、接合施工当該部を加圧しながら電流を流して、発
生する抵抗熱で加熱して接合することを特徴とする原子
炉炉内構造物の補修方法を提供するものである。また、
本発明は、上記の抵抗熱で加熱して接合を行う手段とし
て、回転電極を用いて構造物に被覆板材を電縫溶接する
ことを特徴とする原子炉炉内構造物の補修方法を提供す
るものである。また、本発明は、上記の抵抗熱で加熱し
て接合を行う手段として、スポット状に溶接することを
特徴とする原子炉炉内構造物の補修方法を提供するもの
である。また、本発明は、上記の抵抗熱で加熱してスポ
ット状に接合を行う施工において、複数の電極に電流を
流して、構造物と被覆板材との複数個所を同時に接合す
ることを特徴とする。
The present invention also provides, as a means for performing the above-mentioned joining, an internal structure of a nuclear reactor, characterized in that a current is applied while pressurizing the portion to be joined, and the joint is formed by heating with the generated resistance heat. It is intended to provide a method for repairing a product. Also,
The present invention provides a method for repairing a structure in a nuclear reactor, which comprises performing, as a means for joining by heating with the above-mentioned resistance heat, a coating plate material to the structure by electric resistance welding using a rotating electrode. Things. The present invention also provides a method for repairing a reactor internal structure, characterized in that spot-like welding is performed as means for joining by heating with the resistance heat. Further, the present invention is characterized in that, in the construction in which the spot is joined by heating with the above-described resistance heat, a current is applied to a plurality of electrodes, and a plurality of portions of the structure and the covering plate are joined at the same time. .

【0010】また、本発明は、上記の接合を行う手段と
して、構造物と被覆板材との接合面を機械的に摩擦し、
摩擦抵抗を駆動力として接合することを特徴とする原子
炉炉内構造物の補修方法を提供するものである。また、
本発明は、上記の摩擦抵抗を駆動力として接合を行う手
段として、接合当該部を加圧しながら機械振動を与えて
接合面を機械的に摩擦することを特徴とする。また、本
発明は、上記の機械振動を与えて接合面を機械的に摩擦
して接合を行う手段として、高周波エネルギーを磁気歪
現象によって機械振動に変換し、得られた機械振動を接
合当該部に与えて接合面を機械的に摩擦することを特徴
とする、原子炉炉内構造物の補修方法を提供するもので
ある。
Further, the present invention provides a means for performing the above-mentioned joining, in which the joining surface between the structure and the covering plate is mechanically rubbed,
An object of the present invention is to provide a method for repairing an internal structure of a nuclear reactor, characterized in that welding is performed using frictional resistance as a driving force. Also,
The present invention is characterized in that, as means for performing joining using the frictional resistance as a driving force, mechanical vibration is applied to the joint surface while applying pressure to the joint to mechanically rub the joint surface. Further, the present invention provides means for applying the above mechanical vibration to mechanically rub the bonding surface to perform bonding, converting high frequency energy into mechanical vibration by a magnetostriction phenomenon, and converting the obtained mechanical vibration to the bonding portion. And a method for repairing the internal structure of a nuclear reactor, characterized in that the joint surface is mechanically rubbed.

【0011】また、本発明は、上記施工において、被覆
板材に凸型の突起を設け、突起部を接合面とすることを
特徴とする原子炉炉内構造物の補修方法を提供するもの
である。また、本発明は、構造物側の被覆板材との接触
部に凹型の切欠きを設け、上記被覆板材の突起部と組み
合わせて被覆板材を設置し、接合することを特徴とす
る。
The present invention also provides a method for repairing a reactor internal structure, characterized in that, in the above-mentioned construction, a convex projection is provided on a covering plate material, and the projection is used as a joint surface. . Further, the present invention is characterized in that a concave notch is provided at a contact portion of the structure side with the covering plate material, and the covering plate material is installed and bonded in combination with the projection of the covering plate material.

【0012】また、本発明は、上記施工において、炉内
構造物あるいは機器を支持部とすることによって、圧力
を付与する際に生じる反作用を封じる手段を有すること
を特徴とする原子炉炉内構造物の補修方法を提供するも
のである。また、本発明は、上記の圧力を付与する際に
生じる反作用を封じる手段として、炉内構造物の上部格
子板と炉心支持板との間に支持ピラーを導入し、上部格
子板と炉心支持板によって支えられたピラーを支持部と
することによって、圧力を付与する際に生じる反作用を
封じることを特徴とする原子炉炉内構造物の補修方法を
提供するものである。また、本発明は、上記の圧力を付
与する際に生じる反作用を封じる手段として、圧力容器
と炉心シュラウドとの間に支持ピラーを導入し、圧力容
器内面によって支えられたピラーを支持部とすることに
よって、圧力を付与する際に生じる反作用を封じること
を特徴とする。
Further, the present invention is characterized in that, in the above-mentioned construction, the reactor internal structure has means for sealing a reaction generated when pressure is applied by using the internal structure or equipment as a support portion. It is intended to provide a method for repairing a product. Further, the present invention introduces a support pillar between the upper lattice plate of the furnace internal structure and the core support plate as a means for sealing the reaction generated when the above pressure is applied, so that the upper lattice plate and the core support plate are introduced. The present invention provides a method for repairing a reactor internal structure, characterized in that a reaction supported when pressure is applied is sealed by using a pillar supported by a support member as a support portion. Further, the present invention introduces a support pillar between the pressure vessel and the core shroud as a means for sealing a reaction generated when the above pressure is applied, and a pillar supported by the inner surface of the pressure vessel as a support portion. Thus, a reaction generated when pressure is applied is sealed.

【0013】また、本発明は、炉水に接している原子炉
炉内構造物に対する上述の施工を行う補修施工におい
て、被覆板材を構造物施工当該部に設置する前に、構造
物の被覆板材との接合面を含む領域の酸化皮膜を除去す
る施工を行った後に、被覆板材を設置し、上述の接合施
工を行うことを特徴とする。また、本発明は、上述の原
子炉炉内構造物の補修施工において、構造物の被覆板材
との接合面を含む領域の酸化皮膜を除去する施工を行っ
た後、構造物あるいは被覆板材の接合面を含む領域に、
平均表面粗さを0.2 〜10μmの範囲に仕上げる表面
処理を行い、上記表面処理施工の後に、被覆板材を設置
し、上述の接合施工を行うことを特徴とする。
The present invention also relates to a repair work for performing the above-mentioned work on a reactor internal structure that is in contact with reactor water, wherein the cover plate material of the structure is provided before the cover plate material is installed in the structural work portion. After performing the work of removing the oxide film in the area including the joining surface with the cover plate, a covering plate is installed, and the above-described joining work is performed. Further, in the present invention, in the above-mentioned repair work of the reactor internal structure, after performing the work of removing an oxide film in a region including a joint surface of the structure with the cover plate material, the structure or the cover plate material is bonded. In the area including the face,
It is characterized in that a surface treatment for finishing the average surface roughness in the range of 0.2 to 10 μm is performed, and after the surface treatment, a covering plate is installed and the above-described joining is performed.

【0014】また、本発明は、上述の接合施工におい
て、上記被覆板材と上記構造物の接合面を含む領域との
間に、上記被覆板材と上記構造物の少なくともいずれか
とは組成あるいは結晶構造の異なる中間層が挿入されて
いることを特徴とする。また、本発明は、上記挿入され
る中間層として、肉盛層あるいは溶射層が形成されてい
ることを特徴とする原子炉炉内構造物の補修方法を提供
するものである。また、本発明は、上記挿入される肉盛
層あるいは溶射層の形成手段として、レーザ光あるいは
アーク光の照射によって上記中間層を形成することを特
徴とする。また、本発明は、上記挿入される中間層とし
て、ろう付け層が形成されていることを特徴とする。ま
た、本発明は、上記挿入される中間層の成分として、P
dあるいはPtの少なくともいずれかが0.05〜2.0
wt%の範囲で含有されていることを特徴とする。ま
た、本発明は、上記接合施工において、上記構造物と接
合する側の上記被覆板材表面に請求項9に記載の層を表
面層として形成した後に、請求項1〜8に記載の接合施
工を行うことを特徴とする。また、本発明は、上記接合
施工において、上記構造物表面に請求項9に記載の層を
表面層として形成した後に上記被覆板材を設置し、請求
項1〜8に記載の接合施工を行うことを特徴とする。
Further, according to the present invention, in the above-mentioned joining work, the covering plate and at least one of the structures have a composition or a crystal structure between the covering plate and a region including a joint surface of the structure. It is characterized in that different intermediate layers are inserted. The present invention also provides a method for repairing a reactor internal structure, wherein a build-up layer or a thermal spray layer is formed as the intermediate layer to be inserted. Further, the present invention is characterized in that the intermediate layer is formed by irradiating a laser beam or an arc beam as a means for forming the cladding layer or the thermal spray layer to be inserted. Further, the present invention is characterized in that a brazing layer is formed as the intermediate layer to be inserted. In addition, the present invention provides a method for preparing the above-mentioned inserted intermediate layer,
at least one of d or Pt is 0.05 to 2.0
It is characterized in that it is contained in the range of wt%. Further, in the present invention, in the joining work, after forming the layer according to claim 9 as a surface layer on the surface of the covering plate material on the side joined to the structure, the joining work according to claims 1 to 8 is performed. It is characterized by performing. In the present invention, in the above-mentioned joining work, the covering plate is installed after forming the layer according to claim 9 as a surface layer on the surface of the structure, and the joining work according to claims 1 to 8 is performed. It is characterized by.

【0015】また、本発明は、上述の接合施工におい
て、上記構造物表面の上記被覆板材との接合当該部を含
む領域に表面溶融層が形成されていることを特徴とす
る。また、本発明は、上記表面溶融層の形成手段とし
て、レーザ光あるいはアーク光の照射によって上記表面
溶融層を形成することを特徴とする。
Further, the present invention is characterized in that, in the above-mentioned joining work, a surface molten layer is formed in a region including a portion of the structure surface to be joined with the covering plate material. Further, the present invention is characterized in that as the means for forming the surface molten layer, the surface molten layer is formed by irradiation with laser light or arc light.

【0016】また、本発明は、上述の施工によって、被
覆する板材と被補修構造物との接触面における外周部の
一部あるいは全周部が金属結合によって接合されている
ことを特徴とする。
Further, the present invention is characterized in that a part or all of the outer peripheral portion of the contact surface between the plate material to be covered and the repaired structure is joined by metal bonding by the above-described construction.

【0017】また、本発明は、上述の施工を行うため
の、圧力を付与する際に生じる反作用を封じる手段を具
備していることを特徴とする。また、本発明は、上記の
圧力を付与する際に生じる反作用を封じる手段として、
軽水炉炉内構造物の上部格子板と炉心支持板によって上
記反作用方向に対して支えられるピラーを具備すること
を特徴とする。また、本発明は、上記の圧力を付与する
際に生じる反作用を封じる手段として、圧力容器内面に
よって上記反作用方向に対して支えられる圧力支持板を
具備することを特徴とする炉内構造物の補修装置にあ
る。
Further, the present invention is characterized in that there is provided a means for sealing the reaction generated when applying pressure for performing the above-mentioned construction. In addition, the present invention, as means for sealing the reaction generated when applying the above pressure,
A pillar supported by the upper lattice plate and the core support plate of the inner structure of the light water reactor in the reaction direction is provided. Further, the present invention provides a repair of a furnace internal structure, comprising a pressure support plate supported in the reaction direction by an inner surface of a pressure vessel as a means for sealing a reaction generated when the pressure is applied. In the device.

【0018】発明者らは、全中性子の照射量が5.0×
1027n/m2以下の状態の上記合金製の材料に対し、
Heの活性化を引き起こす温度における保持時間が短い
施工では、非溶融熱影響部でのHeの拡散が抑止されて
溶融部のみならず周囲の熱影響部においても割れの発生
しないことを発見し、本発明に至った。
The inventors have found that the irradiation amount of all neutrons is 5.0 ×
For the material made of the above alloy in a state of 10 27 n / m 2 or less,
In the construction where the holding time at the temperature causing activation of He is short, the diffusion of He in the non-molten heat-affected zone is suppressed, and it is found that cracks do not occur not only in the molten zone but also in the surrounding heat-affected zone, The present invention has been reached.

【0019】ここで構造物と被覆した板材とを接合する
施工方式として、添加するフィラー材を溶融させるスミ
肉溶接施工の代わりに、接合面に局所的に圧力を付与し
つつ、物理的手段によって接合面に抵抗を生じさせ、生
じた抵抗によって発生する熱あるいは塑性変形等の力学
的エネルギーによって当該部を接合させる施工方式によ
れば、付与する圧力および抵抗を生じさせる時間を制御
することによって、上記のHeの活性化を引き起こす温
度における保持時間を短くすることが可能であり、割れ
が発生しない接合が可能である。
Here, as a construction method for joining the structure and the coated plate material, instead of the fillet welding work for melting the filler material to be added, while applying local pressure to the joint surface, physical means is used. According to the construction method in which a resistance is generated in the bonding surface and the relevant part is bonded by mechanical energy such as heat or plastic deformation generated by the generated resistance, by controlling the pressure to be applied and the time for generating the resistance, It is possible to shorten the holding time at the temperature that causes the activation of He described above, and it is possible to perform bonding without generating cracks.

【0020】接合面を加圧した状態で抵抗を与える物理
的手段としては、電流を流して接触面に電気抵抗を発生
させ、発生した抵抗熱で加熱して接合する施工や、機械
的な摩擦抵抗を用いる施工が挙げられる。
Physical means for applying resistance in a state in which the joint surface is pressurized include generating an electric resistance in the contact surface by flowing an electric current, heating the joint with the generated resistance heat, joining the joint, and mechanical friction. The construction using resistance is mentioned.

