JPH10338693A - Isatin derivative - Google Patents
Isatin derivativeInfo
- Publication number
- JPH10338693A JPH10338693A JP16328297A JP16328297A JPH10338693A JP H10338693 A JPH10338693 A JP H10338693A JP 16328297 A JP16328297 A JP 16328297A JP 16328297 A JP16328297 A JP 16328297A JP H10338693 A JPH10338693 A JP H10338693A
- Authority
- JP
- Japan
- Prior art keywords
- isatin
- derivative
- compound
- acid
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Indole Compounds (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規なイサチン誘
導体及び該イサチン誘導体を用いたイサチンの定量法に
関する。TECHNICAL FIELD The present invention relates to a novel isatin derivative and a method for quantifying isatin using the isatin derivative.
【0002】[0002]
【従来の技術】イサチン(2,3−ジケトインドリン)
はストレス時に増加する内因性のモノアミンオキシダー
ゼ(MAO)活性阻害物質の1つである〔南勝ら;臨床
薬理,Vol.23, No.1, p.311-312 (1992)等〕。イサチン
によって生体内のMAO活性が阻害されると、カテコー
ルアミンやセロトニンのような生理活性アミンが脳や末
梢組織に蓄積し、抗うつ病作用などの生理的変化が誘因
されることから、ストレス状態の研究、抗うつ病薬剤の
開発やストレス状態・うつ病の診断等において生体内の
イサチンの定量が行われている。現在用いられているイ
サチンの定量法としては、浜上尚也らの方法〔第22回
薬物活性シンポジウム講演要旨集、p.291-297(P-11) 〕
やGloverらの方法〔J. Neurochem., 51(2), p.65
6-659 (1988)〕がある。浜上らの方法は、イサチンを誘
導体化せずに240nmの紫外吸収を指標に高速液体ク
ロマトグラフィー(HPLC)を用いて定量する方法で
ある。また、Gloverらの方法はイサチンをオキシ
ム化し、シリカゲルカラムで分離した後、N−メチル−
N−(tert−ブチルジメチルシリル)トリフルオロ
アセトアミドと反応させtert−ブチルジメチルシリ
ル(TBDMS)化し、反応産物の揮発性イサチン誘導
体をガスクロマトグラフ質量分析(GC−MS)により
定量する方法である。2. Description of the Related Art Isatin (2,3-diketoindoline)
Is one of endogenous monoamine oxidase (MAO) activity inhibitors that increase during stress [Minamikatsu et al .; Clinical Pharmacology, Vol.23, No.1, p.311-312 (1992), etc.]. Inhibition of in vivo MAO activity by isatin accumulates physiologically active amines such as catecholamines and serotonin in the brain and peripheral tissues, and induces physiological changes such as antidepressant action. 2. Description of the Related Art Isatin in a living body has been quantified in research, development of antidepressant drugs, diagnosis of stress conditions / depression, and the like. The method of isatin quantification currently used is the method of Naoya Hamagami et al. [Abstracts of the 22nd Pharmaceutical Activity Symposium, p.291-297 (P-11)]
And Glover et al. [J. Neurochem., 51 (2), p.
6-659 (1988)]. The method of Hamakami et al. Is a method of quantifying isatin without derivatizing isatin using high performance liquid chromatography (HPLC) using ultraviolet absorption at 240 nm as an index. Also, the method of Glover et al. Oximes isatin and separates it with a silica gel column.
This is a method of reacting with N- (tert-butyldimethylsilyl) trifluoroacetamide to form tert-butyldimethylsilyl (TBDMS), and quantifying the volatile isatin derivative of the reaction product by gas chromatography-mass spectrometry (GC-MS).