【0021】まず、電流を流して接合させる方式の原理
と作用について以下に説明する。
First, the principle and operation of a method of joining by passing a current will be described below.

【0022】図28は構造物と被覆板材とを加圧しなが
ら電流を流してスポット的に接合させる施工を表した模
式図である。電極A10は被覆板材3に接触し、電極B
11は構造物2の表面に接触し、両電極は電気的に接続
され、変圧器12によって電極/材料間に流れる電流は
制御される。また、被覆板材3に接触する電極A10に
は圧力付与機構14が設けられ、板材3と構造物2との
接触面に局所的に圧力が付与されるようになっている。
圧力付与機構14によって電極A10直下の被覆板材3
と構造物2との接触部に圧力を付与し、加圧下において
電流を通電すると該接触部の電気抵抗によって抵抗熱が
発生し、被覆板と構造物それぞれが局所的に溶融し、通
電停止あるいは圧力除去とともに凝固して接合部15が
形成される。ここで発生する抵抗発熱量は、 Q=ρ・j2・t〔J/m3〕 ρ:比抵抗 j:電流密度 t:通電時間 で表される。一定加圧条件下において、大電流を短時間
通電した場合、被覆板と構造物それぞれが局所的に溶融
して接合部15が形成されるだけの熱を発生させる施工
において、0.1sec以下の極めて短時間の通電で接合施
工が可能である。このような短時間の通電による施工で
は、溶融部周囲の熱影響部において、Heが活性化する
温度領域の保持時間が極めて短時間であり、Heの拡散
あるいは粒界での気泡形成に寄与するような熱影響をほ
とんど母材に与えずに接合することが可能である。
FIG. 28 is a schematic view showing a construction in which an electric current is applied to the structure and the covering plate material while applying a pressure to join them in a spot manner. The electrode A10 comes into contact with the covering plate 3 and the electrode B
11 is in contact with the surface of the structure 2, the two electrodes are electrically connected, and the current flowing between the electrode and the material is controlled by the transformer 12. In addition, a pressure applying mechanism 14 is provided for the electrode A10 in contact with the covering plate 3, so that pressure is locally applied to the contact surface between the plate 3 and the structure 2.
The covering plate 3 just below the electrode A10 by the pressure applying mechanism 14
When pressure is applied to the contact portion between the structure and the structure 2 and a current is applied under pressure, resistance heat is generated by the electric resistance of the contact portion, the coating plate and the structure are locally melted, and the current is stopped or The joint 15 is formed by solidification together with the release of the pressure. The resistance heating value generated here is represented by Q = ρ · j 2 · t [J / m 3 ] ρ: specific resistance j: current density t: conduction time Under a constant pressurizing condition, when a large current is applied for a short time, the coating plate and the structure are locally melted to generate heat enough to form the joint 15. Bonding can be performed with a very short energization. In the application by such a short-time energization, the holding time of the temperature region where He is activated is extremely short in the heat-affected zone around the fusion zone, which contributes to He diffusion or bubble formation at grain boundaries. It is possible to perform joining without giving such a thermal effect to the base material.

【0023】また、図29に示すように、複数の電極の
両方に圧力を付与する機構14を具備することによっ
て、複数の電極直下の接触面を同時に接合させることも
可能である。
Further, as shown in FIG. 29, by providing a mechanism 14 for applying pressure to both of the plurality of electrodes, it is possible to simultaneously join the contact surfaces immediately below the plurality of electrodes.

【0024】上に述べたスポット状に接合させる方式で
は、1個所の接合施工終了後、電極を順次移動させて施
工していくことで、図6に示すように、被覆板3は構造
物2に隙間なく接合される。
In the above-mentioned method of joining in a spot shape, after the joining at one location is completed, the electrodes are sequentially moved to carry out the joining, and as shown in FIG. Joined without gaps.

【0025】さらに、図30に示すように、円板上の回
転電極16を用いて回転させながら圧力を付与しつつ通
電することによって、連続した接合部が容易に形成され
る。この方式の場合、連続的に通電を行う方式では容易
に連続接合部が形成されるが、通電を断続的に繰り返す
方式でも、通電の周期や施工速度等を制御することによ
って接合部15を連続的に形成することが可能である。
Further, as shown in FIG. 30, a continuous joint is easily formed by applying a pressure and applying a current while rotating using the rotating electrode 16 on the disk. In the case of this method, a continuous joint is easily formed by a method of continuously energizing. However, even in a method of intermittently repeating the energization, the joint 15 is continuously formed by controlling the energizing cycle and the construction speed. It is possible to form it.

【0026】次に、機械的な摩擦抵抗を用いる施工の一
例として、機械振動を与えて接触面に摩擦抵抗を発生さ
せて接合させる方式の原理と作用について以下に説明す
る。図31は、機械振動を与える手段として、超音波発
振を用いた施工を表したものである。磁性材料およびコ
イルからなる振動子17に超音波発振器18を用いて高
周波の電流を流すと、振動子17は磁気歪現象によって
振動する。発生した振動は共鳴子19によって振幅を増
大させ、施工端子20が増大した振幅によって矢印方向
に振動する。被覆板材3と構造物2との圧力付与機構1
4によって加圧された接合面は、上記振動によって摩擦
が発生する。接触面は摩擦によって加熱されると同時に
塑性変形が生じる。塑性変形された面は、圧力および再
結晶温度以上への加熱による原子移動の効果によって原
子間力の作用する距離にまで近接し、結合を生じて接触
面は接合される。施工条件として、超音波の出力および
周波数,増幅された振幅,加圧力などが因子となるが、
溶体化温度以上に加熱されることを避けて施工条件を設
定することによって、上述したHeの粒界での気泡形成
を生じることなしに接合することが可能である。また、
この方式における施工時間は極めて短時間であるため、
溶体化温度以上への加熱が部分的に生じても、Heの粒
界での気泡形成にはほとんど寄与しない接合が可能であ
る。
Next, as an example of construction using mechanical frictional resistance, the principle and operation of a system in which mechanical vibration is applied to generate frictional resistance on the contact surfaces and join the contact surfaces will be described below. FIG. 31 shows construction using ultrasonic oscillation as a means for giving mechanical vibration. When a high-frequency current is applied to the vibrator 17 made of a magnetic material and a coil using the ultrasonic oscillator 18, the vibrator 17 vibrates due to the magnetostriction phenomenon. The generated vibration is increased in amplitude by the resonator 19, and the construction terminal 20 vibrates in the direction of the arrow due to the increased amplitude. Pressure applying mechanism 1 between covering plate 3 and structure 2
The joint surface pressed by 4 generates friction due to the vibration. The contact surface is heated by friction and at the same time undergoes plastic deformation. The plastically deformed surface is brought close to the distance at which the interatomic force acts due to the effect of atom transfer due to heating above the pressure and the recrystallization temperature, and bonds are formed to join the contact surfaces. As the construction conditions, the output and frequency of the ultrasonic wave, the amplified amplitude, the pressing force, etc. are factors,
By setting the working conditions so as not to be heated to a temperature higher than the solution temperature, it is possible to perform joining without causing the formation of bubbles at the grain boundaries of He described above. Also,
Since the construction time in this method is extremely short,
Even if heating to a temperature equal to or higher than the solution temperature partially occurs, bonding that hardly contributes to the formation of bubbles at the grain boundaries of He can be performed.

【0027】被覆板材と構造物との接合施工の場合、1
個所の接合施工終了後、施工端子を順次移動させて施工
していくことで、被覆板は構造物に隙間なく接合され
る。また、上述の通電による施工と同様に、円板上の施
工端子を用いて回転させながら圧力を付与しつつ振動を
与えることによって、連続した溶接部を形成することも
可能である。
In the case of joining the covering plate and the structure, 1
After the completion of the joining work at each location, the covering plate is joined to the structure without gaps by sequentially moving the working terminals and performing the work. Further, similarly to the above-described construction by energization, a continuous welded portion can be formed by applying vibration while applying pressure while rotating using a construction terminal on a disk.

【0028】次に本発明による、被覆板材に突起を設け
て接合する施工の作用について説明する。図4(a)は
突起部21を設けた被覆板材3を構造物2に設置した模
式図である。図28〜図31に示したように、加圧付与
機構によって電極直下の接触面は加圧されるが、突起部
21を接触面とすることによって、付与される圧力が集
中され、接触面での圧力分散による施工不具合を防止す
ることが可能である。上述の摩擦を付与する施工の場合
でも、同様の効果がある。
Next, a description will be given of the operation of the present invention in which the projections are provided on the covering plate and joined. FIG. 4A is a schematic diagram in which the covering plate 3 provided with the protrusion 21 is installed on the structure 2. As shown in FIGS. 28 to 31, the contact surface immediately below the electrode is pressurized by the pressurizing mechanism, but by using the protrusion 21 as the contact surface, the applied pressure is concentrated, and It is possible to prevent construction failure due to pressure dispersion of the construction. The same effect can be obtained even in the case of the above-described application of applying friction.

【0029】また、図4(b)は突起部21を被覆板材
の横側に設けた場合であり、板厚の大きい被覆板を設置
する場合、突起部21を接触面とすることによって付与
する圧力を集中する効果がある。
FIG. 4B shows the case where the projection 21 is provided on the side of the covering plate. When a thick covering plate is installed, the projection 21 is provided as a contact surface. It has the effect of concentrating pressure.

【0030】また、図4(c)は構造物側に凹型の切欠
き22を設け、上記の突起部を設けた被覆板材を切欠き
と組み合わせて設置した模式図である。構造物側の切欠
き部22および被覆板材側の突起部21を接触面とする
ことによって、付与される圧力が集中されると同時に被
覆板材3と構造物2が密着した施工が可能である。
FIG. 4 (c) is a schematic view in which a concave notch 22 is provided on the structure side, and the covering plate provided with the above-mentioned protrusion is installed in combination with the notch. By using the notch 22 on the structure side and the projection 21 on the cover plate side as the contact surfaces, the applied pressure is concentrated and at the same time, the construction in which the cover plate 3 and the structure 2 are in close contact can be performed.

【0031】ここで、本発明による上記施工は、いずれ
も被覆板材と構造物との接触面に局所的に圧力を付与す
ることが前提である。従って、軽水炉の炉内で施工を行
う場合、上記接触面に一定の加圧力を付与するためは、
付与する際に生じる付与方向と逆方向の反作用力を封じ
ることが必要である。例えば、配管内面等に対する施工
では、施工当該部の反対側を圧力支持部とすることで容
易であるが、炉内の複雑形状の構造物に対しては、上記
反作用力を封じるために、上記接触面に付与する圧力を
支持する支点を、炉内に具備させる手段が必要である。
本発明では、炉内構造物あるいは機器を支持部とするこ
とによって、圧力を付与する際に生じる反作用を封じる
手段とすることが可能である。例えば、図15に示す炉
内構造物のシュラウド44の内面に対する施工では、炉
内構造物の上部格子板43と炉心支持板45との間に支
持ピラー53を導入し、上部格子板と炉心支持板によっ
て支えられたピラーを支持部とすることによって、圧力
を付与する際に生じる反作用を封じることが可能であ
る。また、図18に示す上記シュラウド44の外面に対
する施工では、圧力容器42とシュラウド44との間に
支持ピラーを導入し、圧力容器42の内面によって支え
られたピラーを支持部とすることによって、圧力を付与
する際に生じる反作用を封じることが可能である。施工
の詳細は実施例にて後述する。
Here, the above-mentioned construction according to the present invention is based on the premise that pressure is locally applied to the contact surface between the covering plate and the structure. Therefore, when performing the construction in a light water reactor, in order to apply a constant pressure to the contact surface,
It is necessary to seal off the reaction force generated in the application direction in the opposite direction to the application direction. For example, in the construction on the inner surface of the pipe, etc., it is easy to make the opposite side of the construction concerned a pressure support portion, but for a complex-shaped structure in the furnace, in order to seal the reaction force, Means for providing a fulcrum for supporting the pressure applied to the contact surface in the furnace is required.
In the present invention, by using a furnace internal structure or equipment as a support portion, it is possible to use a means for sealing a reaction generated when pressure is applied. For example, in the construction on the inner surface of the shroud 44 of the in-furnace structure shown in FIG. 15, a support pillar 53 is introduced between the upper lattice plate 43 and the core support plate 45 of the in-furnace structure, and the upper lattice plate and the core support By using the pillars supported by the plate as the supporting portions, it is possible to seal off the reaction that occurs when applying pressure. Further, in the construction on the outer surface of the shroud 44 shown in FIG. 18, the support pillar is introduced between the pressure vessel 42 and the shroud 44, and the pillar supported by the inner surface of the pressure vessel 42 is used as a support part, so that the pressure is reduced. It is possible to seal off the reaction that occurs when imparting. Details of the construction will be described later in Examples.

【0032】次に本発明による、構造物の酸化皮膜を除
去した後に上述の接合を行う施工の作用について説明す
る。軽水炉の炉内構造物は水中に位置しているので、供
用中に酸化皮膜が付着している場合がある。この酸化皮
膜が付着したまま上述の接合を行った場合、電気抵抗あ
るいは摩擦抵抗が不安定となり、施工不良の原因となり
うる。従って、軽水炉の炉内構造物に上記施工を行う場
合、構造物の被覆板材との接触面を含む領域の酸化皮膜
を放電加工あるいはグラインダあるいはエメリ等で除去
した後で、被覆板材を設置し、上述の接合施工を行うこ
とが望ましい。また、上述の接合施工を行う場合、接合
面の電気抵抗あるいは摩擦抵抗が適正に均一化している
ことが望ましい。一般に接触面の表面粗さが大きい場
合、電気抵抗あるいは摩擦抵抗が大きくなり、通電量あ
るいは振動出力等が比較的小さい条件で接合が可能とな
るが、表面粗さが大きくなり過ぎると上記抵抗が不均一
になり、施工不良の原因となりうる。従って、本発明の
対象であるステンレス鋼,Ni基合金,低合金鋼製の構
造物の場合、平均表面粗さを上記の手段で0.2 〜10
μmに仕上げた後に、被覆板材を設置し、上述の接合施
工を行うことが望ましい。
Next, a description will be given of the operation of the above-mentioned joining after removing the oxide film of the structure according to the present invention. Since the internal structure of a light water reactor is located in water, an oxide film may be adhered during operation. If the above-described joining is performed with the oxide film adhered, the electric resistance or the frictional resistance becomes unstable, which may cause a poor construction. Therefore, when performing the above-described construction on the inner structure of the light water reactor, after removing the oxide film in the area including the contact surface of the structure with the coated plate by electric discharge machining or a grinder or emery, the coated plate is installed, It is desirable to perform the above-mentioned joining work. Further, when performing the above-mentioned joining work, it is desirable that the electric resistance or the frictional resistance of the joining surface is appropriately uniformized. In general, when the surface roughness of the contact surface is large, the electric resistance or frictional resistance increases, and bonding can be performed under conditions where the amount of electricity or vibration output is relatively small. It becomes uneven and may cause poor construction. Therefore, in the case of a structure made of stainless steel, a Ni-based alloy, or a low-alloy steel, which is an object of the present invention, the average surface roughness is set to 0.2 to 10 by the above-described means.
After finishing to μm, it is desirable to install a covering plate and perform the above-mentioned joining work.

【0033】また、上述の接合施工を行う場合、図32
(a)に示すように、接合部の外部が隙間構造となる場
合が考えられる。隙間部59は水環境に接しているた
め、隙間内の水質が劣化した条件下においては、応力腐
食割れ等の亀裂の発生部位となる可能性を有する。この
様な場合、図32(b)に示すように高耐食の中間層6
0を形成することによって隙間部59における亀裂の発
生を防止することが可能である。例えば、中間層にPd
あるいはPtを0.05〜2.0wt%含む組成とするこ
とによって、上記成分の水素吸着効果により上記隙間部
59の水質が改善され、応力腐食割れの発生が防止され
る。上記中間層60は、肉盛あるいは溶射あるいはイン
サート材の挿入あるいはろう付けによって形成すること
ができる。また、上記中間層60の形成を炉内で行う場
合は、上記中間層60を構造物2の表面に表面層として
形成しておき、その後被覆板材3を設置して上述の接合
施工を行う方式となり、上記中間層の形成を炉外で行う
場合は、上記中間層60を被覆板材3の接合する側に形
成しておき、その後被覆板材3を設置して上述の接合施
工を行う方式が望ましい。
In the case of performing the above-described joining work, FIG.
As shown in (a), a case where the outside of the joint portion has a gap structure may be considered. Since the gap portion 59 is in contact with the water environment, the gap portion 59 may become a crack generation site such as stress corrosion cracking under the condition that the water quality in the gap is deteriorated. In such a case, as shown in FIG.
By forming 0, it is possible to prevent the occurrence of cracks in the gap 59. For example, Pd
Alternatively, by using a composition containing 0.05 to 2.0 wt% of Pt, the water quality of the gap portion 59 is improved by the hydrogen adsorption effect of the above component, and the occurrence of stress corrosion cracking is prevented. The intermediate layer 60 can be formed by overlaying, spraying, inserting an insert material, or brazing. In the case where the intermediate layer 60 is formed in a furnace, the intermediate layer 60 is formed as a surface layer on the surface of the structure 2, and then the covering plate 3 is installed to perform the above-described joining. When the formation of the intermediate layer is performed outside the furnace, a method in which the intermediate layer 60 is formed on the side where the covering plate 3 is joined, and then the covering plate 3 is installed and the above-described joining is performed is preferable. .

【0034】また、上述の接合施工を行う場合、図26
に示すように上記隙間部の外周部を金属結合させて隙間
部を炉水と遮断させてもよい。上記金属結合部61の形
成には入熱量を低くしたレーザ光あるいはアーク光の照
射が望ましい。
In the case of performing the above-described joining work, FIG.
As shown in (1), the outer periphery of the gap may be metal-bonded to block the gap from reactor water. Irradiation of laser light or arc light with a low heat input is desirable for the formation of the metal bonding portion 61.

【0035】また、上述の接合施工を行う場合、図25
に示すように構造物の接合面を含む領域に表面溶融部を
形成しておき、その後上述の接合施工を行えば、接合施
工時の割れ感受性をさらに低減することが可能である。
上記表面溶融部62の形成には、入熱量を低くしたレー
ザ光あるいはアーク光の照射が望ましい。
Further, when the above-mentioned joining work is performed, FIG.
As shown in (1), if a surface fusion portion is formed in a region including the joining surface of the structure, and then the above-described joining is performed, it is possible to further reduce the cracking susceptibility during the joining.
For forming the surface melting portion 62, it is desirable to irradiate a laser beam or an arc beam with a reduced heat input.

【0036】[0036]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)原子炉炉内構造物の補修施工は、γ線環境
下にあるため、水中で施工することが望ましい。以下
に、実施例として本発明の具体的な施工例を、板材の構
造物試験片を用いた水中での実験例および原子炉炉内構
造物に適用する例で説明する。本発明の実施例として、
構造物に被覆板材を設置して、接合面に圧力を付与しな
がら電流を流してスポット状に接合を行っていく施工に
おいて、水中で横向きに施工した実験例を図1〜図7を
用いて以下に説明する。
(Example 1) Repair work on the internal structure of a nuclear reactor is preferably performed underwater because it is under a gamma ray environment. Hereinafter, as a working example, a concrete working example of the present invention will be described with an experimental example in water using a plate-shaped structure test piece and an example applied to a reactor internal structure. As an embodiment of the present invention,
An example of an experiment in which a covering plate is installed on a structure, and a current is applied while applying pressure to the joining surface to perform joining in a spot-like manner in a horizontal orientation in water, using FIGS. 1 to 7. This will be described below.

【0037】1.0×1020n/m2以上5.0×1027
n/m2以下の全中性子が照射された状態でかつ亀裂上
の欠陥1が存在しているSUS304ステンレス鋼製の構造物
2に対し、SUS316L ステンレス鋼製の被覆板材3を設置
する。ここで、本実施例では板材3の設置方法として、
図2に示すように、板材3の背側に凸部29を設け、固
定治具24によって凸部をホールドしながら施工当該部
に固定する。凸部29のホールド方法としては、例えば
図3に示すように、ホールド部32をホールド用アーム
30を用いて駆動させて、凸部29をホールドすれば良
い。
1.0 × 10 20 n / m 2 or more 5.0 × 10 27
A cover plate 3 made of SUS316L stainless steel is placed on a structure 2 made of SUS304 stainless steel in which all neutrons of n / m 2 or less have been irradiated and a defect 1 on a crack exists. Here, in this embodiment, as a method of installing the plate material 3,
As shown in FIG. 2, a convex portion 29 is provided on the back side of the plate material 3, and is fixed to the construction portion while holding the convex portion with a fixing jig 24. As a method for holding the convex portion 29, for example, as shown in FIG. 3, the hold portion 32 may be driven using the holding arm 30 to hold the convex portion 29.

【0038】次に、図1に示すように、電極10および
電極移動ステージ25を具備した装置を設置する。電源
13,変圧器12等は水面上に設置され、アーム28あ
るいは電極10が水平/垂直に移動可能なスライド機構
26を用いた遠隔操作で施工を行う。ここで、本実施例
では、支持ピラー27は水面上で固定され、圧力支持部
となっている。また、電線23を含む伝送部等は、漏電
を防止するため、ゴム等の絶縁物で包囲して施工する。
Next, as shown in FIG. 1, an apparatus having the electrode 10 and the electrode moving stage 25 is installed. The power supply 13, the transformer 12, and the like are installed on the water surface, and the construction is performed by remote control using a slide mechanism 26 in which the arm 28 or the electrode 10 can move horizontally / vertically. Here, in the present embodiment, the support pillar 27 is fixed on the water surface and serves as a pressure support portion. In addition, the transmission section and the like including the electric wire 23 are constructed by being surrounded by an insulator such as rubber in order to prevent electric leakage.

【0039】次にアーム28あるいはスライド機構26
によって電極10を施工当該部に設置する。被覆板材に
接触させる電極(以下電極A)10は被覆板材部にセッ
トされ、構造物に接触させる電極(以下電極B)11は
構造物表面に接触される。両電極は電気的に接続され、
変圧器12によって電極/材料間に流れる電流は制御さ
れる。また、被覆板材に接触する電極A10には圧力付
与機構14が設けられ、板材3と構造物2との接触面に
局所的に圧力が付与されるようになっている。加圧力を
増すためには、図4(a)(b)に示すように、被覆板材
3に突起部21を設けるか、あるいは図4(c)に示す
ように、構造物2に切欠き22を設けて被覆板材3の突
起部21と組み合わせるように板材3を設置すれば良
い。圧力付与機構14によって電極A10直下の被覆板
3と構造物2との接触部に圧力を付与し、加圧下におい
て電流を通電すると該接触部の電気抵抗によって抵抗熱
が発生し、被覆板と構造物それぞれが局所的に溶融して
接合部15が形成される。上記の一連の施工は、装置に
具備した監視機構によって監視される。
Next, the arm 28 or the slide mechanism 26
The electrode 10 is set in the relevant section. An electrode (hereinafter, electrode A) 10 to be brought into contact with the covering plate is set on the covering plate portion, and an electrode (hereinafter, electrode B) 11 to be brought into contact with the structure is brought into contact with the surface of the structure. Both electrodes are electrically connected,
The current flowing between the electrodes / materials is controlled by the transformer 12. Further, a pressure applying mechanism 14 is provided for the electrode A10 that comes into contact with the covering plate, so that pressure is locally applied to the contact surface between the plate 3 and the structure 2. In order to increase the pressing force, a projection 21 is provided on the covering plate 3 as shown in FIGS. 4A and 4B, or a notch 22 is formed in the structure 2 as shown in FIG. Is provided, and the plate member 3 may be installed so as to be combined with the protrusion 21 of the covering plate member 3. When pressure is applied to the contact portion between the covering plate 3 and the structure 2 immediately below the electrode A10 by the pressure applying mechanism 14, and when a current is applied under pressure, resistance heat is generated by the electric resistance of the contact portion, and the covering plate and the structure Each of the objects is locally melted to form the joint 15. The above series of operations is monitored by a monitoring mechanism provided in the apparatus.

【0040】本実施例では、板厚10〜40mmの構造物
2に対し、板厚10〜20mmの被覆板材を設置し、施工
条件として図5に示す条件範囲で施工した結果、構造物
2と被覆板材3は接合されたと同時に、構造物2には新
たな割れは発生しなかった。1ヶ所の接合施工終了後、
電極A10を順次移動させて施工していくことで、連続
した接合部が形成される。ここで、本実施例のように固
定治具24等を用いる場合は、図2に示すところの板材
3の周端部の垂直方向をまず接合し、板材3のホールド
が不要になった時点で、治具24を外し、次いで水平方
向を接合すれば良い。
In this embodiment, a coated plate having a thickness of 10 to 20 mm was installed on a structure 2 having a thickness of 10 to 40 mm, and the structure 2 was installed under the conditions shown in FIG. At the same time that the cover plate 3 was joined, no new cracks occurred in the structure 2. After the completion of one joint,
By successively moving the electrode A10 and applying the same, a continuous joint is formed. Here, when the fixing jig 24 or the like is used as in this embodiment, the vertical direction of the peripheral end of the plate 3 shown in FIG. 2 is first joined, and when the holding of the plate 3 becomes unnecessary. Then, the jig 24 may be removed, and then the horizontal direction may be joined.

【0041】以上の施工によって、図6に示すように、
被覆板材3は構造物2に隙間なく接合され、構造物2の
亀裂1発生部は水環境から隔離され、応力腐食割れ等に
よる亀裂の進展は防止された。
With the above construction, as shown in FIG.
The covering plate 3 was joined to the structure 2 without any gap, the crack 1 occurrence part of the structure 2 was isolated from the water environment, and the propagation of the crack due to stress corrosion cracking or the like was prevented.

【0042】本実施例では、水の電導度が1.5μS/c
m 以下にある状態で上記施工を行ったため、水が絶縁効
果を発揮し、漏電することはなかったが、水の電導度の
高くなる場合など漏電の恐れのある場合は、図7に示す
チャンバ内での施工を行い、チャンバ34内を気中雰囲
気とすると同時に施工当該部の水分を除去し、乾燥した
上で施工することが有効である。
In this embodiment, the conductivity of water is 1.5 μS / c.
m, the water exerted the insulating effect and did not leak any electricity.However, when there is a risk of electrical leakage such as when the conductivity of water increases, the chamber shown in FIG. It is effective that the inside of the chamber 34 is made an aerial atmosphere, and at the same time, the moisture is removed from the portion to be worked, and the work is dried.

【0043】(実施例2)本発明の実施例として、構造
物に被覆板材を設置して、接合面に複数の電極に圧力を
付与しながら電流を流してスポット状に接合を行ってい
く施工において、水中で横向きに施工した実験例を図8
〜図10および図6を用いて以下に説明する。
(Embodiment 2) As an embodiment of the present invention, a covering plate is installed on a structure, and a current is applied while applying pressure to a plurality of electrodes on a joint surface to perform spot-like joining. Fig. 8 shows an example of an experiment conducted horizontally in water.
This will be described below with reference to FIGS.