【0003】[0003]
【発明が解決しようとする課題】浜上らの方法は簡便な
定量法ではあるが、イサチンの互変異性(ラクタム型及
びラクチム型)により、ピークのブロードニングが起こ
り分解能が低くなってしまう欠点に加え、更に240n
mの紫外吸収はこの付近に紫外吸収を有する化合物が多
々あるため特異性に乏しく、感度的にも不十分であると
いった問題点を有していた。また、Gloverらの方
法は正確な定量が可能ではあるが、2段階の誘導体化反
応に加えて抽出操作があり、非常に煩雑で且つ分析に時
間を要するため、特に多くの試料を分析する場合に難が
あり、実用的でないという問題点を有していた。更に分
析に用いるGC−MSの機器は非常に高価であり、実験
室に常備されているものではなく、分析コストの面にお
いても問題があった。本発明者らは上記のような問題点
を解決するために、より実用的なイサチンの定量法につ
いて鋭意研究した結果、新規なイサチンの蛍光誘導体を
見い出した。本発明によれば、例えば他の多成分を含有
する脳抽出液、血液、尿等の試料中のイサチンを定量す
る場合においても、HPLCシステムを用いて本発明イ
サチン誘導体の蛍光を指標にイサチンを特異的に定量す
ることができ、非常に高感度且つ簡便で実用的なイサチ
ンの定量が可能である。Although the method of Hamakami et al. Is a simple quantitative method, the disadvantage is that the tautomerism (lactam type and lactim type) of isatin causes broadening of the peak and lowers the resolution. In addition to 240n
The ultraviolet absorption of m has a problem that it has poor specificity and insufficient sensitivity because there are many compounds having ultraviolet absorption in the vicinity of m. Although the method of Glover et al. Is capable of accurate quantification, it involves an extraction operation in addition to a two-step derivatization reaction, and is extremely complicated and requires a long time for analysis. And it is not practical. Furthermore, GC-MS equipment used for analysis is very expensive, is not always provided in a laboratory, and has a problem in terms of analysis cost. The present inventors have intensively studied a more practical isatin quantification method in order to solve the above problems, and have found a novel fluorescent derivative of isatin. According to the present invention, for example, when quantifying isatin in a sample such as a brain extract containing other multicomponents, blood, and urine, isatin is used as an index using the fluorescence of the isatin derivative of the present invention as an index using an HPLC system. Specific quantification is possible, and very sensitive, simple and practical quantification of isatin is possible.
【0004】[0004]
【課題を解決するための手段】本発明の目的は、新規な
イサチン誘導体を提供することにある。An object of the present invention is to provide a novel isatin derivative.
【0005】[0005]
【発明の実施の形態】本発明は、下記一般式(I)で表
される新規なイサチン誘導体及び該イサチン誘導体を用
いたイサチンの定量法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel isatin derivative represented by the following general formula (I) and a method for quantitatively determining isatin using the isatin derivative.
【化3】 〔式中、R1 及びR2 は各々同一若しくは異なってアル
コキシル基を表す。〕Embedded image [Wherein, R 1 and R 2 are the same or different and each represents an alkoxyl group. ]
【0006】上記一般式(I)中、Rはメトキシ、エト
キシ、プロポキシ、イソプロポキシ、ブトキシ、イソブ
トキシ、sec−ブトキシ、tert−ブトキシ、ペン
トキシ、イソペントキシ、ネオペントキシ等の直鎖若し
くは分枝状の炭素数1乃至5のアルコキシル基を表す。In the above general formula (I), R represents a linear or branched carbon number such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentoxy, isopentoxy, neopentoxy, etc. Represents 1 to 5 alkoxyl groups.