【0044】1.0×1020n/m2以上5.0×1027
n/m2以下の全中性子が照射された状態でかつ亀裂上
の欠陥が存在しているSUS304ステンレス鋼製の構造物に
対し、SUS316L ステンレス鋼製の被覆板材を設置する。
次に、電極および電極移動機構を具備した装置を設置す
る。
1.0 × 10 20 n / m 2 or more 5.0 × 10 27
A cover plate made of SUS316L stainless steel is placed on a structure made of SUS304 stainless steel in which all neutrons of n / m 2 or less have been irradiated and defects on cracks are present.
Next, an apparatus provided with an electrode and an electrode moving mechanism is installed.

【0045】次に電極移動機構によって電極を施工当該
部に設置する。複数の電極の両方に加圧を付与する機構
以外は、施工は実施例1と同様であるが、複数の電極の
両方に加圧を付与する機構14を具備することによっ
て、複数の電極直下の接触面を同時に接合させることが
可能である。
Next, the electrodes are set in the relevant section by the electrode moving mechanism. Except for the mechanism for applying pressure to both of the plurality of electrodes, the construction is the same as in Example 1, but by providing the mechanism 14 for applying pressure to both of the plurality of electrodes, It is possible to join the contact surfaces simultaneously.

【0046】図8は電極駆動のための装置を省略して、
2個の電極10を設置する部分のみを示した立体図であ
り、図9はステージ25等の装置を設置して施工した状
態を上方向からみた断面模式図である。本実施例の場
合、同図に示すように、実施例1と同様に、板材3を治
具24でホールドしたまま垂直方向に施工する場合、2
個の電極10で同時に圧力を付与して接合施工すること
によって垂直方向の両周端部を同時に施工することが可
能である。
FIG. 8 omits the device for driving the electrodes,
FIG. 9 is a three-dimensional view showing only a portion where two electrodes 10 are installed, and FIG. 9 is a schematic cross-sectional view of a state in which devices such as a stage 25 are installed and constructed as viewed from above. In the case of this embodiment, as shown in the same drawing, as in the case of the first embodiment, when the plate material 3 is vertically held while being held by the jig 24, 2
It is possible to simultaneously apply both peripheral ends in the vertical direction by applying pressure and joining the electrodes 10 simultaneously.

【0047】本実施例では、板厚10〜40mmの構造物
に対し、板厚10〜20mmの被覆板材を設置し、施工条
件として図10に示す条件範囲で施工した結果、構造物
と被覆板材は接合されたと同時に、構造物には新たな割
れは発生しなかった。
In this embodiment, a covering plate having a thickness of 10 to 20 mm was installed on a structure having a plate thickness of 10 to 40 mm, and the construction was carried out under the conditions shown in FIG. At the same time, the structure was not cracked.

【0048】1個所の接合施工終了後、電極を順次移動
させて施工していくことで、図6に示すように、被覆板
材3は構造物2に隙間なく接合され、構造物2の亀裂1
発生部は水環境から隔離され、応力腐食割れ等による亀
裂の進展は防止された。
After the completion of the joining at one location, the electrodes are sequentially moved to carry out the joining, so that the covering plate 3 is joined to the structure 2 without gaps as shown in FIG.
The generation part was isolated from the water environment, and crack propagation due to stress corrosion cracking and the like was prevented.

【0049】(実施例3)本発明の実施例として、構造
物に被覆板材を設置して、円板上の電極を用いて回転さ
せながら圧力を付与しつつ通電することによって、連続
した接合部を形成する施工において、水中で横向きに施
工した実験例を図11〜図12および図6を用いて以下
に説明する。
(Embodiment 3) As an embodiment of the present invention, a continuous joint is formed by installing a covering plate on a structure and applying current while applying pressure while rotating using electrodes on a disk. An example of an experiment in which a horizontal construction is performed in water in the construction of the method will be described below with reference to FIGS. 11 to 12 and FIG.

【0050】図11は、回転電極を用いた施工を横から
みた断面模式図であり、図1〜図3に示したピラーやア
ーム等は省略してある。また、図11は片方の電極のみ
に圧力付与機構を具備して、板材に接触させている図で
あるが、実施例2に述べたように、両方の電極を圧力付
与機構を具備した回転電極として施工することも可能で
ある。
FIG. 11 is a schematic cross-sectional view of the construction using the rotating electrodes as viewed from the side, and the pillars, arms and the like shown in FIGS. 1 to 3 are omitted. FIG. 11 is a view in which only one of the electrodes is provided with a pressure applying mechanism and is brought into contact with the plate material. As described in the second embodiment, both electrodes are provided with a rotating electrode provided with a pressure applying mechanism. It is also possible to construct as.

【0051】1.0×1020n/m2以上5.0×1027
n/m2以下の全中性子が照射された状態でかつ亀裂上
の欠陥1が存在しているSUS304ステンレス鋼製の構造物
2に対し、SUS316L ステンレス鋼製の被覆板材3を設置
する。次に、円板上の回転電極16およびステージ25
を具備した装置を設置する。
1.0 × 10 20 n / m 2 or more 5.0 × 10 27
A cover plate 3 made of SUS316L stainless steel is placed on a structure 2 made of SUS304 stainless steel in which all neutrons of n / m 2 or less have been irradiated and a defect 1 on a crack exists. Next, the rotating electrode 16 on the disk and the stage 25
A device equipped with is installed.

【0052】次に電極を施工当該部に設置する。被覆板
材に接触させる回転電極A16は被覆板材部にセットさ
れ、構造物に接触させる電極B11は構造物表面に接触
される。両電極は電気的に接続され、変圧器によって電
極/材料間に流れる電流は制御される。円板上の電極1
6を用いて回転させながら圧力を付与しつつ通電するこ
とによって、連続した接合部が形成される。
Next, the electrodes are installed in the relevant section. The rotating electrode A16 to be brought into contact with the covering plate is set in the covering plate portion, and the electrode B11 to be brought into contact with the structure is brought into contact with the surface of the structure. Both electrodes are electrically connected and the current flowing between the electrodes / material is controlled by the transformer. Electrode 1 on disk
By applying electricity while applying pressure while rotating using 6, a continuous joint is formed.

【0053】この方式の場合、連続的に通電を行う方式
では容易に連続接合部が形成されるが、通電を断続的に
繰り返す方式でも、通電の周期や施工速度等を制御する
ことによって接合部を連続的に形成することが可能であ
る。本実施例では、通電を断続的に繰り返す方式で施工
を行った。
In the case of this method, a continuous joint is easily formed by a method in which the current is continuously supplied. However, even in a method in which the current is intermittently repeated, the joint is controlled by controlling the cycle of the current and the application speed. Can be formed continuously. In the present embodiment, the construction was performed by a method of intermittently repeating energization.

【0054】本実施例では、板厚10〜40mmの構造物
に対し、板厚10〜20mmの被覆板材を設置し、施工条
件として図12に示す条件範囲で施工した結果、構造物
2と被覆板材3は接合されたと同時に、構造物2には新
たな割れは発生しなかった。実施例1〜2と同様に、図
2に示すところの板材3の周端部の垂直方向をまず接合
し、板材3のホールドが不要になった時点で、治具24
を外し、次いで水平方向を接合するように、回転電極1
6を順次移動させて施工していくことで、図6に示すよ
うに、被覆板材は構造物に隙間なく接合され、構造物の
亀裂発生部は水環境から隔離され、応力腐食割れ等によ
る亀裂の進展は防止された。
In this embodiment, a covering plate having a thickness of 10 to 20 mm was installed on a structure having a thickness of 10 to 40 mm, and the construction was carried out under the conditions shown in FIG. At the same time that the plate material 3 was joined, no new cracks occurred in the structure 2. As in the first and second embodiments, the vertical direction of the peripheral end of the plate 3 shown in FIG. 2 is first joined, and when the holding of the plate 3 becomes unnecessary, the jig 24
And then rotate the electrode 1 so as to join in the horizontal direction.
As shown in FIG. 6, the covering plate is joined to the structure without any gaps, the cracked parts of the structure are isolated from the water environment, and the cracks due to stress corrosion cracking, etc. Progress was prevented.

【0055】(実施例4)本発明の実施例として、構造
物に被覆板材を設置して、超音波発振を用いた機械振動
を与えて接触面に摩擦抵抗を発生させて接合させる施工
において、水中で横向きに施工した実験例を図13〜図
14および図6を用いて以下に説明する。1.0×10
20n/m2以上5.0×1027n/m2以下の全中性子が
照射された状態でかつ亀裂上の欠陥1が存在しているSU
S304ステンレス鋼製の構造物2に対し、SUS316L ステン
レス鋼製の被覆板材3を設置する。次に、図13に示す
ように、振動子17,共鳴子19,施工端子20及び圧
力付与機構14を具備したチャンバ38を設置し、チャ
ンバ38内をガス注入機構36によって気中雰囲気とす
ると同時にノズル39を通じて施工当該部の水分を除去
し、乾燥する。
Embodiment 4 As an embodiment of the present invention, in a construction in which a covering plate is installed on a structure and mechanical vibration using ultrasonic oscillation is applied to generate frictional resistance on a contact surface and join the structure, An experimental example constructed horizontally in water will be described below with reference to FIGS. 13 to 14 and FIG. 1.0 × 10
SU in which all neutrons of 20 n / m 2 or more and 5.0 × 10 27 n / m 2 or less are irradiated and a defect 1 on a crack exists.
A cover plate 3 made of SUS316L stainless steel is installed on the structure 2 made of S304 stainless steel. Next, as shown in FIG. 13, a chamber 38 including a vibrator 17, a resonator 19, a construction terminal 20, and a pressure applying mechanism 14 is installed, and the inside of the chamber 38 is converted into an air atmosphere by a gas injection mechanism 36. The water in the portion to be installed is removed through the nozzle 39 and dried.

【0056】電源13,超音波発信器18等は水面上に
設置され、実施例1と同様にピラー27およびアーム2
8を用いた遠隔操作で施工を行った。ここで電線23を
含む伝送部等は、漏電を防止するため、ゴム等の絶縁物
で包囲して施工した。
The power supply 13, the ultrasonic transmitter 18 and the like are installed on the water surface, and the pillar 27 and the arm 2 are provided in the same manner as in the first embodiment.
8 was carried out by remote control. Here, the transmission section and the like including the electric wire 23 were constructed by being surrounded by an insulator such as rubber in order to prevent electric leakage.

【0057】次に施工端子20を被覆板材3の施工当該
部に設置する。超音波発信器18から20〜50Hzの
高周波の電流が振動子に流すと、振動子17は磁気歪現
象によって振動する。発生した振動は共鳴子19によっ
て振幅を増大させ、施工端子20が増大した振幅によっ
て振動する。加圧付与機構14によって加圧された施工
端子20直下の被覆板材3と構造物2との接合面は、上
記振動によって摩擦が発生する。接触面は摩擦によって
加熱されると同時に塑性変形が生じる。塑性変形された
面は、圧力および再結晶温度以上への加熱による原子移
動の効果によって原子間力の作用する距離にまで近接
し、結合を生じて接触面は接合され、接合部15が形成
される。
Next, the installation terminal 20 is installed on the portion of the covering plate 3 to be installed. When a high-frequency current of 20 to 50 Hz flows from the ultrasonic transmitter 18 to the vibrator, the vibrator 17 vibrates due to a magnetostriction phenomenon. The generated vibration is increased in amplitude by the resonator 19, and the construction terminal 20 is vibrated by the increased amplitude. Friction is generated by the above-mentioned vibration on the joint surface between the covering plate 3 and the structure 2 immediately below the construction terminal 20 pressurized by the pressurizing mechanism 14. The contact surface is heated by friction and at the same time undergoes plastic deformation. The plastically deformed surface is brought close to the distance at which the interatomic force acts due to the effect of atom transfer by heating to a pressure or a temperature higher than the recrystallization temperature, a bond is generated, and the contact surfaces are joined to form the joint 15. You.

【0058】加圧力を増すためには、図4(a)(b)に
示すように被覆板材3に突起部2を設けるか、あるいは
図4(c)に示すように構造物2に切欠き22を設けて
被覆板材3の突起部21と組み合わせるように板材を設
置すれば良い。また、上記の一連の施工は、監視機構に
よって監視される。
In order to increase the pressing force, a projecting portion 2 is provided on the covering plate 3 as shown in FIGS. 4A and 4B, or a notch is formed in the structure 2 as shown in FIG. 22 may be provided and the plate material may be installed so as to be combined with the protrusion 21 of the covering plate material 3. Further, the above-described series of construction is monitored by a monitoring mechanism.

【0059】本実施例では、板厚10〜40mmの構造物
に対し、板厚2〜20mmの被覆板材を設置し、施工条件
として図12に示す条件範囲で施工した結果、構造物と
被覆板材は接合されたと同時に、構造物には新たな割れ
は発生しなかった。
In this embodiment, a covering plate having a thickness of 2 to 20 mm was installed on a structure having a plate thickness of 10 to 40 mm, and the construction was carried out under the conditions shown in FIG. At the same time, the structure was not cracked.

【0060】1個所の接合施工終了後、電極を順次移動
させて施工していくことで、図6に示すように、被覆板
材は構造物に隙間なく接合され、構造物の亀裂発生部は
水環境から隔離され、応力腐食割れ等による亀裂の進展
は防止された。
After the completion of joining at one location, the electrodes are sequentially moved to carry out the joining, so that the covering plate is joined to the structure without gaps as shown in FIG. It was isolated from the environment and crack propagation due to stress corrosion cracking was prevented.

【0061】(実施例5)本発明を原子炉炉内構造物へ
適用する一実施例として、実施例1〜4に述べた施工を
炉内構造物のシュラウド内面あるいは外面に適用する例
を、図15〜図18を用いて以下に説明する。
(Embodiment 5) As one embodiment of applying the present invention to a reactor internal structure, an example in which the construction described in Embodiments 1 to 4 is applied to a shroud inner surface or an outer surface of a reactor internal structure will be described. This will be described below with reference to FIGS.

【0062】図15は、運転を停止して圧力容器42の
上蓋を取外し、蒸気乾燥器,気水分離器,燃料チャンネ
ルを順次外し、さらに制御棒を圧力容器の下方から抜き
出す。必要に応じて中性子計測管も圧力容器の下方から
抜き出して、炉心部を炉水で満たされた状態での、補修
施工中の圧力容器42の内部の断面図である。補修施工
の前にシュラウドの受けている中性子照射線当量、及び
亀裂上の欠陥の発生している位置と欠陥部を被覆する領
域の面積を測定しておく。次にシュラウド44内面の施
工対象部位に対して、施工対象部位表面の酸化皮膜を機
械的に除去すると同時に平均表面粗さを0.2 〜10μ
mの範囲に仕上げる。この機械的表面処理は、紙やすり
が電動回転によって、機械的に表面の酸化皮膜及び表面
の金属光沢を機械的に除去する処理である。
In FIG. 15, the operation is stopped, the upper lid of the pressure vessel 42 is removed, the steam dryer, the steam separator, and the fuel channel are sequentially removed, and the control rod is pulled out from below the pressure vessel. FIG. 9 is a cross-sectional view of the inside of the pressure vessel 42 during repair work in a state where a neutron measurement pipe is also pulled out from below the pressure vessel as necessary and the core is filled with reactor water. Before the repair work, the neutron irradiation equivalent received by the shroud, the position where the defect on the crack occurs, and the area of the area covering the defect are measured. Next, the oxide film on the surface of the construction target portion is mechanically removed from the construction target portion on the inner surface of the shroud 44, and at the same time, the average surface roughness is 0.2 to 10 μm.
Finish in the range of m. This mechanical surface treatment is a process in which sandpaper is mechanically removed by electric rotation to mechanically remove an oxide film on the surface and a metallic luster on the surface.

【0063】上記の機械的表面処理後、被覆板材を板材
固定治具を用いて欠陥部を被覆する施工当該領域に設置
する。
After the above mechanical surface treatment, the coated plate is placed in the area where the defective portion is covered by using a plate fixing jig.

【0064】次に、図15および図16に示した構造を
有する施工装置をアクセスする。施工装置は、支持ピラ
ー53および伸縮機構を有する2次アーム54の先端に
具備した構造となっている。2次アーム54は支持ピラ
ーに垂直な方向への伸縮機構55を有し、かつアーム先
端は施工装置がスライドして移動可能なスライド機構5
6および垂直に導入されたスライド機構を施工当該部の
接合施工線に沿って施工装置をスライドさせる方向への
回転機構57を有している。この支持ピラー53および
2次アーム54によって、施工装置は被覆板材3とシュ
ラウド44とを接合させる施工当該部にアクセスされ
る。
Next, the construction apparatus having the structure shown in FIGS. 15 and 16 is accessed. The construction device has a structure provided at the tip of a support pillar 53 and a secondary arm 54 having a telescopic mechanism. The secondary arm 54 has a telescopic mechanism 55 in a direction perpendicular to the support pillar, and the tip of the arm has a slide mechanism 5 that the construction device can slide and move.
6 and a rotating mechanism 57 for sliding the vertically introduced slide mechanism in a direction in which the construction apparatus is slid along the joining construction line of the relevant section. With the support pillar 53 and the secondary arm 54, the construction apparatus accesses the construction section where the covering plate 3 and the shroud 44 are joined.

【0065】次に、実施例1〜4に記述したように、被
覆板材3とシュラウド44内面との接合施工を行う。こ
こで、各種駆動/制御は遠隔操作室48内より操作され
る。オペレーティングフロア47上の遠隔操作室48内
には、実施例1〜3に記載の通電による接合を行う場合
は、電源や変圧器が設置され、実施例4に記載の機械振
動による接合を行う場合は、電源や超音波発振器が設置
される。図16および図18では一例として、実施例2
に述べた、両者に圧力付与機構を有する2個の電極を具
備した装置を示しているが、図17に示すように回転電
極16を具備した装置や、実施例1〜4に述べた他の装
置を具備しても良い。さらに、いずれの施工の場合で
も、支持ピラー導入,2次アームの駆動,電極あるいは
施工端子の位置調整及び駆動,付与する加圧力,施工状
況の監視,照明等の制御を含む各種制御系が、遠隔操作
室48内に設置されている。
Next, as described in the first to fourth embodiments, the joining work between the covering plate 3 and the inner surface of the shroud 44 is performed. Here, various driving / control operations are performed from inside the remote control room 48. In the remote control room 48 on the operating floor 47, a power supply and a transformer are installed when performing the energization bonding described in the first to third embodiments, and the mechanical vibration bonding described in the fourth embodiment is performed. Is equipped with a power supply and an ultrasonic oscillator. FIGS. 16 and 18 show an example of the second embodiment.
17 shows an apparatus provided with two electrodes each having a pressure applying mechanism, but an apparatus provided with a rotating electrode 16 as shown in FIG. 17 and other apparatuses described in Examples 1 to 4. An apparatus may be provided. In addition, in any case, various control systems, including support pillar introduction, secondary arm drive, electrode or construction terminal position adjustment and drive, applied pressure, construction status monitoring, lighting control, etc. It is installed in a remote control room 48.

【0066】また、水排除用チャンバを用いた施工の場
合は、上記2次アーム先端にチャンバが具備され、チャ
ンバ内のシールドガス注入,施工状況の監視,照明,水
排除,ガス注入,排ガスあるいは排塵,ガス流量監視,
ガス圧監視,温度監視,湿度監視等もまた同遠隔操作室
48に設置の各制御機構によって遠隔操作される。
In the case of construction using a water exclusion chamber, a chamber is provided at the tip of the secondary arm, and a shield gas is injected into the chamber, monitoring of the construction status, lighting, water exclusion, gas injection, exhaust gas, or the like. Dust, gas flow monitoring,
Gas pressure monitoring, temperature monitoring, humidity monitoring, and the like are also remotely controlled by respective control mechanisms installed in the remote operation room 48.

【0067】ここで、圧力付与機構14によって電極あ
るいは施工端子直下の接合面に圧力を付与しつつ接合施
工を行う訳であるが、本実施例のような炉内施工の場
合、板材固定治具24やステージ25を含む接合装置は
クレーン49で昇降してアクセスするため、圧力を付与
した際に生じる反作用を封じる必要がある。炉内施工に
おける反作用を封じるための圧力を支持する手段を以下
に説明する。
Here, the joining is performed by applying pressure to the joint surface immediately below the electrode or the construction terminal by the pressure applying mechanism 14. In the case of the in-furnace construction as in the present embodiment, the plate fixing jig is used. Since the joining apparatus including the stage 24 and the stage 25 is accessed by ascending and descending by the crane 49, it is necessary to seal a reaction generated when pressure is applied. The means for supporting the pressure for sealing the reaction in the furnace construction will be described below.

【0068】シュラウド44の内面に対して、被覆板材
3を設置して上記の施工を行う場合、まず、図15に示
すように、板材固定治具24はその上部を上部格子板4
3に固定する。次に支持ピラー53は上部格子板43を
通過して炉心支持板45に差し込む形で挿入し、上部格
子板43と炉心支持板45によって固定される。上部格
子板43と炉心支持板45によって固定された支持ピラ
ー53は、固定部が支点となって、上記反作用を封じる
ための圧力支持部となり、図16に示すように、上記の
施工の際、圧力付与機構14によって施工当該部に圧力
を付与することが可能である。
In the case where the covering plate 3 is installed on the inner surface of the shroud 44 and the above-mentioned construction is performed, first, as shown in FIG.
Fix to 3. Next, the support pillar 53 is inserted into the core support plate 45 by passing through the upper lattice plate 43, and is fixed by the upper lattice plate 43 and the core support plate 45. The support pillar 53 fixed by the upper lattice plate 43 and the core support plate 45 has a fixed portion serving as a fulcrum, and serves as a pressure support portion for sealing the reaction. As shown in FIG. The pressure applying mechanism 14 can apply pressure to the portion to be constructed.

【0069】また、シュラウド44の外面に対して、被
覆板材3を設置して上記の施工を行う場合、まず、板材
固定治具24はその上部をシュラウド付属あるいは周辺
の機器あるいは金具に固定する。次に図18に示すよう
に、圧力支持板58を具備した支持ピラー53を挿入し
て、圧力容器42の内面に対して圧力支持板42を設置
し、圧力容器42内面と接触させる。圧力容器42内面
と接触した支持ピラー53は、接触した圧力支持板58
が支点となって、上記反作用を封じるための圧力支持部
となり、上記の施工の際、圧力付与機構によって施工当
該部に圧力を付与することが可能である。
In the case where the covering plate 3 is installed on the outer surface of the shroud 44 and the above-mentioned work is performed, first, the plate fixing jig 24 fixes the upper part of the jig to the shroud or peripheral equipment or metal fittings. Next, as shown in FIG. 18, the support pillar 53 provided with the pressure support plate 58 is inserted, the pressure support plate 42 is installed on the inner surface of the pressure vessel 42, and is brought into contact with the inner surface of the pressure vessel 42. The support pillar 53 that has come into contact with the inner surface of the pressure vessel 42 is
Serves as a fulcrum and serves as a pressure supporting portion for sealing the above-mentioned reaction, and in the above-mentioned construction, it is possible to apply pressure to the construction concerned part by a pressure applying mechanism.

【0070】上記一連の施工は常に施工状況の監視機構
で監視する。最後に監視機構で補修施工部及びその周囲
に割れの発生がないことを確認して、補修施工が終了す
る。 (実施例6)本発明の実施例として、構造物に設置する
被覆板材を薄くして接合を行う場合の施工について、図
1,図19および及び図6を用いて以下に説明する。
The above-mentioned series of construction is always monitored by a construction status monitoring mechanism. Finally, it is confirmed by the monitoring mechanism that there is no crack in the repair work part and its surroundings, and the repair work is completed. (Embodiment 6) As an embodiment of the present invention, the construction in the case where the covering plate material to be installed on the structure is thinned and joined will be described below with reference to FIGS. 1, 19 and 6.

【0071】実施例1〜5に述べた施工では、加圧力を
増すために、図4(a)(b)に示すように、被覆板材3
に突起部21を設けるか、あるいは図4(c)に示すよ
うに、構造物2に切欠き22を設けて被覆板材3の突起
部21と組み合わせるように板材3を設置して施工する
場合について説明したが、被覆板材3の板厚自体を薄く
して接合することも可能である。被覆板材3の板厚を薄
くすることによって、実施例1〜3に述べた通電や実施
例4に述べた機械振動が安定し、施工不具合が防止され
て、施工部の信頼性がより向上する。
In the construction described in Examples 1 to 5, in order to increase the pressing force, as shown in FIGS.
4 (c), or as shown in FIG. 4 (c), a notch 22 is provided in the structure 2 and the plate 3 is installed so as to be combined with the protrusion 21 of the covering plate 3. As described above, it is also possible to reduce the thickness of the covering plate 3 itself and join it. By reducing the thickness of the covering plate member 3, the energization described in the first to third embodiments and the mechanical vibration described in the fourth embodiment are stabilized, and a construction failure is prevented, so that the reliability of the construction part is further improved. .

【0072】本実施例では、実施例1に述べた施工方法
によって、板厚5〜40mmの構造物2に対し、板厚0.
2 〜10mmの被覆板材を設置し、施工条件として図1
9に示す条件範囲で施工した結果、構造物2と被覆板材
3は接合されたと同時に構造物2には新たな割れは発生
しなかった。
In the present embodiment, the construction method described in the first embodiment is applied to a structure 2 having a thickness of 5 to 40 mm and a thickness of 0.5 mm.
A coated plate of 2 to 10 mm is installed, and the construction conditions are as shown in FIG.
As a result of the application under the condition range shown in No. 9, the structure 2 and the covering plate 3 were joined, and at the same time, no new cracks occurred in the structure 2.

【0073】以上の施工によって、図6に示すように、
被覆板材3は構造物2に隙間なく接合され、構造物2の
亀裂1発生部は水環境から隔離され、応力腐食割れ等に
よる亀裂の進展は防止された。
With the above construction, as shown in FIG.
The covering plate 3 was joined to the structure 2 without any gap, the crack 1 occurrence part of the structure 2 was isolated from the water environment, and the propagation of the crack due to stress corrosion cracking or the like was prevented.

【0074】(実施例7)本発明における中間層挿入施
工の一実施例として、構造物の被覆板材設置当該部に溶
射層を形成した後に、被覆板材を設置して接合を行う施
工について、図20〜図24を用いて以下に説明する。
(Embodiment 7) As an embodiment of the intermediate layer insertion work according to the present invention, after a sprayed layer is formed on the portion where the covering plate of the structure is to be installed, the covering plate is set and the joining is performed. This will be described below with reference to FIGS.