【0007】本発明イサチン誘導体は、例えば以下のよ
うな方法を用いて製造することができる。下記の一般式
(II):The isatin derivative of the present invention can be produced, for example, by the following method. The following general formula (II):
【化4】 〔式中、R1 及びR2 は各々同一若しくは異なってアル
コキシル基を表す。〕で表される化合物を、反応させる
イサチンと共に水又はアルコール等の水溶性有機溶媒或
いはそれらの混合溶媒等の反応を阻害しない適当な溶媒
に溶解し、縮合反応させることによって前記一般式
(I)で表されるイサチン誘導体を製造することができ
る。反応溶媒としては、副生成物を抑えるために酸性の
水溶液が好ましい。縮合反応時に、上記一般式(II)で
表される化合物の酸化を防止する目的で、2−メルカプ
トエタノール等の適当な抗酸化剤を加えてもよい。縮合
反応は、例えば4,5−ジメトキシ−1,2−ジアミノ
ベンゼン(DDB)を用いたとき、室温においては約2
時間で縮合反応は完了するが、2−メルカプトエタノー
ル等の抗酸化剤を添加した場合にはさらに長時間の反応
時間を要する。反応温度は副生成物を抑えるために37
℃以下で反応を行うのが好ましく、特に室温で反応を行
うのが好ましい。Embedded image [Wherein, R 1 and R 2 are the same or different and each represents an alkoxyl group. The compound represented by the general formula (I) is dissolved by dissolving the compound represented by the formula (I) together with isatin to be reacted in a water-soluble organic solvent such as water or alcohol or a suitable solvent which does not inhibit the reaction such as a mixed solvent thereof, and subjecting it to a condensation reaction. Can be produced. The reaction solvent is preferably an acidic aqueous solution in order to suppress by-products. During the condensation reaction, a suitable antioxidant such as 2-mercaptoethanol may be added for the purpose of preventing the compound represented by the general formula (II) from being oxidized. The condensation reaction is carried out, for example, when using 4,5-dimethoxy-1,2-diaminobenzene (DDB) at room temperature for about 2 hours.
The condensation reaction is completed in a short time, but a longer reaction time is required when an antioxidant such as 2-mercaptoethanol is added. The reaction temperature is 37 to suppress by-products.
The reaction is preferably carried out at a temperature of not more than ℃, particularly preferably at room temperature.
【0008】前記一般式(II)で表される化合物は、例
えば、塩酸、硫酸、硝酸、臭化水素酸、リン酸、過塩素
酸、チオシアン酸、ホウ酸、ギ酸、酢酸、ハロ酢酸、プ
ロピオン酸、グリコール酸、クエン酸、酒石酸、コハク
酸、グルコン酸、乳酸、マロン酸、フマル酸、アントラ
ニル酸、安息香酸、ケイ皮酸、p−トルエンスルホン
酸、ナフタレンスルホン酸、スルファニル酸等との酸付
加塩を包含する。これらの塩は公知の方法により遊離の
一般式(II)で表される化合物より製造でき、或いは相
互に変換することができる。The compound represented by the general formula (II) is, for example, hydrochloric acid, sulfuric acid, nitric acid, hydrobromic acid, phosphoric acid, perchloric acid, thiocyanic acid, boric acid, formic acid, acetic acid, haloacetate, propionate Acids with acids, glycolic acid, citric acid, tartaric acid, succinic acid, gluconic acid, lactic acid, malonic acid, fumaric acid, anthranilic acid, benzoic acid, cinnamic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfanilic acid, etc. And addition salts. These salts can be produced from the compound represented by the general formula (II) by a known method, or can be mutually converted.
【0009】また一般式(I)で表される本発明イサチ
ン誘導体及び一般式(II)で表される化合物は、それら
の水和物及び錯化合物も包含する。The isatin derivative of the present invention represented by the general formula (I) and the compound represented by the general formula (II) include hydrates and complex compounds thereof.