【0075】図20(a)は、構造物の被覆板材設置当該
部に溶射層を形成した後に、被覆板材を設置して接合を
行った断面を示している。1.0×1020n/m2 以上
5.0×1027n/m2 以下の全中性子が照射された状
態でかつ亀裂上の欠陥1が存在しているSUS304ステンレ
ス鋼製の構造物2に対し、プラズマアーク等の手段によ
って、膜厚約50〜200μmの溶射層63を形成す
る。溶射層63の組成(重量%)は、C0〜0.02
%,Si0〜1.00%,Mn0〜2.00%,P0〜
0.0045%,Ni10.50〜15.00%,Cr1
6.50〜24.00%,Mo2.00〜3.00%,N0
〜0.22%,Nb0〜0.50%,Ti0〜0.50
%,Zr0〜0.50%,Pt0〜0.50%,Pd0〜
0.50%,残部Feの範囲が望ましいが、構造物2あ
るいは被覆板材3の材質に応じて、ステンレス成分でな
くてもよく、PtあるいはPdが含有しておれば良く、
例えばろう付け成分でもよい。
FIG. 20 (a) shows a cross section in which a coating plate is placed and joined after forming a sprayed layer on the portion where the covering plate is to be placed on the structure. SUS304 stainless steel structure 2 irradiated with all neutrons of 1.0 × 10 20 n / m 2 or more and 5.0 × 10 27 n / m 2 or less and having crack defects 1 On the other hand, a sprayed layer 63 having a thickness of about 50 to 200 μm is formed by means such as a plasma arc. The composition (% by weight) of the thermal spray layer 63 is C0-0.02.
%, Si0 to 1.00%, Mn0 to 2.00%, P0
0.0045%, Ni 10.50-15.00%, Cr1
6.50 to 24.00%, Mo 2.00 to 3.00%, N0
~ 0.22%, Nb0 ~ 0.50%, Ti0 ~ 0.50
%, Zr0-0.50%, Pt0-0.50%, Pd0-
It is desirable that the range of 0.50% and the balance of Fe be desirable. However, depending on the material of the structure 2 or the covering plate material 3, the component may not be a stainless steel component, and may contain Pt or Pd.
For example, a brazing component may be used.

【0076】次に、SUS316L ステンレス鋼製の被覆板材
3を設置し、実施例1〜6に述べた接合施工を行う。
Next, the covering plate 3 made of SUS316L stainless steel is installed, and the joining work described in Examples 1 to 6 is performed.

【0077】図20(b)には、上記接合部の拡大した
断面を示す。実施例1〜6に述べた接合施工の条件ある
いは状況によって、同図に示すように接合部15近傍の
構造物2と被覆板材3との間に隙間部59が形成される
場合がある。軽水炉炉内における高温水中での隙間構造
を有する部位では、隙間の状況によって隙間内の溶存酸
素濃度が増加し、応力腐食割れ発生の可能性が生じるこ
とがある。そのような場合、本実施例では、同隙間部5
9に水素吸着効果を有するPtあるいはPdを含有した
成分を有する溶射層63が形成されているため、隙間内
の溶存酸素濃度が低減され、応力腐食割れが防止され
る。
FIG. 20B shows an enlarged cross section of the joint. Depending on the conditions or conditions of the joining work described in Examples 1 to 6, a gap 59 may be formed between the structure 2 near the joint 15 and the covering plate 3 as shown in FIG. In a site having a gap structure in high-temperature water in a light water reactor, the concentration of dissolved oxygen in the gap may increase depending on the condition of the gap, and stress corrosion cracking may occur. In such a case, in this embodiment, the gap 5
Since the thermal sprayed layer 63 having a component containing Pt or Pd having a hydrogen adsorption effect is formed in 9, the concentration of dissolved oxygen in the gap is reduced, and stress corrosion cracking is prevented.

【0078】この接合部近傍の隙間部位における応力腐
食割れの防止としては、図20に示すように接合当該部
のみに溶射層63を形成するだけで良いが、図21に示
すように、被覆板材3の設置当該部全域に溶射層63を
形成して被覆板材3を接合させた場合、万一接合部内に
水が浸入しても、当初存在する亀裂上の欠陥1の応力腐
食割れの進展は上記の効果により防止される。
In order to prevent the stress corrosion cracking in the gap near the joint, it is only necessary to form the thermal spray layer 63 only on the joint concerned as shown in FIG. 20. However, as shown in FIG. In the case where the coating plate 3 is joined by forming the thermal spray layer 63 over the entire area of the part 3, even if water infiltrates into the joint part, the development of the stress corrosion cracking of the defect 1 on the initially existing crack does not occur. This is prevented by the above effects.

【0079】また、本実施例では溶射層63を挟んで接
合施工を行うので、構造物側の入熱がより小さくなり、
Heの拡散が防止されて構造物2の新たな割れの発生の
可能性がさらに低減される。
Further, in this embodiment, since the joining work is performed with the thermal sprayed layer 63 interposed therebetween, the heat input on the structure side becomes smaller,
The diffusion of He is prevented, and the possibility of occurrence of a new crack in the structure 2 is further reduced.

【0080】以上、本実施例では、構造物表面に溶射層
を形成して被覆板材を設置し、接合する施工について説
明したが、図22に示すように、溶射層の代わりに上記
成分を有する厚さ約50〜500μmの肉盛層64を形
成しても同様の効果を発揮する。さらに、図23に示す
ように、PtあるいはPdを含有した厚さ約50〜50
0μmの板状のインサート材65を挿入しても本実施例
と同様の効果を発揮する。
As described above, in this embodiment, the construction in which the thermal spray layer is formed on the surface of the structure, the covering plate material is installed, and the joining is performed has been described. However, as shown in FIG. The same effect is exerted even if the overlay layer 64 having a thickness of about 50 to 500 μm is formed. Further, as shown in FIG. 23, the thickness containing Pt or Pd is about 50 to 50.
Even if a 0-μm plate-shaped insert material 65 is inserted, the same effect as in the present embodiment is exerted.

【0081】炉内施工において構造物表面に上記の溶射
層あるいは肉盛層を形成する、あるいは板状インサート
材を設置することが困難である場合、図27(a)に示
すように、あらかじめ被覆板材3に上記の溶射層63を
形成させておくか、あるいは同図(b)に示すように肉
盛層64を形成させておくか、あるいは同図(c)に示
すように板状インサート材65を取り付けておいて、被
覆板材3を施工当該部に設置し、接合施工を行えば良
い。
When it is difficult to form the above-mentioned sprayed layer or build-up layer on the surface of the structure during installation in the furnace, or to install a plate-like insert material, as shown in FIG. Either the above-mentioned thermal sprayed layer 63 is formed on the plate material 3, the build-up layer 64 is formed as shown in FIG. 3B, or the plate-shaped insert material is formed as shown in FIG. 65, the covering plate 3 may be installed in the relevant section, and the joining may be performed.

【0082】さらに、上記のように中間層を挿入する代
わりに、被覆板材3自体を上記成分としても良い。ま
た、図24に示すように、被覆板材3の構造物2の表面
に接する面を上記成分となるようにコーティングあるい
は表面処理による表面改質層66を形成しておき、その
後被覆板材3を設置して、接合施工を行っても良い。こ
の場合、表面改質層66の形成手段としては、溶射によ
って溶射層を形成する、あるいはメッキによってメッキ
層を形成する、あるいは、TIGアーク等によって肉盛
層を形成する、あるいは上記の手段による合金元素添加
の後レーザ光を照射して合金化層を形成する等の手段が
望ましい。ここで、表面改質層66を形成した後は、必
要に応じて被覆板材3を設置する前に機械的表面仕上げ
を行って、表面粗さ等を調整しておいた上で被覆板材3
を設置し、接合施工を行うことが望ましい。
Further, instead of inserting the intermediate layer as described above, the cover plate 3 itself may be used as the above component. Further, as shown in FIG. 24, a surface modification layer 66 is formed by coating or surface treatment so that the surface of the covering plate 3 in contact with the surface of the structure 2 has the above-mentioned components, and then the covering plate 3 is installed. Then, the joining may be performed. In this case, as a means for forming the surface modified layer 66, a thermal sprayed layer is formed by thermal spraying, a plated layer is formed by plating, a buildup layer is formed by a TIG arc or the like, or an alloy by the above means is used. It is desirable to use a method in which a laser beam is irradiated after the addition of the element to form an alloyed layer. Here, after the surface modified layer 66 is formed, if necessary, a mechanical surface finish is performed before the covering plate material 3 is installed to adjust the surface roughness and the like.
It is desirable to install the joint and perform the joining work.

【0083】以上の施工によって、被覆板材3は構造物
2に接合され、構造物2の亀裂1発生部は水環境から隔
離され、応力腐食割れ等による亀裂の進展は防止される
と同時に、施工後の隙間部での応力腐食割れの発生は防
止された。
With the above construction, the covering plate 3 is joined to the structure 2, the portion where the crack 1 occurs in the structure 2 is isolated from the water environment, and the propagation of the crack due to stress corrosion cracking or the like is prevented, and The occurrence of stress corrosion cracking in the later gap was prevented.

【0084】(実施例8)本発明の実施例として、構造
物表面の上記被覆板材との接合当該部を含む領域に表面
溶融層を形成した後に、被覆板材を設置して接合を行う
施工について、図25を用いて以下に説明する。
(Embodiment 8) As an embodiment of the present invention, a construction in which the surface of a structure is bonded to the above-mentioned coated plate material, a surface molten layer is formed in a region including the relevant portion, and then the coated plate material is installed and joined. This will be described below with reference to FIG.

【0085】図25は、構造物の被覆板材設置当該部に
表面溶融層を形成した後に、被覆板材を設置して接合を
行った断面を示している。1.0×1020n/m2 以上
5.0×1027n/m2 以下の全中性子が照射された状
態でかつ亀裂上の欠陥1が存在しているSUS304ステンレ
ス鋼製の構造物2に対し、レーザ光あるいはアーク光の
照射によって、深さ約50〜500μmの表面溶融層6
2を形成する。この表面溶融層62の形成に要する入熱
量が例えばTIGアーク,プラズマアーク,レーザ等の
いずれかをエネルギー源として、入熱量を1×101
1×103J/mmの範囲に制御した場合割れの発生が防
止されることは、特願平5−79254号に開示されている。
FIG. 25 is a cross-sectional view showing a section in which a surface melting layer is formed in the portion where the covering plate of the structure is to be placed, and then the covering plate is placed and joined. SUS304 stainless steel structure 2 irradiated with all neutrons of 1.0 × 10 20 n / m 2 or more and 5.0 × 10 27 n / m 2 or less and having crack defects 1 Is irradiated with a laser beam or an arc beam to form a surface molten layer 6 having a depth of about 50 to 500 μm.
Form 2 The amount of heat input required to form the surface molten layer 62 is, for example, 1 × 10 1 to 1 × 10 1 using any one of a TIG arc, a plasma arc, a laser, etc. as an energy source.
It is disclosed in Japanese Patent Application No. 5-79254 that the generation of cracks is prevented when controlled to a range of 1 × 10 3 J / mm.

【0086】上記表面溶融層62内では、Heが蒸発し
て低減されるため、表面溶融層62を接触面として実施
例1〜7に記した被覆板材3の接合施工の際の構造物側
の割れ感受性は、さらに低減される。
Since He is evaporated and reduced in the surface melted layer 62, the surface melted layer 62 is used as a contact surface on the side of the structure at the time of joining the coated plate 3 described in Examples 1 to 7. Crack susceptibility is further reduced.

【0087】以上の施工によって、被覆板材3は構造物
2に接合され、構造物2の亀裂1発生部は水環境から隔
離され、応力腐食割れ等による亀裂の進展は防止される
と同時に、接合部での割れ発生が防止された。
By the above construction, the covering plate 3 is joined to the structure 2, the portion where the crack 1 of the structure 2 is generated is isolated from the water environment, the propagation of the crack due to stress corrosion cracking or the like is prevented, and at the same time, the joining is performed. The occurrence of cracks in the part was prevented.

【0088】(実施例9)本発明の実施例として、構造
物表面の上記被覆板材との接合部の外周部を金属結合さ
せた施工について、図26を用いて以下に説明する。
(Embodiment 9) As an embodiment of the present invention, a construction in which an outer peripheral portion of a joint portion of a structure surface with the above-mentioned covering plate material is metal-bonded will be described below with reference to FIG.

【0089】図26は、構造物と被覆板材との接合部の
外周部に局部溶融によって金属結合させた断面を示して
いる。1.0×1020n/m2以上5.0×1027n/m2
以下の全中性子が照射された状態でかつ亀裂上の欠陥1
が存在しているSUS304ステンレス鋼製の構造物2に対
し、実施例1〜6あるいは実施例8に記した施工で被覆
板材を接合させた後、レーザ光あるいはアーク光の照射
によって、深さ約50〜500μmの局部溶融した金属
結合部61を形成する。この金属結合部61の形成に要
する入熱量については、実施例8と同様に例えばTIG
アーク,プラズマアーク,レーザ等のいずれかをエネル
ギー源として、入熱量を1×101〜1×103J/mmの
範囲に制御した場合割れの発生が防止されることが特願
平5−79254号に開示されている。
FIG. 26 shows a cross section in which the outer periphery of the joint between the structure and the covering plate is metal-bonded by local melting. 1.0 × 10 20 n / m 2 or more and 5.0 × 10 27 n / m 2
Defect 1 on the crack with all the following neutrons irradiated
After the covering plate is joined to the SUS304 stainless steel structure 2 in which is present by the construction described in Example 1 to Example 6 or Example 8, the laser beam or the arc light is applied, and the depth of about 2 mm is applied. A locally fused metal bonding portion 61 of 50 to 500 μm is formed. The amount of heat input required to form the metal joint 61 is, for example, TIG in the same manner as in the eighth embodiment.
It has been found that cracking is prevented when the heat input is controlled in the range of 1 × 10 1 to 1 × 10 3 J / mm using any one of an energy source such as an arc, a plasma arc, and a laser. No. 79254.