【0010】本発明イサチン誘導体を指標にすることに
より、従来法より簡便且つ特異的にイサチンの定量を行
うことができる。例えば、イサチン含量が不明な試料に
前記一般式(II)で表される化合物を添加し、該試料中
のイサチンと反応させることによって生成する前記一般
式(I)で表される本発明イサチン誘導体の蛍光を指標
に、HPLCシステム等の分析機器を用いて定量するこ
とができる。例えば、DDBを用いて試料中のイサチン
を定量する場合には、DDBとイサチンが反応して生成
する後記化合物1の蛍光(Ex340nm、Em415
nm)を指標にイサチンの定量を行うことができる。By using the isatin derivative of the present invention as an index, isatin can be quantified more simply and specifically than the conventional method. For example, the isatin derivative of the present invention represented by the general formula (I) produced by adding the compound represented by the general formula (II) to a sample whose isatin content is unknown and reacting with the isatin in the sample Can be quantified by using an analytical instrument such as an HPLC system using the fluorescence of the above as an index. For example, when isatin in a sample is quantified using DDB, the fluorescence (Ex340 nm, Em415) of Compound 1 described below generated by the reaction between DDB and isatin
nm) as an index.
【0011】本発明の好ましい態様を以下に示す。 (1)前記一般式(I)で表されるイサチン誘導体のう
ちR1 及びR2 がメトキシ基であるイサチン誘導体。 (2)イサチンを前記一般式(II)で表される化合物又
はその塩と反応させ、前記一般式(I)で表される化合
物に誘導体化して測定することによるイサチンの定量法
において、該イサチン誘導体の蛍光を指標とするイサチ
ンの定量法。 (3)反応時に抗酸化剤を加える上記(2)記載のイサ
チンの定量法。 (4)抗酸化剤が2−メルカプトエタノールである上記
(3)記載のイサチンの定量法。 (5)HPLCシステムにより一般式(I)で表される
イサチン誘導体を定量する上記(2)乃至(4)記載の
イサチンの定量法。 (6)前記一般式(I)で表されるイサチン誘導体のう
ちR1 及びR2 がメトキシ基であるイサチン誘導体を指
標とした上記(2)乃至(5)記載のイサチンの定量
法。Preferred embodiments of the present invention are described below. (1) An isatin derivative represented by the general formula (I), wherein R 1 and R 2 are methoxy groups. (2) A method for quantifying isatin by reacting isatin with the compound represented by the general formula (II) or a salt thereof and derivatizing the compound to the compound represented by the general formula (I) for measurement. A method for quantifying isatin using the fluorescence of the derivative as an index. (3) The method for quantifying isatin according to (2), wherein an antioxidant is added during the reaction. (4) The method for quantifying isatin according to (3), wherein the antioxidant is 2-mercaptoethanol. (5) The method for quantifying isatin according to (2) to (4), wherein the isatin derivative represented by the general formula (I) is quantified by an HPLC system. (6) The method for quantifying isatin according to (2) to (5), wherein the isatin derivative represented by the general formula (I), wherein R 1 and R 2 are methoxy groups, is used as an index.
【0012】[0012]
【実施例】以下に本発明の実施例を示すが、本発明はこ
れによって限定されるものではない。なお以下の実施例
においては、融点はガラス製キャピラリーに試料を入
れ、融点測定装置(YAMATO社製MP−21型)を
用いて測定した。蛍光スペクトルは日立製650−40
型を用いて測定した。紫外吸収スペクトルの測定にはB
ECKMAN社製DU−650型を用いた。マススペク
トルは日立製M−80B型を用い、EI法によってイオ
ン化し測定した。核磁気共鳴(NMR)スペクトルは試
料をDMSO−d6 (内部標準としてテトラメチルシラ
ンを0.05%含む)に溶解し、Burker社製AR
X−500を用いて測定した。EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited by these examples. In the following Examples, the melting point was measured by placing a sample in a glass capillary and using a melting point measuring device (MP-21, manufactured by YAMATO). The fluorescence spectrum was 650-40 manufactured by Hitachi.
It was measured using a mold. B for measuring UV absorption spectrum
ECKMAN DU-650 type was used. The mass spectrum was measured by ionization using the Hitachi M-80B type by the EI method. Nuclear magnetic resonance (NMR) spectra were dissolved sample of DMSO-d 6 (containing 0.05% of tetramethylsilane as an internal standard), Burker Co. AR
It measured using X-500.
【0013】実施例 (1)イサチン誘導体の合成 482mgの4,5−ジメトキシ−1,2−ジアミノベ
ンゼン(DDB)と少量のエタノールに溶解させた29
4mgのイサチンを50mLの0.5N塩酸に溶解させ
た。室温で一晩攪拌した後、生成した沈殿を濾取した。
沈殿を乾燥させ、酢酸エチルに溶解してシリカゲルカラ
ム(10g)に付加し、酢酸エチルで溶出した。溶出液
を乾固し、エタノールで再結晶させ、無色針状晶として
372mgの8,9−ジメトキシ−5H−インドロ
(3,2−b)−キノキサリン 11−オキシド(化合
物1)を得た。 融点: 333〜 334℃(分解) 元素分析:C16H13N3O3として 理論値:(C=65.08, H=4.44, N=14.23); 測定値:(C=65.
25, H=4.37, N=14.03) λmax (EtOH):233, 338, 352(sh) Mass: 295(M+), 280(M+ -Me), 252(M+ -COMe), 237(M+
-COMe-Me)1 H-NMR(DMSO-d6): 3.88(3H,s,-OMe), 3.89(3H,s,-OMe),
7.35(1H,t), 7.39(1H,d), 7.44(1H,s), 7.60(1H,t),
7.89(1H,s), 8.24(1H,d), 11.91(1H,s,-NH)13 C-NMR(DMSO-d6): 55.85(q), 55.92(q), 97.49(d), 10
1.51(d), 112.04(s), 115.80(d), 123.26(d), 123.65
(d), 124.00(s), 131.30(d), 136.34(s), 137.24(s), 1
46.00(s), 146.35(s), 147.09(s), 148.18(s)Example (1) Synthesis of isatin derivative 29 dissolved in 482 mg of 4,5-dimethoxy-1,2-diaminobenzene (DDB) and a small amount of ethanol
4 mg of isatin was dissolved in 50 mL of 0.5N hydrochloric acid. After stirring overnight at room temperature, the resulting precipitate was collected by filtration.
The precipitate was dried, dissolved in ethyl acetate, applied to a silica gel column (10 g) and eluted with ethyl acetate. The eluate was dried and recrystallized from ethanol to obtain 372 mg of 8,9-dimethoxy-5H-indolo (3,2-b) -quinoxaline 11-oxide (compound 1) as colorless needles. Melting point: 333-334 ° C (decomposition) Elemental analysis: as C 16 H 13 N 3 O 3 Theoretical value: (C = 65.08, H = 4.44, N = 14.23); Measurement value: (C = 65.
25, H = 4.37, N = 14.03) λ max (EtOH): 233, 338, 352 (sh) Mass: 295 (M +), 280 (M + -Me), 252 (M + -COMe), 237 (M +
-COMe-Me) 1 H-NMR (DMSO-d 6 ): 3.88 (3H, s, -OMe), 3.89 (3H, s, -OMe),
7.35 (1H, t), 7.39 (1H, d), 7.44 (1H, s), 7.60 (1H, t),
7.89 (1H, s), 8.24 (1H, d), 11.91 (1H, s, -NH) 13 C-NMR (DMSO-d 6): 55.85 (q), 55.92 (q), 97.49 (d), 10
1.51 (d), 112.04 (s), 115.80 (d), 123.26 (d), 123.65
(d), 124.00 (s), 131.30 (d), 136.34 (s), 137.24 (s), 1
46.00 (s), 146.35 (s), 147.09 (s), 148.18 (s)
【0014】(2)イサチン誘導体によるイサチンの定
量 12.05mgのDDBに490μLの2−メルカプト
エタノールを加え10mLの0.5N塩酸に溶解させて
調製したDDB試薬0.5mLに、5×10-14 〜5×
10-10 Mの種々の濃度に調製したイサチン水溶液0.
5mLをそれぞれ加え、50℃で3時間攪拌した。各々
10μLの反応溶液をHPLCシステムを用いて測定
し、化合物1の蛍光(Ex340nm、Em415n
m)を指標に試料中のイサチンを定量した。なお、HP
LCシステムは、日本分光社製900シリーズを用い、
蛍光検出器はFP−920を使用した。カラムはYMC
社製のJ’sphere・ODS−M80(4.6×1
50mm)を用い、65%メタノール/50mMリン酸
緩衝溶液(pH=6.5、流速0.8mL/分)で溶出
した。結果の一例を図1に示す。[0014] (2) according to isatin derivatives DDB quantitative 12.05mg of isatin was added 2-mercaptoethanol 490μL was dissolved in 0.5N hydrochloric acid 10mL the DDB reagent 0.5mL, prepared, 5 × 10 -14 ~ 5x
Isatin aqueous solutions prepared at various concentrations of 10 −10 M.
5 mL each was added, and the mixture was stirred at 50 ° C. for 3 hours. 10 μL of each reaction solution was measured using an HPLC system, and the fluorescence (Ex340 nm, Em415n) of Compound 1 was measured.
Isatin in the sample was quantified using m) as an index. In addition, HP
The LC system uses 900 series manufactured by JASCO Corporation,
FP-920 was used as a fluorescence detector. Column is YMC
J'sphere ODS-M80 (4.6 × 1
(50 mm) and eluted with a 65% methanol / 50 mM phosphate buffer solution (pH = 6.5, flow rate 0.8 mL / min). One example of the result is shown in FIG.
【図1】FIG.
【0015】(3)ラット脳抽出液中のイサチンの定量 Watkinsらの方法〔Neurochem. Int., 17, p.321
-323 (1990) 〕に従ってラット脳抽出液を調製した。先
ず、このラット脳抽出液をそのままHPLCシステムで
測定したが蛍光ピークは全く出現しなかった。次に、ラ
ット脳抽出液にDDB試薬を加えて反応させ、反応物を
HPLCシステムで蛍光を指標に分離したところ、前述
の化合物1の蛍光ピーク近辺に強い蛍光ピークが観察さ
れた。分取したこの蛍光化合物と化合物1の物性値を比
較した結果、両者はよく一致し、同一化合物であること
が示された。さらに、ラット脳抽出液に標品のイサチン
を添加した後にDDB試薬と反応させ測定した場合、標
品のイサチン添加量に相当して前記蛍光ピークの高さが
増加することが確認された。また、本発明化合物を利用
してイサチンを定量した結果は、煩雑な操作が必要とさ
れるGC−MSを用いた前述のGloverらの方法に
よって定量した結果とよく一致した。(3) Quantification of Isatin in Rat Brain Extract [Watkins et al., Neurochem. Int., 17, p.321]
-323 (1990)]. First, the rat brain extract was directly measured by an HPLC system, but no fluorescence peak appeared. Next, a DDB reagent was added to the rat brain extract to cause a reaction, and the reaction product was separated by an HPLC system using fluorescence as an index. As a result, a strong fluorescence peak was observed near the fluorescence peak of Compound 1 described above. As a result of comparing the physical property values of the collected fluorescent compound and Compound 1, the two were in good agreement with each other, indicating that they were the same compound. Furthermore, when a standard isatin was added to the rat brain extract and reacted with a DDB reagent and measured, it was confirmed that the height of the fluorescence peak was increased corresponding to the amount of isatin added to the standard. In addition, the results of quantifying isatin using the compound of the present invention were in good agreement with the results of quantifying isatin by the above-described method of Glover et al. Using GC-MS, which requires complicated operations.
【0016】[0016]
【発明の効果】上述したように、本発明測定法を行う際
に必要とされる反応は簡単な操作の誘導体化反応1段階
のみであり、さらにHPLCシステムにより定量可能な
ので、非常に簡便で実用的な方法である。感度について
も、図1に示したとおり、本発明測定法におけるイサチ
ン誘導体の検出限界は5×10-13 moleと極めて高
感度であった。また本発明イサチン誘導体の蛍光強度と
イサチン濃度の間に1×10-9moleまで良好な直線
性が認められ、変動係数が1.26%(2.5×10
-12 mole反応時、n=9)と再現性も良好であっ
た。更に実施例(3)において示されたように、脳抽出
液のような他の多成分を含有する試料を測定する場合に
おいても、正確な測定が可能であった。従って、本発明
イサチン誘導体を指標に定量することにより、前述した
従来技術の種々の問題点を克服し、高感度且つ簡便で実
用的にイサチンの定量を行うことができる。例えば他の
多成分を含有する脳抽出液、血液、尿等の試料中のイサ
チンを定量する場合においても、HPLCシステムを用
いて本発明イサチン誘導体の蛍光を指標にイサチンを特
異的に定量することができ、非常に高感度且つ簡便で実
用的なイサチンの定量法が提供される。As described above, the reaction required for carrying out the measurement method of the present invention is only one step of the derivatization reaction with a simple operation, and can be quantitatively determined by an HPLC system, so that it is very simple and practical. Is a typical method. As for the sensitivity, as shown in FIG. 1, the detection limit of the isatin derivative in the measurement method of the present invention was 5 × 10 −13 mole, which was extremely high. Also, good linearity was observed up to 1 × 10 −9 mole between the fluorescence intensity of the isatin derivative of the present invention and the isatin concentration, and the coefficient of variation was 1.26% (2.5 × 10
At the time of the -12 mole reaction, n = 9) and the reproducibility was also good. Further, as shown in Example (3), accurate measurement was possible even when measuring a sample containing other multicomponents such as a brain extract. Therefore, by quantifying the isatin derivative of the present invention as an index, the above-mentioned various problems of the prior art can be overcome, and the quantification of isatin can be performed with high sensitivity, simply, and practically. For example, even when quantifying isatin in a sample such as a brain extract containing other multiple components, blood, urine, etc., specifically quantifying isatin using the fluorescence of the isatin derivative of the present invention as an index using an HPLC system Thus, a very sensitive, simple and practical method for quantifying isatin is provided.
図1は本発明イサチン誘導体の蛍光を指標にしたイサチ
ン定量の検量線の一例である。FIG. 1 is an example of a calibration curve for isatin quantification using the fluorescence of the isatin derivative of the present invention as an index.
フロントページの続き (51)Int.Cl.6 識別記号 FI G01N 33/52 G01N 33/52 C (72)発明者 山本 任 兵庫県加東郡社町木梨字川北山442番1 日本臓器製薬株式会社生物活性科学研究所 内Continuation of the front page (51) Int.Cl. 6 Identification symbol FI G01N 33/52 G01N 33/52 C (72) Inventor Tsutomu Yamamoto 442-1, Kawakitayama, Kinashiri, Kashiguna-cho, Hyogo Japan Nippon Organ Pharmaceutical Co., Ltd. Activity Science Institute
Claims (2)
誘導体。 【化1】 〔式中、R1 及びR2 は各々同一若しくは異なってアル
コキシル基を表す。〕1. An isatin derivative represented by the following general formula (I). Embedded image [Wherein, R 1 and R 2 are the same or different and each represents an alkoxyl group. ]
る化合物又はその塩と反応させ、請求項1記載の化合物
に誘導体化して測定することによるイサチンの定量法。 【化2】 〔式中、R1 及びR2 は各々同一若しくは異なってアル
コキシル基を表す。〕2. A method for quantifying isatin by reacting isatin with a compound represented by the following general formula (II) or a salt thereof, derivatizing the compound according to claim 1, and measuring the derivative. Embedded image [Wherein, R 1 and R 2 are the same or different and each represents an alkoxyl group. ]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16328297A JPH10338693A (en) | 1997-06-04 | 1997-06-04 | Isatin derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16328297A JPH10338693A (en) | 1997-06-04 | 1997-06-04 | Isatin derivative |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10338693A true JPH10338693A (en) | 1998-12-22 |
Family
ID=15770864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16328297A Withdrawn JPH10338693A (en) | 1997-06-04 | 1997-06-04 | Isatin derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10338693A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591214A (en) * | 2022-03-25 | 2022-06-07 | 北京大学深圳医院 | Isatin derivative and preparation method thereof |
-
1997
- 1997-06-04 JP JP16328297A patent/JPH10338693A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114591214A (en) * | 2022-03-25 | 2022-06-07 | 北京大学深圳医院 | Isatin derivative and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tagari et al. | Simplified determination of serotonin in plasma by liquid chromatography with electrochemical detection. | |
AU2020102262A4 (en) | Use of ratiometric fluorescent probe in measurement of peroxynitrite anion | |
CN112142639B (en) | Aldehyde group-based chiral amino acid recognition probe and preparation method and application thereof | |
Derayea et al. | Development of spectrofluorimetric method for determination of certain antiepileptic drugs through condensation with ninhydrin and phenyl acetaldehyde | |
Schleicher et al. | Analysis of total urinary catecholamines by liquid chromatography: methodology, routine experience and clinical interpretations of results | |
CN113214184B (en) | Fluorescent probe for detecting formaldehyde and preparation method and application thereof | |
CN112724166B (en) | Water-soluble fluorescent probe, synthetic method thereof and application of water-soluble fluorescent probe in detection of antibiotics | |
Paik et al. | Urinary polyamines and N-acetylated polyamines in four patients with Alzheimer's disease as their N-ethoxycarbonyl-N-pentafluoropropionyl derivatives by gas chromatography–mass spectrometry in selected ion monitoring mode | |
Squella et al. | Polarographic determination of loratadine in pharmaceutical preparations | |
Belal et al. | Spectrofluorometric determination of labetolol in pharmaceutical preparations and spiked human urine through the formation of coumarin derivative | |
Kariya et al. | Microdetermination of norepinephrine, 3, 4-dihydroxyphenylethylamine, and 5-hydroxytryptamine from single extracts of specific rat brain areas | |
JPH10338693A (en) | Isatin derivative | |
CN115047093B (en) | Method for detecting dimethyl sulfate in anhydrous caffeine | |
CN114563495B (en) | Detection method of acetylcysteine and related substances thereof | |
Pitrè et al. | Metoclopramide hydrochloride | |
US9045421B2 (en) | Reagent and method for detection of carboxylic acids by mass spectrometry | |
Sefid-Sefidehkhan et al. | A mini review on materials used for the colorimetric detection of corticosteroids | |
Anwer et al. | Benzofurazan-based fluorophore for the spectrofluorimetric determination of 6-Aminocaproic acid: Application to spiked human plasma and urine | |
JPH046897B2 (en) | ||
Nagaraja et al. | Simple and sensitive method for the quantification of total bilirubin in human serum using 3-methyl-2-benzothiazolinone hydrazone hydrochloride as a chromogenic probe | |
US20050019937A1 (en) | Assay and kit for homocysteine | |
Attia et al. | Tb 3+–atorvastatin doped in poly (ethylene glycol) optical biosensor for selective determination of progesterone and testosterone in serum samples | |
CN115340542B (en) | Fluorescent probe for detecting phosgene and preparation method and use method thereof | |
CN112680216B (en) | Fluorescent probe for ammonia detection and preparation method and application of test paper thereof | |
CN115745936B (en) | Fluorescent compound, preparation method thereof and application of fluorescent compound as fluorescent probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040603 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20061206 |