【0090】この接合面外周の金属結合部61の形成に
よって、構造物2と被覆板材3の接合強度が向上すると
同時に、実施例7で述べた隙間部が炉水環境と遮断さ
れ、隙間部での亀裂発生が防止される。
By the formation of the metal bonding portion 61 on the outer periphery of the bonding surface, the bonding strength between the structure 2 and the covering plate 3 is improved, and at the same time, the gap described in Embodiment 7 is cut off from the reactor water environment. Crack generation is prevented.

【0091】以上の施工によって、被覆板材3は構造物
2に接合され、構造物2の亀裂1発生部は水環境から隔
離され、応力腐食割れ等による亀裂の進展は防止される
と同時に、接合部の強度が向上し、接合部での割れ発生
が防止された。
With the above construction, the covering plate 3 is joined to the structure 2, the portion where the crack 1 of the structure 2 is generated is isolated from the water environment, the propagation of the crack due to stress corrosion cracking or the like is prevented, and at the same time, the joining is performed. The strength of the joint was improved, and the occurrence of cracks at the joint was prevented.

【0092】[0092]

【発明の効果】本発明によれば、原子炉圧力容器内の中
性子照射を受けており、かつ亀裂上の欠陥が発生してい
る構造物に対して、亀裂進展を防止すると同時に補修時
の割れ発生を防止することが可能であり、原子力プラン
トの応力腐食割れによる事故の防止や、プラントの健全
性を長期化させるのに効果がある。
According to the present invention, it is possible to prevent crack propagation in a structure that has been irradiated with neutrons in a reactor pressure vessel and has a defect on the crack, while preventing cracks during repair. It is possible to prevent the occurrence, and it is effective in preventing accidents due to stress corrosion cracking of a nuclear power plant and prolonging the soundness of the plant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水中で構造物に被覆板材を設置して、加圧通電
によって接合する施工の断面図。
FIG. 1 is a cross-sectional view of a construction in which a covering plate material is installed on a structure in water and joined by applying pressure.

【図2】構造物に被覆板材を設置した状況を表した図。FIG. 2 is a diagram showing a situation where a covering plate is installed on a structure.

【図3】固定治具が被覆板材をホールドする方式を表し
た図。
FIG. 3 is a diagram illustrating a method in which a fixing jig holds a covering plate material.

【図4】突起部を設けた被覆板材を構造物に設置した断
面図。
FIG. 4 is a cross-sectional view in which a covering plate provided with a protrusion is installed on a structure.

【図5】1個の電極に加圧通電して接合する施工の施工
条件範囲。
FIG. 5 is a diagram showing a range of working conditions of a working in which one electrode is pressurized and energized and joined.

【図6】構造物と被覆板材との接合施工が完了した図。FIG. 6 is a diagram in which the joining of the structure and the covering plate is completed.

【図7】水排除チャンバを用いて水中でスポット状に接
合する施工の断面図。
FIG. 7 is a cross-sectional view of a construction for joining in a spot shape in water using a water exclusion chamber.

【図8】2個の加圧電極を設置する方式を示した立体
図。
FIG. 8 is a three-dimensional view showing a method of installing two pressure electrodes.

【図9】ステージ等の装置を設置して施工した状態を上
方向からみた断面図。
FIG. 9 is a cross-sectional view of a state in which devices such as a stage are installed and constructed as viewed from above.

【図10】2個の電極に加圧通電して接合する施工の施
工条件範囲。
FIG. 10 is a diagram showing a range of construction conditions for construction in which two electrodes are energized under pressure and joined together.

【図11】回転電極を用いた加圧通電による接合施工の
断面図。
FIG. 11 is a cross-sectional view of a joining process using pressurizing and energizing using a rotating electrode.

【図12】回転電極を用いた加圧通電による接合施工の
施工条件範囲。
FIG. 12 is a view showing a range of execution conditions for joining by pressurization and energization using a rotating electrode.

【図13】超音波発振を用いた摩擦抵抗による接合施工
の断面図。
FIG. 13 is a cross-sectional view of a joining process using frictional resistance using ultrasonic oscillation.

【図14】超音波発振を用いた摩擦抵抗による接合施工
の施工条件範囲。
FIG. 14 is a view showing a range of execution conditions for joining by frictional resistance using ultrasonic oscillation.

【図15】原子炉炉内構造物へアクセスする施工の断面
図。
FIG. 15 is a cross-sectional view of the construction for accessing the internal structure of the reactor.

【図16】シュラウド内面にアクセスする場合の、スポ
ット電極を具備した施工装置を表した断面図。
FIG. 16 is a cross-sectional view illustrating a construction apparatus provided with a spot electrode when accessing the inner surface of the shroud.

【図17】シュラウド内面にアクセスする場合の、回転
電極を具備した施工装置を表した断面図。
FIG. 17 is a cross-sectional view showing a construction apparatus provided with a rotating electrode when accessing the inner surface of the shroud.

【図18】シュラウド外面にアクセスする場合の、支持
ピラーと施工装置を表した断面図。
FIG. 18 is a cross-sectional view showing a support pillar and a construction device when accessing an outer surface of the shroud.

【図19】薄板を用いた場合の、加圧通電して接合する
施工の施工条件範囲。
FIG. 19 is a diagram showing a range of working conditions for joining by applying a current under pressure when a thin plate is used.

【図20】溶射層を中間層として挿入した場合の接合施
工部の断面図。
FIG. 20 is a cross-sectional view of a joining section when a thermal sprayed layer is inserted as an intermediate layer.

【図21】板材設置当該部全域に溶射層を形成した場合
の接合施工部の断面図。
FIG. 21 is a cross-sectional view of a joining section when a thermal spray layer is formed on the entire area of the plate material installation.

【図22】肉盛層を中間層として挿入した場合の接合施
工部の断面図。
FIG. 22 is a cross-sectional view of a joining section when a build-up layer is inserted as an intermediate layer.

【図23】板状インサート材を中間層として挿入した場
合の接合施工部の断面図。
FIG. 23 is a cross-sectional view of a joining section when a plate-like insert material is inserted as an intermediate layer.

【図24】表面改質層を有する被覆板材を用いた場合の
接合施工部の断面図。
FIG. 24 is a cross-sectional view of a joining section when a coated plate having a surface-modified layer is used.

【図25】構造物に表面溶融部を形成した場合の接合施
工部の断面図。
FIG. 25 is a cross-sectional view of a joining section when a surface fusion portion is formed on a structure.

【図26】外周部を金属結合させた施工部の断面図。FIG. 26 is a cross-sectional view of a construction portion in which an outer peripheral portion is metal-bonded.

【図27】あらかじめ中間層を被覆板材に形成させた場
合の接合施工の断面図。
FIG. 27 is a cross-sectional view of a joining process in the case where an intermediate layer is formed in advance on a covering plate material.

【図28】1個の電極に加圧通電する接合施工の原理を
表す断面図。
FIG. 28 is a cross-sectional view illustrating the principle of joining construction in which a pressure is applied to one electrode.

【図29】2個の電極に加圧通電する接合施工の原理を
表す断面図。
FIG. 29 is a cross-sectional view illustrating the principle of the joining work in which pressure is applied to two electrodes.

【図30】回転電極に加圧通電する接合施工の原理を表
す断面図。
FIG. 30 is a cross-sectional view illustrating the principle of joining construction in which pressurizing and energizing a rotating electrode.

【図31】超音波発振を用いた摩擦抵抗による接合施工
の原理を表す断面図。
FIG. 31 is a cross-sectional view illustrating the principle of joining construction by frictional resistance using ultrasonic oscillation.

【図32】隙間構造を有した接合部の断面図。FIG. 32 is a cross-sectional view of a joint having a gap structure.

【図33】従来技術による、中性子照射を受けており、
かつ亀裂上の欠陥が発生している構造物に板材を被覆
し、アークによるスミ肉溶接施工を示した断面図。
FIG. 33 is neutron-irradiated according to the prior art;
FIG. 4 is a cross-sectional view showing a structure in which a structure having a defect on a crack is covered with a plate material and which is used for welding a meat fillet by an arc.

【符号の説明】[Explanation of symbols]

1…き裂状の欠陥、2…中性子照射を受けた構造物、3
…被覆板材、4…アーク溶接トーチ、5…フィラー材、
6…アーク放電、7…スミ肉溶接部、8…構造物側の溶
接熱影響部、9…熱影響部に発生する欠陥、10…板材
に接触させて接合させる電極、11…構造物表面に接触
させる電極、12…変圧器、13…電源、14…圧力付
与機構、15…接合部、16…回転電極、17…振動
子、18…超音波発生器、19…共鳴器、20…施工端
子、21…突起部、22…切欠き部、23…電線、24
…板材固定治具、25…移動ステージ、26…スライド
機構、27…支持ピラー、28…アーム、29…被覆板
の凸部、30…ホールド部駆動用アーム、31…ホール
ド部駆動用アーム駆動機構、32…ホールド部、33…
水面、34…電極アクセス用チャンバ、35…絶縁部、
36…ガス注入機構、37…排水/排ガス機構、38…
超音波振動装置アクセス用チャンバ、39…ノズル、4
0…チャンバ駆動機構、41…振動子支持機構、42…
原子炉圧力容器、43…上部格子板、44…シュラウ
ド、45…炉心支持板、46…ジェットポンプ、47…
オペレーティングフロア、48…遠隔操作室、49…昇
降クレーン、50…被覆板固定治具昇降駆動機構、51
…炉内施工用支持ピラー昇降駆動機構、52…伝送系、
53…炉内施工用支持ピラー、54…2次アーム、55
…2次アーム駆動機構、56…移動ステージのスライド
機構、57…回転機構、58…圧力支持板、59…隙間
部、60…中間層、61…金属結合部、62…表面溶融
層、63…溶射層、64…肉盛層、65…インサート
材、66…表面改質層。
1 ... crack-like defect, 2 ... structure irradiated with neutrons, 3
... covered plate material, 4 ... arc welding torch, 5 ... filler material,
6 ... arc discharge, 7 ... semi-welded portion, 8 ... weld heat affected zone on the structure side, 9 ... defects generated in the heat affected zone, 10 ... electrodes to be brought into contact with and joined to the plate material, 11 ... on the surface of the structure Electrodes to be contacted, 12 Transformer, 13 Power supply, 14 Pressure applying mechanism, 15 Joint, 16 Rotating electrode, 17 Vibrator, 18 Ultrasonic generator, 19 Resonator, 20 Construction terminal , 21 ... Projection part, 22 ... Notch part, 23 ... Electric wire, 24
... plate fixing jig, 25 ... moving stage, 26 ... slide mechanism, 27 ... support pillar, 28 ... arm, 29 ... convex part of the cover plate, 30 ... hold part drive arm, 31 ... hold part drive arm drive mechanism , 32 ... hold part, 33 ...
Water surface, 34: chamber for electrode access, 35: insulating part,
36: gas injection mechanism, 37: drainage / exhaust gas mechanism, 38:
Ultrasonic vibrator access chamber, 39 ... nozzle, 4
0: chamber drive mechanism, 41: vibrator support mechanism, 42:
Reactor pressure vessel, 43: upper lattice plate, 44: shroud, 45: core support plate, 46: jet pump, 47 ...
Operating floor, 48: Remote control room, 49: Elevating crane, 50: Cover plate fixing jig elevating drive mechanism, 51
… Support pillar lifting drive mechanism for in-furnace construction, 52… Transmission system,
53: support pillar for furnace installation, 54: secondary arm, 55
... Secondary arm drive mechanism, 56 ... Slide mechanism of moving stage, 57 ... Rotating mechanism, 58 ... Pressure support plate, 59 ... Gap, 60 ... Intermediate layer, 61 ... Metal joint part, 62 ... Surface melting layer, 63 ... Thermal spray layer, 64: overlay layer, 65: insert material, 66: surface modification layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G21C 19/02 G21C 13/00 X (72)発明者 薩田 寿隆 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 中村 満夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小沼 昭 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 小沼 勉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加藤 隆彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 玉井 康方 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 森沢 潤一郎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 鈴木 国彦 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G21C 19/02 G21C 13/00 X (72) Inventor Toshitaka Satsuda 7-1-1, Omika-cho, Hitachi City, Hitachi City, Ibaraki Prefecture Hitachi, Ltd. Inside Hitachi, Ltd. (72) Inventor Mitsuo Nakamura 7-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Akira Onuma 7-1-1, Omikamachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Tsutomu Onuma 1-1-1, Omikamachi, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takahiko Kato 3-chome, Sachimachi, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd. Hitachi Plant (72) Inventor Yasukata Tamai 3-1-1 Kochicho, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Junichiro Morisawa 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Plant (72) Inventor Kunihiko Suzuki 3-1-1, Sachimachi, Hitachi-shi, Ibaraki Co., Ltd. Inside the Hitachi Works of Hitachi, Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】原子炉圧力容器内部を構成する高エネルギ
ー粒子線照射を受けた構造材の補修方法施工において、
補修する部分を含む領域に板材で被覆する際に上記板材
と被補修構造物との接触面に、圧力を支持する手段を有
しながら局所的に圧力を付与し、かつ圧力を付与した部
分にエネルギーを加えて接触面に熱エネルギーを生じる
手段によって接合することを特徴とする原子炉炉内構造
物の補修方法。
In a method for repairing a structural material that has been irradiated with high-energy particle beams constituting a reactor pressure vessel,
When covering the area including the portion to be repaired with the plate material, the pressure is locally applied to the contact surface between the plate material and the structure to be repaired while having a means for supporting the pressure, and to the portion where the pressure is applied. A method for repairing a reactor internal structure, characterized in that the contact surfaces are joined by means of generating thermal energy by applying energy.
【請求項2】請求項1に記載の接合を行う手段として、
接合施工当該部を加圧しながら電流を流して、発生する
抵抗熱で加熱して接合すること、回転電極を用いて構造
物に被覆板材を電縫溶接すること、又はスポット状に接
合することを特徴とする原子炉炉内構造物の補修方法。
2. The means for performing the bonding according to claim 1 includes:
Applying current while applying pressure to the relevant part, heating it with the generated resistance heat and joining it, welding the covering plate to the structure using rotary electrodes, or joining it in a spot shape Characteristic repair method for reactor internals.
【請求項3】請求項2に記載の抵抗熱で加熱して接合を
行う施工において、圧力付与手段を具備した複数の電極
に加圧しながら電流を流して、構造物と被覆板材との複
数個所を同時に接合することを特徴とする原子炉炉内構
造物の補修方法。
3. The construction according to claim 2, wherein current is applied while applying pressure to a plurality of electrodes provided with a pressure applying means, and a plurality of portions of the structure and the covering plate material are joined together. A method for repairing an internal structure of a nuclear reactor, characterized by joining together.
【請求項4】請求項1に記載の接合を行う手段として、
接合施工当該部を加圧しながら構造物と被覆板材との接
合面を機械的に摩擦し、摩擦抵抗によって接合するこ
と、前記摩擦抵抗によって接合を行う手段として、接合
当該部を加圧しながら機械振動を与えて接合面を機械的
に摩擦すること、又は、前記機械振動を与えて接合面を
機械的に摩擦して接合を行う手段として、高周波エネル
ギーを磁気歪現象によって機械振動に変換し、得られた
機械振動を接合当該部に与えて接合面を機械的に摩擦す
ることを特徴とする原子炉炉内構造物の補修方法。
4. The means for performing the bonding according to claim 1 includes:
Mechanically rubs the joint surface between the structure and the cover plate while pressurizing the joining section and joining by frictional resistance. As means for joining by the frictional resistance, mechanical vibration is applied while pressing the joining section. As a means for mechanically rubbing the joining surface by applying the above, or by mechanically rubbing the joining surface by giving the above-mentioned mechanical vibration, the high-frequency energy is converted into mechanical vibration by a magnetostriction phenomenon. A method for repairing an internal structure of a nuclear reactor, characterized in that a given mechanical vibration is given to a joining portion to mechanically rub the joining surface.
【請求項5】請求項1〜4のいずれかに記載の施工にお
いて、被覆板材に凸型の突起を設け、突起部を接合面と
すること、又は構造物側の被覆板材との接触部に凹型の
切欠きを設け、上記突起部と組み合わせて被覆板材を設
置し接合することを特徴とする原子炉炉内構造物の補修
方法。
5. The construction according to any one of claims 1 to 4, wherein the covering plate is provided with a convex projection, and the projection is used as a joint surface, or at a contact portion with the covering plate on the structure side. A method for repairing a reactor internal structure, wherein a concave notch is provided, and a cover plate material is installed and joined in combination with the projection.
【請求項6】請求項1〜5のいずれかに記載の施工にお
いて、炉内構造物あるいは機器を支持部とすることによ
って、圧力を付与する際に生じる反作用を封じる手段を
有すること、前記圧力を付与する際に生じる反作用を封
じる手段として、軽水炉炉内構造物の上部格子板と炉心
支持板との間に支持ピラーを導入し、上記上部格子板と
炉心支持板によって支えられたピラーを支持部とするこ
とによって、圧力を付与する際に生じる反作用を封じる
こと、又は前記圧力を付与する際に生じる反作用を封じ
る手段として、圧力容器と炉心シュラウドとの間に支持
ピラーを導入し、圧力容器内面によって支えられたピラ
ーを支持部とすることによって、圧力を付与する際に生
じる反作用を封じることを特徴とする原子炉炉内構造物
の補修方法。
6. The construction according to claim 1, further comprising means for sealing a reaction generated when pressure is applied by using a furnace internal structure or equipment as a support portion, As a means for sealing off the reaction that occurs when imparting, a support pillar is introduced between the upper lattice plate and the core support plate of the light water reactor internal structure to support the pillar supported by the upper lattice plate and the core support plate. By adopting a part, a support pillar is introduced between the pressure vessel and the core shroud as a means for sealing a reaction generated when applying pressure, or as a means for sealing a reaction generated when applying the pressure, the pressure vessel A method for repairing a reactor internal structure, wherein a reaction generated when pressure is applied is sealed by using a pillar supported by an inner surface as a supporting portion.
【請求項7】炉水に接している原子炉炉内構造物に対す
る請求項1〜6のいずれかに記載の補修施工において、
被覆板材を構造物施工当該部に設置する前に、構造物の
被覆板材との接合面を含む領域の酸化皮膜を除去する施
工を行った後に、被覆板材を設置し、接合することを特
徴とする原子炉炉内構造物の補修方法。
7. The repair work according to any one of claims 1 to 6 for a reactor internal structure in contact with reactor water,
Before installing the covering plate material in the structure construction pertinent part, after performing the construction to remove the oxide film in the area including the joint surface with the covering plate material of the structure, installing the covering plate material and joining. To repair internal reactor structures.
【請求項8】請求項7に記載の原子炉炉内構造物の補修
施工において、構造物の被覆板材との接合面を含む領域
の酸化皮膜を除去する施工を行った後、構造物あるいは
被覆板材の接合面を含む領域に、平均表面粗さを0.2
〜10μmの範囲に仕上げる表面処理を行い、上記表面
処理施工の後に、被覆板材を設置することを特徴とする
原子炉炉内構造物の補修方法。
8. The repair of a structure in a nuclear reactor according to claim 7, wherein after removing an oxide film in a region including a joint surface of the structure with a coated plate material, the structure or the coating is removed. In the region including the joining surface of the plate material, the average surface roughness is 0.2
A method for repairing an internal structure of a nuclear reactor, comprising performing a surface treatment to finish in a range of 10 to 10 μm, and installing a covering plate after the surface treatment.
【請求項9】請求項1〜8に記載の接合施工において、
上記被覆板材と上記構造物の接合面を含む領域との間
に、上記被覆板材と上記構造物の少なくともいずれかと
は組成あるいは結晶構造の異なる中間層が挿入されてい
ること、前記中間層として、肉盛層が形成されているこ
と、前記中間層として、溶射層が形成されていること、
前記肉盛層あるいは溶射層の形成手段として、レーザ光
あるいはアーク光の照射によって上記中間層を形成する
こと、前記中間層として、ろう付け層が形成されている
こと、又は、前記中間層の成分として、PdあるいはP
tの少なくともいずれかが0.05〜2.0wt%の範囲
で含有されていることを特徴とする原子炉炉内構造物の
補修方法。
9. The joining process according to claim 1, wherein
An intermediate layer having a different composition or crystal structure from the coated plate and at least one of the structures is inserted between the coated plate and the region including the bonding surface of the structure, as the intermediate layer, That the build-up layer is formed, that the thermal spray layer is formed as the intermediate layer,
As the means for forming the build-up layer or the sprayed layer, forming the intermediate layer by irradiating laser light or arc light, as the intermediate layer, forming a brazing layer, or a component of the intermediate layer As Pd or P
A method for repairing a reactor internal structure, wherein at least one of t is contained in a range of 0.05 to 2.0 wt%.
【請求項10】請求項9に記載の接合施工において、上
記構造物と接合する側の上記被覆板材表面に前記中間層
を形成した後に、請求項1〜8のいずれかに記載の接合
施工を行うことを特徴とする原子炉炉内構造物の補修方
法。
10. The joining process according to claim 9, wherein the intermediate layer is formed on the surface of the covering plate on the side to be joined to the structure. A method for repairing a reactor internal structure, which is performed.
【請求項11】請求項1〜8のいずれかに記載の接合施
工において、上記構造物表面の上記被覆板材との接合当
該部を含む領域に表面溶融層が形成されていること、又
は前記表面溶融層の形成手段として、レーザ光あるいは
アーク光の照射によって上記表面溶融層を形成すること
を特徴とする原子炉炉内構造物の補修方法。
11. The joining work according to claim 1, wherein a surface molten layer is formed in a region including a portion of the surface of the structure to be joined to the covering plate material, or the surface of the structure is provided with a surface molten layer. A method for repairing an internal structure of a nuclear reactor, wherein the surface molten layer is formed by irradiating a laser beam or an arc light as a means for forming a molten layer.
【請求項12】請求項1〜11のいずれかに記載の施工
によって、被覆する板材と被補修構造物との接触面にお
ける外周部の一部あるいは全周部が金属結合によって接
合されることを特徴とする原子炉炉内構造物の補修方
法。
12. The method according to claim 1, wherein part or all of the outer peripheral portion of the contact surface between the plate material to be covered and the repaired structure is joined by metal bonding. Characteristic repair method for reactor internals.
【請求項13】請求項1〜12のいずれかに記載の施工
を行う装置において、圧力を付与する際に生じる反作用
を封じる手段を具備していることを特徴とする炉内構造
物の補修装置。
13. An apparatus for repairing an in-furnace structure according to any one of claims 1 to 12, further comprising means for closing a reaction generated when pressure is applied. .
【請求項14】請求項13に記載の圧力を付与する際に
生じる反作用を封じる手段として、軽水炉炉内構造物の
上部格子板と炉心支持板によって上記反作用方向に対し
て支えられる圧力支持機構を具備すること、又は圧力を
付与する際に生じる反作用を封じる手段として、圧力容
器内面によって上記反作用方向に対して支えられる圧力
支持機構を具備することを特徴とする炉内構造物の補修
装置。
14. A pressure support mechanism supported in the reaction direction by an upper lattice plate and a core support plate of a light water reactor internal structure as a means for sealing a reaction generated when applying pressure according to claim 13. An apparatus for repairing a furnace internal structure, comprising: a pressure support mechanism supported by an inner surface of a pressure vessel in the reaction direction as means for providing or sealing a reaction generated when applying pressure.
JP15188897A 1997-06-10 1997-06-10 Repair method for reactor internals Expired - Fee Related JP3225890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15188897A JP3225890B2 (en) 1997-06-10 1997-06-10 Repair method for reactor internals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15188897A JP3225890B2 (en) 1997-06-10 1997-06-10 Repair method for reactor internals

Publications (2)

Publication Number Publication Date
JPH10339041A true JPH10339041A (en) 1998-12-22
JP3225890B2 JP3225890B2 (en) 2001-11-05

Family

ID=15528406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15188897A Expired - Fee Related JP3225890B2 (en) 1997-06-10 1997-06-10 Repair method for reactor internals

Country Status (1)

Country Link
JP (1) JP3225890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042379A (en) * 2010-08-20 2012-03-01 Kayaba Ind Co Ltd Nuclear reactor inspection robot
KR101680534B1 (en) * 2015-09-22 2016-12-12 한국원자력연구원 Apparatus and method for reducing iascc of structure in nuclear reactor
WO2018070769A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for post-heat treatment for reducing primary water stress corrosion cracking in dissimilar weld so as to improve microstructure of material
KR20200061732A (en) * 2018-11-26 2020-06-03 주식회사 포스코 Leaking management system for hydrochloric acid tank

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042379A (en) * 2010-08-20 2012-03-01 Kayaba Ind Co Ltd Nuclear reactor inspection robot
KR101680534B1 (en) * 2015-09-22 2016-12-12 한국원자력연구원 Apparatus and method for reducing iascc of structure in nuclear reactor
WO2018070769A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for post-heat treatment for reducing primary water stress corrosion cracking in dissimilar weld so as to improve microstructure of material
KR20200061732A (en) * 2018-11-26 2020-06-03 주식회사 포스코 Leaking management system for hydrochloric acid tank

Also Published As

Publication number Publication date
JP3225890B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JPH081344A (en) Method and device for repairing in-furnace structural member of nuclear reactor
CN102886606B (en) A kind of method and apparatus of laser remanufacturing sheet metal weldment
Blondeau Metallurgy and mechanics of welding: processes and industrial applications
JP2003053533A (en) Method of repairing structure and repair welding equipment
JP4246878B2 (en) Laser repair method
JP3079902B2 (en) Welding repair method for reactor internals
JP3225890B2 (en) Repair method for reactor internals
JP2008055461A (en) Welding method for nuclear power generation plant structural material
Onozuka et al. Manufacturing and maintenance technologies developed for a thick-wall structure of the ITER vacuum vessel
JPH07248397A (en) Repairing method for nuclear reactor inside structure and device therefor
JP7228346B2 (en) Weld repair method
JP2002219585A (en) Structure and repairing method therefor
JP2010110794A (en) Method and apparatus for reforming and repairing surface of structural material
JPH06289183A (en) Repair of structure in nuclear reactor
JP3144243B2 (en) Thermal processing method and equipment for metal material containing helium
JP5346203B2 (en) Laser welding of castings to minimize distortion
White et al. Underwater cladding with laser beam and plasma arc welding
JPH08220287A (en) Method and device for repairing structure in reducing liquid
Yoda et al. Laser-based maintenance and repair technologies for reactor components
JP2000230996A (en) Repair method for nuclear reactor structure
JP3828139B2 (en) Structure repair equipment
JP4585305B2 (en) Method and apparatus for reproducing defect portion
US6605794B1 (en) Methods for resistance cladding and welding on hot crack susceptible materials
JP2005230838A (en) Laser beam welding method and equipment for nickel-based alloy welded structure
JPH0829580A (en) Method and apparatus for repairing machine in reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees