JPH10337485A - Method for regenerating anion exchange resin - Google Patents

Method for regenerating anion exchange resin

Info

Publication number
JPH10337485A
JPH10337485A JP9151297A JP15129797A JPH10337485A JP H10337485 A JPH10337485 A JP H10337485A JP 9151297 A JP9151297 A JP 9151297A JP 15129797 A JP15129797 A JP 15129797A JP H10337485 A JPH10337485 A JP H10337485A
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
regenerant
water
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9151297A
Other languages
Japanese (ja)
Other versions
JP3417256B2 (en
Inventor
Takeshi Tsurumi
武 鶴見
Kashu Obata
嘉修 小畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15515614&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH10337485(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP15129797A priority Critical patent/JP3417256B2/en
Publication of JPH10337485A publication Critical patent/JPH10337485A/en
Application granted granted Critical
Publication of JP3417256B2 publication Critical patent/JP3417256B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To regenerate anion exchange resin in a short time and at a low cost and to recover ion exchange performance by allowing a regenerant of specific concentration to flow through the anion exchange resin at a specific space velocity in the state heated at a specific temp., and bringing the regenerant, into contact with the anion exchange resin. SOLUTION: In the state that an anion exchange resin layer is heated at 40-60 deg.C, preferably at 40 - about 50 deg.C, the regenerant of low concentration is allowed to flow at high speed to regenerate it. As a heating method of the anion exchange layer, any optional method such as heating with electric heating or heating with infrared radiation, can be used, and heating with hot water is preferred. A water flow quantity of hot water is desired to be >= about one time in a volume ratio of the anion exchange resin, preferably about 1-3 times. The water flow speed is desired to be 15-40 hr<-1> at the space velocity(SV), preferably about 20-35 hr<-1> . An alkali aqueous liquid such as an ammonia aqueous liquid and a sodium hydroxide aqueous liquid can be used as the regenerant. The concentration is 1-3.5 wt.%, preferably about 2-3 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アニオン交換樹脂
の再生方法、特に純水製造装置に用いられているアニオ
ン交換樹脂の再生方法に関する。
The present invention relates to a method for regenerating an anion exchange resin, and more particularly to a method for regenerating an anion exchange resin used in a pure water production apparatus.

【0002】[0002]

【従来の技術】イオン交換樹脂を用いた純水製造装置な
どによる純水の製造においては、イオン交換樹脂に通水
して脱塩する工程と、再生剤を通液して再生する工程と
があり、イオン交換樹脂は再生して繰返し使用されてい
る。純水製造装置においては運転操作の都合上、一般的
には一日に脱塩工程と再生工程とを一回ずつ行うか、ま
たは二回ずつ行う運転方式が採用されている。
2. Description of the Related Art In the production of pure water by a pure water production apparatus using an ion exchange resin, a step of passing water through the ion exchange resin to desalinate and a step of regenerating by passing a regenerant are used. Yes, the ion exchange resin is regenerated and used repeatedly. In the pure water production apparatus, an operation system in which the desalination step and the regeneration step are generally performed once or twice a day is adopted for the convenience of the operation.

【0003】従来、イオン交換樹脂の再生は再生剤とし
てカチオン交換樹脂に対しては塩酸、硫酸等の酸を用
い、アニオン交換樹脂に対しては水酸化ナトリウム等の
アルカリを用いて再生している。この場合、再生剤とイ
オン交換樹脂との接触時間を十分とり、化学反応が完結
するように、再生剤の通液速度はSVで2〜10hr-1
程度で再生されている。ここで再生剤としては酸、アル
カリの場合とも4〜6重量%程度のものが使用され、イ
オン交換樹脂の充填層高としては100〜300cmが
採用されている。
Conventionally, ion-exchange resins are regenerated by using an acid such as hydrochloric acid or sulfuric acid for a cation exchange resin and an alkali such as sodium hydroxide for an anion exchange resin as a regenerant. . In this case, the flow rate of the regenerant is 2 to 10 hr -1 in terms of SV so that the contact time between the regenerant and the ion exchange resin is sufficient to complete the chemical reaction.
Reproduced by the degree. Here, as the regenerating agent, those having an acid or alkali content of about 4 to 6% by weight are used, and the height of the packed bed of the ion exchange resin is 100 to 300 cm.

【0004】上記従来の再生方法では、アニオン交換樹
脂に対する再生剤の再生レベルを仮に80gNaOH/
l−Rとすれば、この値を実現するためには4重量%N
aOHを樹脂量の2倍容積使用する必要があり、SV=
2hr-1では約1時間、SV=10hr-1では12分間
の薬注時間が必要となる。
In the above-mentioned conventional regeneration method, the regeneration level of the regenerant with respect to the anion exchange resin is supposed to be 80 g NaOH /
Assuming 1R, to achieve this value, 4% by weight N
It is necessary to use aOH twice the volume of the resin, and SV =
At 2 hr -1 , it takes about 1 hour, and at SV = 10 hr -1 , it takes 12 minutes.

【0005】樹脂の再生には上記再生剤の注入の他、再
生剤の押出工程や樹脂の洗浄工程なども必要であり、再
生工程全体では2〜4時間程度の時間が必要であり、一
日に2回再生と通水を実施する運転が限界である。また
従来の再生方法では再生に必要な時間が長いため、効率
が悪くコスト高になるという問題点もある。
In order to regenerate the resin, in addition to the above-mentioned injection of the regenerating agent, a step of extruding the regenerating agent, a step of washing the resin, and the like are required, and the entire regenerating process requires about 2 to 4 hours. The operation which performs regeneration and water supply twice is the limit. Further, the conventional reproducing method has a problem that the time required for the reproduction is long, so that the efficiency is low and the cost is high.

【0006】純水製造全体に占める樹脂再生工程の時間
的割合を低下させるために再生間隔を長くすることも考
えられるが、この場合は純水製造に用いるイオン交換樹
脂の量を多くする必要があり、このためコスト高にな
る。一方、再生間隔を短くすると、一定量のイオン交換
樹脂から一定量の処理水を得るには速い流速で通水して
脱塩する必要があるが、この場合余剰の処理水を貯蔵し
ておく大きな容量のタンクが必要であり、大きな設置面
積を必要とし、一般的には採用できない。
It is conceivable to lengthen the regeneration interval in order to reduce the time ratio of the resin regeneration step in the total pure water production, but in this case, it is necessary to increase the amount of ion exchange resin used for pure water production. Yes, this increases costs. On the other hand, if the regeneration interval is shortened, it is necessary to pass water at a high flow rate to desalinate in order to obtain a fixed amount of treated water from a fixed amount of ion exchange resin. In this case, surplus treated water is stored. It requires a large capacity tank, requires a large installation area, and cannot be generally adopted.

【0007】[0007]

【発明が解決しようとする課題】本発明の課題は、アニ
オン交換樹脂を短時間に低コストで再生してイオン交換
能力を回復することができ、しかもアニオン交換樹脂に
吸着したシリカを短時間で効率よく脱着させることがで
き、これにより装置の小型化を図ることが可能であると
ともに、再生樹脂からのシリカのリーク量が少ないアニ
オン交換樹脂の再生方法を提案することである。
SUMMARY OF THE INVENTION An object of the present invention is to regenerate an anion exchange resin in a short time and at low cost to recover the ion exchange capacity, and to reduce the silica adsorbed on the anion exchange resin in a short time. An object of the present invention is to propose a method for regenerating an anion exchange resin which can be efficiently desorbed, thereby reducing the size of the apparatus and in which the amount of silica leaked from the regenerated resin is small.

【0008】[0008]

【課題を解決するための手段】本発明は、アニオン交換
樹脂の再生方法において、アニオン交換樹脂を40〜6
0℃に加温した状態で1〜3.5重量%濃度の再生剤を
空間速度(SV)15〜40hr-1の流速で通液し、ア
ニオン交換樹脂と接触させることを特徴とするアニオン
交換樹脂の再生方法である。
According to the present invention, there is provided a method for regenerating an anion exchange resin.
An anion exchange characterized in that a regenerant having a concentration of 1 to 3.5% by weight is passed at a flow rate of 15 to 40 hr -1 in space velocity (SV) while being heated to 0 ° C, and is brought into contact with an anion exchange resin. This is a method for regenerating resin.

【0009】本発明の方法で再生することができるアニ
オン交換樹脂は特に限定されず、強塩基性もしくは弱塩
基性アニオン交換樹脂のいずれでもよい。このようなア
ニオン交換樹脂としては、アニオン交換樹脂塔に充填さ
れているものでも、複床式または混床式のものでもよ
い。混床を形成しているアニオン交換樹脂は分離して再
生することができる。具体的なものとしては、純水製造
用のアニオン交換樹脂があげられる。
The anion exchange resin that can be regenerated by the method of the present invention is not particularly limited, and may be either a strongly basic or weakly basic anion exchange resin. Such an anion exchange resin may be a resin packed in an anion exchange resin tower, a double bed type or a mixed bed type. The anion exchange resin forming the mixed bed can be separated and regenerated. A specific example is an anion exchange resin for producing pure water.

【0010】本発明の再生方法は、アニオン交換樹脂層
を40〜60℃、好ましくは40〜50℃に加温した状
態で、低濃度の再生剤を高流速で通液して再生する方法
である。アニオン交換樹脂層を加温する方法としては、
電熱による加熱、赤外線による加熱など、任意の方法に
よることができるが、温水による加熱が好ましい。この
場合40〜60℃、好ましくは40〜50℃の純水(温
水)を通水してアニオン交換樹脂を加温した後、後述の
再生剤を高流速で通液して接触させ、再生する方法が好
ましい。
The regeneration method of the present invention is a method in which a low-concentration regenerant is passed at a high flow rate while the anion exchange resin layer is heated to 40 to 60 ° C., preferably 40 to 50 ° C., to regenerate. is there. As a method of heating the anion exchange resin layer,
Any method such as heating by electric heating or heating by infrared rays can be used, but heating with warm water is preferred. In this case, the anion exchange resin is heated by passing pure water (warm water) at 40 to 60 ° C., preferably 40 to 50 ° C., and then a regenerating agent described below is passed at a high flow rate and brought into contact to regenerate. The method is preferred.

【0011】温水の通水量はアニオン交換樹脂の容積比
で1倍以上、好ましくは1〜3倍とするのが望ましい。
通水速度はSVで15〜40hr-1、好ましくは20〜
35hr-1とするのが望ましい。通水方向は上向流でも
下向流でもよいが上向流が好ましい。特に下向流で通水
してイオン交換したアニオン交換樹脂を上向流で通水す
るのが好ましい。
It is desirable that the flow rate of the hot water be at least 1 times, preferably 1 to 3 times the volume ratio of the anion exchange resin.
The water flow speed is 15 to 40 hr -1 in SV, preferably 20 to 40 hr -1 .
It is desirably 35 hr -1 . The water flow direction may be an upward flow or a downward flow, but an upward flow is preferable. In particular, it is preferable that the anion exchange resin, which has been ion-exchanged by passing water in a downward flow, is passed in an upward flow.

【0012】再生剤を通液する前にアニオン交換樹脂を
加温しておくことにより、再生剤による再生、特にシリ
カの脱着を短時間で効率よく行うことができる。この場
合温水を通水して加温することにより、アニオン交換樹
脂に熱衝撃を与えることなく、均一に加温を行うことが
できる。
By heating the anion exchange resin before passing the regenerating agent, regeneration by the regenerating agent, in particular, desorption of silica can be performed efficiently in a short time. In this case, warming can be performed uniformly without causing thermal shock to the anion exchange resin by passing warm water through and heating.

【0013】再生剤としてはアンモニア水溶液、水酸化
ナトリウム水溶液等のアルカリ水溶液など、従来から用
いられている薬剤が使用できる。その濃度は1〜3.5
重量%、好ましくは2〜3重量%であり、従来の再生剤
の濃度よりも低濃度で使用する。再生剤レベルは従来と
同様とされる。
As a regenerating agent, a conventionally used agent such as an aqueous ammonia solution or an aqueous alkali solution such as an aqueous sodium hydroxide solution can be used. Its concentration is from 1 to 3.5
%, Preferably 2 to 3% by weight, and used at a concentration lower than that of the conventional regenerant. The level of the regenerant is the same as before.

【0014】再生剤のSVは15〜40hr-1、好まし
くは20〜35hr-1とする。通液方向は上向流でも下
向流でもよいが上向流が好ましい。特に下向流で通水し
てイオン交換したアニオン交換樹脂を上向流で再生する
向流再生が好ましい。再生剤の温度は40〜60℃、好
ましくは40〜50℃とするのが望ましい。このような
温度で再生することにより、短時間でより完全にシリカ
を脱着させることができる。
The SV of the regenerant is 15 to 40 hr -1 , preferably 20 to 35 hr -1 . The flowing direction may be an upward flow or a downward flow, but an upward flow is preferable. In particular, countercurrent regeneration in which anion exchange resin which has been ion-exchanged by passing water in a downward flow is regenerated in an upward flow is preferable. It is desirable that the temperature of the regenerant is 40 to 60 ° C, preferably 40 to 50 ° C. By regenerating at such a temperature, silica can be more completely desorbed in a short time.

【0015】従来は再生剤を有効に利用するためには再
生剤を低流速で接触させる必要があり、上記のような高
流速では再生が十分完結しないと考えられていたが、本
発明では再生剤を通液する前に樹脂を加温し、しかも低
濃度の再生剤を使用することにより、上記のような速い
流速で通液しても再生が十分に行われてアニオン交換能
力が回復するとともに、シリカも十分脱着することがわ
かった。
Conventionally, in order to effectively utilize the regenerant, it was necessary to contact the regenerant at a low flow rate, and it was thought that regeneration was not sufficiently completed at the high flow rate as described above. By heating the resin before passing the agent and using a low-concentration regenerating agent, regeneration can be performed sufficiently and the anion exchange capacity can be restored even if the resin is passed at such a high flow rate. At the same time, it was found that silica was sufficiently desorbed.

【0016】一般にカラムに充填したイオン交換樹脂に
おける脱塩のためのイオン交換反応では、高流速で通液
すると交換帯の長さが長くなり、有効に使用される樹脂
量が減少することが知られている。交換帯の長さをZ
(m)、イオン交換樹脂の充填高さをL(m)とする
と、樹脂の最大利用率(%)は次式(1)で表される。
Generally, in an ion exchange reaction for desalting in an ion exchange resin packed in a column, it is known that when a liquid is passed at a high flow rate, the length of an exchange zone becomes longer, and the amount of resin used effectively decreases. Have been. Change the length of the exchange zone to Z
(M), assuming that the filling height of the ion exchange resin is L (m), the maximum utilization rate (%) of the resin is represented by the following equation (1).

【0017】 なお交換帯の長さZは次式(2)で表される。 Z=a×LVb …(2) 〔ここで、LVは通液線流速(m/h)、aは交換する
イオンにより定まる係数、bは樹脂およびイオンにより
決まる係数である。〕
[0017] The length Z of the exchange zone is represented by the following equation (2). Z = a × LV b (2) [where LV is a liquid flow velocity (m / h), a is a coefficient determined by ions to be exchanged, and b is a coefficient determined by resins and ions. ]

【0018】この利用率はイオン交換工程における樹脂
の有効利用率を示し、例えば樹脂の充填高さが150m
mのイオン交換装置では約93%の利用率であるとさ
れ、実用的な利用率とするために樹脂層高は100〜3
00cmとされている。
This utilization rate indicates an effective utilization rate of the resin in the ion exchange step. For example, the filling height of the resin is 150 m.
m is about 93% in the ion exchange apparatus, and the height of the resin layer is 100 to 3 in order to obtain a practical utilization rate.
00 cm.

【0019】再生の場合はこのような樹脂の利用率とは
異なり、再生剤の利用効率が問題となるが、この再生剤
の利用効率も交換帯の長さ(通液方向の長さ)によって
決まってくる。従来の再生法のように低流速で再生する
場合は交換帯の長さは短く、ほとんど考慮する必要はな
かったが、本発明のように高流速になると交換帯の長さ
は長くなる。
In the case of regeneration, unlike the utilization rate of such a resin, the utilization efficiency of the regenerating agent is a problem, and the utilization efficiency of the regenerating agent also depends on the length of the exchange zone (length in the liquid passing direction). It will be decided. In the case of regeneration at a low flow rate as in the conventional regeneration method, the length of the exchange zone is short and hardly need be taken into consideration. However, when the flow rate is high as in the present invention, the length of the exchange zone increases.

【0020】再生の場合の負荷イオン除去についても、
脱塩のためのイオン交換反応と同様の傾向が認められ、
交換帯が存在する。この再生時の交換帯の長さは、前記
式(2)と同様に、流速が速くなれば長くなるが、再生
剤のイオン交換樹脂粒子内への拡散の影響を大きく受け
ることから、再生剤流速が大きい場合は、再生剤濃度を
低くすればその拡散が速くなり、交換帯の長さを短くで
きる。
Regarding the removal of the loaded ions in the case of regeneration,
The same tendency as the ion exchange reaction for desalination was observed,
There is an exchange zone. The length of the exchange zone at the time of this regeneration becomes longer as the flow rate increases, as in the above formula (2). However, the length of the exchange zone is greatly affected by the diffusion of the regenerant into the ion exchange resin particles. When the flow rate is high, the diffusion becomes faster if the concentration of the regenerant is reduced, and the length of the exchange zone can be shortened.

【0021】本発明の方法において、低濃度の再生剤を
使用して高流速で再生しても、交換帯の影響をできるだ
け少なくしかつ樹脂の利用率を80%以上にするために
は、樹脂の充填高さを0.8m以上、好ましくは0.8
〜3m、さらに好ましくは0.8〜1.5mとするのが
望ましい。
In the method of the present invention, even if regeneration is performed at a high flow rate using a low-concentration regenerant, the effect of the exchange zone is reduced as much as possible and the resin utilization rate is set to 80% or more. 0.8 m or more, preferably 0.8 m
To 3 m, more preferably 0.8 to 1.5 m.

【0022】上記の条件で再生剤の注入を行ったのち、
純水注入することにより再生剤の押出を行うが、押出工
程における純水の量は再生剤と同容とされ、再生剤と同
流速すなわちSV15〜40hr-1、好ましくは20〜
35hr-1で通水する。
After injecting the regenerant under the above conditions,
Extrusion of the regenerant is performed by injecting pure water. The amount of pure water in the extrusion step is made the same as that of the regenerant, and the same flow rate as the regenerant, that is, SV 15 to 40 hr −1 , preferably 20 to
Water is passed at 35 hr -1 .

【0023】押出工程に続く洗浄工程は従来の再生と同
様に行われ、採水工程と同一流速で5〜10分間行われ
る。上記により再生を終り、イオン交換工程に移る。
The washing step following the extrusion step is performed in the same manner as the conventional regeneration, and is performed at the same flow rate as the water sampling step for 5 to 10 minutes. The regeneration is completed as described above, and the process proceeds to the ion exchange step.

【0024】[0024]

【発明の効果】本発明のアニオン交換樹脂の再生方法
は、アニオン交換樹脂を40〜60℃に加温した状態で
1〜3.5重量%濃度の再生剤をSVが15〜40hr
-1の流速で通液して再生するようにしているので、アニ
オン交換樹脂を短時間に低コストで再生してイオン交換
能力を回復することができ、しかもアニオン交換樹脂に
吸着したシリカを短時間で効率よく脱着させることがで
き、これにより装置の小型化が可能であるとともに、再
生樹脂からのシリカのリーク量が少ない。
According to the method for regenerating an anion exchange resin of the present invention, a regenerant having a concentration of 1 to 3.5% by weight and an SV of 15 to 40 hours can be obtained by heating the anion exchange resin to 40 to 60 ° C.
Since the liquid is regenerated by passing through at a flow rate of -1 , the anion exchange resin can be regenerated in a short time and at low cost to recover the ion exchange capacity. The desorption can be performed efficiently in a short period of time, whereby the size of the apparatus can be reduced, and the amount of silica leaked from the recycled resin is small.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施例1 アニオン交換樹脂(ダイヤイオンSA12A、三菱化成
工業(株)製、商標)を内径25mm、高さ1500m
mのアクリルカラムに400ml充填した。この樹脂に
温水を通水した後、60gNaOH/l−Rの再生レベ
ルで再生し、厚木市水を通水する試験を実施した。再生
工程と再生条件は表1の通りである。通水試験の処理水
質を図1に示す。
Example 1 An anion exchange resin (Diaion SA12A, manufactured by Mitsubishi Kasei Kogyo Co., Ltd., trade name) was used with an inner diameter of 25 mm and a height of 1500 m.
m acrylic column was packed in 400 ml. After passing hot water through the resin, the resin was regenerated at a regeneration level of 60 g NaOH / l-R, and a test of passing Atsugi-shi water was performed. Table 1 shows the regeneration steps and the regeneration conditions. Fig. 1 shows the treated water quality of the water flow test.

【0026】[0026]

【表1】 [Table 1]

【0027】比較例1 加温水の通水を行わなかった以外は実施例1と同様にし
て行った。再生工程、再生条件を表2、処理水質を図1
に示す。
Comparative Example 1 The procedure of Example 1 was repeated, except that the heating water was not passed. Table 2 shows the regeneration process and regeneration conditions, and Fig. 1 shows the treated water quality.
Shown in

【0028】[0028]

【表2】 [Table 2]

【0029】表1および図1の結果から、45℃の温水
を通水した後、45℃の低濃度の再生剤を高流速で通液
して再生することにより、短時間でアニオン交換樹脂を
再生することができ、しかも再生したアニオン交換樹脂
からのシリカのリーク量が少ないことがわかる。
From the results shown in Table 1 and FIG. 1, after passing hot water at 45 ° C., a low-concentration regenerant at 45 ° C. was passed through at a high flow rate to regenerate the anion exchange resin in a short time. It can be seen that the resin can be regenerated and the amount of silica leaked from the regenerated anion exchange resin is small.

【0030】実施例2 内径40mm、高さ1200mmの円筒形のアクリルカ
ラムを2個用意し、一方にはカチオン交換樹脂を1 lit
er(80cm高)、他方にはアニオン交換樹脂を1.4
liter(111cm高)充填した。このカラムの樹脂を
カチオン交換樹脂は温水を通水しないで80gHCl/
l−Rの再生レベルで再生し、アニオン交換樹脂は温水
を通水した後、60gNaOH/l−Rの再生レベルで
再生し、厚木市水を通水する試験を実施した。
Example 2 Two cylindrical acrylic columns having an inner diameter of 40 mm and a height of 1200 mm were prepared, and one liter of a cation exchange resin was used for one of them.
er (80 cm high) and the other anion exchange resin at 1.4
Filled liter (111 cm high). The resin in this column was treated with 80 g HCl /
A test was conducted in which regeneration was carried out at a regeneration level of 1-R, the anion exchange resin was passed through warm water, then regenerated at a regeneration level of 60 g NaOH / l-R, and water was passed through Atsugi city water.

【0031】カチオン交換樹脂の再生はカラムに上向流
で再生剤を通液して行った。アニオン交換樹脂の再生は
カラムに上向流で温水および再生剤を通液して行った。
また通水試験は、カチオン交換樹脂、アニオン交換樹脂
の順に通水できるようにカラムを直列に連結し、どちら
のカラムにも下向流で通水した。再生条件および通水試
験条件を表3に示す。
Regeneration of the cation exchange resin was carried out by passing a regenerant through the column in an upward flow. Regeneration of the anion exchange resin was performed by passing warm water and a regenerant through the column in an upward flow.
In the water flow test, columns were connected in series so that water could flow in the order of the cation exchange resin and the anion exchange resin, and water was flown downward in both columns. Table 3 shows the regeneration conditions and water flow test conditions.

【0032】[0032]

【表3】 [Table 3]

【0033】このとき、全体の再生時間は約36分間、
通水時間と合せて9時間であった。1日24時間換算の
生産水量は2033 literであった。表3の再生・通水
条件で3回繰返し試験したところ、図2の水質を得た。
At this time, the entire reproduction time is about 36 minutes,
It was 9 hours in total with the water flow time. The amount of water produced in 24 hours a day was 2033 liter. When the test was repeated three times under the conditions of regeneration and water flow shown in Table 3, the water quality shown in FIG. 2 was obtained.

【0034】実施例3 条件を表4のように変更した以外は実施例2と同様にし
て行った。
Example 3 Example 3 was carried out in the same manner as in Example 2, except that the conditions were changed as shown in Table 4.

【0035】[0035]

【表4】 [Table 4]

【0036】このとき、全体の再生時間は、約29分間
であった。通水と再生を各1回実施して6時間であり、
1日換算での生産水量は2400 literであった。この
時の処理水質は図3のようであった。
At this time, the entire reproduction time was about 29 minutes. It is 6 hours with water passing and regeneration once each,
The daily water production was 2,400 liters. The treated water quality at this time was as shown in FIG.

【0037】比較例2 内径65mm、高さ2000mmの円筒形のアクリルカ
ラムを2個用意し、一方にはカチオン交換樹脂を3.6
liter(108cm高)、他方にはアニオン交換樹脂を
4.7 liter(142cm高)充填した。このカラムの
樹脂をカチオン交換樹脂は80gHCl/l−R、アニ
オン交換樹脂は60gNaOH/l−Rの再生レベルで
再生し、厚木市水を通水する試験を実施例1と同様にし
て実施した。再生条件および通水条件を表5に示す。
COMPARATIVE EXAMPLE 2 Two cylindrical acrylic columns having an inner diameter of 65 mm and a height of 2000 mm were prepared, and one of them was provided with a cation exchange resin of 3.6.
liter (108 cm high) and the other was filled with an anion exchange resin 4.7 liter (142 cm high). The resin in this column was regenerated at a regeneration level of 80 g HCl / l-R for the cation exchange resin and 60 g NaOH / l-R for the anion exchange resin. Table 5 shows the regeneration conditions and water flow conditions.

【0038】[0038]

【表5】 [Table 5]

【0039】再生時間は100分間で、通水時間と合せ
て約31時間であった。1日24時間換算の生産水量は
2250 literであった。表5の再生・通水条件で3回
繰返し試験したところ、図4の水質を得た。
The regeneration time was 100 minutes, which was about 31 hours including the water flow time. The amount of water produced in 24 hours a day was 2250 liter. When the test was repeated three times under the conditions of regeneration and passing water shown in Table 5, the water quality shown in FIG. 4 was obtained.

【0040】以上の実施例2、3および比較例2から判
るように、本発明の方法によれば、小さな装置で同等の
処理水質の生産水量を、ほぼ同容積得ることができる。
As can be seen from the above Examples 2 and 3 and Comparative Example 2, according to the method of the present invention, it is possible to obtain substantially the same volume of treated water with the same volume by using a small apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1および比較例1の結果を示すグラフで
ある。
FIG. 1 is a graph showing the results of Example 1 and Comparative Example 1.

【図2】実施例2の結果を示すグラフである。FIG. 2 is a graph showing the results of Example 2.

【図3】実施例3の結果を示すグラフである。FIG. 3 is a graph showing the results of Example 3.

【図4】比較例2の結果を示すグラフである。FIG. 4 is a graph showing the results of Comparative Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アニオン交換樹脂の再生方法において、
アニオン交換樹脂を40〜60℃に加温した状態で1〜
3.5重量%濃度の再生剤を空間速度(SV)15〜4
0hr-1の流速で通液し、アニオン交換樹脂と接触させ
ることを特徴とするアニオン交換樹脂の再生方法。
1. A method for regenerating an anion exchange resin, comprising:
While heating the anion exchange resin to 40-60 ° C,
A regenerant having a concentration of 3.5% by weight has a space velocity (SV) of 15 to 4
A method for regenerating an anion exchange resin, comprising passing a liquid at a flow rate of 0 hr -1 and bringing the liquid into contact with the anion exchange resin.
JP15129797A 1997-06-09 1997-06-09 Regeneration method of anion exchange resin Ceased JP3417256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15129797A JP3417256B2 (en) 1997-06-09 1997-06-09 Regeneration method of anion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15129797A JP3417256B2 (en) 1997-06-09 1997-06-09 Regeneration method of anion exchange resin

Publications (2)

Publication Number Publication Date
JPH10337485A true JPH10337485A (en) 1998-12-22
JP3417256B2 JP3417256B2 (en) 2003-06-16

Family

ID=15515614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15129797A Ceased JP3417256B2 (en) 1997-06-09 1997-06-09 Regeneration method of anion exchange resin

Country Status (1)

Country Link
JP (1) JP3417256B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
CN115870019A (en) * 2023-01-03 2023-03-31 江苏金杉新材料有限公司 Recovery method of anion exchange resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361247A (en) * 2001-06-11 2002-12-17 Kurita Water Ind Ltd Method for manufacturing pure water
JP2009240891A (en) * 2008-03-31 2009-10-22 Japan Organo Co Ltd Method for producing ultrapure water
CN115870019A (en) * 2023-01-03 2023-03-31 江苏金杉新材料有限公司 Recovery method of anion exchange resin

Also Published As

Publication number Publication date
JP3417256B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3590650B2 (en) Ion-exchange resin bed optimized for bisphenol A synthesis
JP3417256B2 (en) Regeneration method of anion exchange resin
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP3417244B2 (en) Regeneration method of ion exchange resin
JPS62197191A (en) Liquid treatment method containing cation exchange and selective removal of nitrate ion from liquid and ion exchange resin mixture used therein
JPH0251672B2 (en)
JPS6111156A (en) Reduction of necessary amount of washing water of weak basictype anion exchanger
JP2002361247A (en) Method for manufacturing pure water
JPS62213893A (en) Method of treating waste water containing hydroxylamine or salt thereof
JP4210396B2 (en) Starch sugar solution desalting method and desalting system
JP2001247305A (en) Method for recovering boron
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
JPS622572B2 (en)
JP6089888B2 (en) Separation and regeneration method of mixed bed ion exchange resin
JPH059079B2 (en)
JPS58174241A (en) Method for regenerating boron selective ion exchange resin
JPS5924663B2 (en) Solution processing method
JP3832961B2 (en) Regeneration method of radium adsorbent
US7235180B2 (en) Sulfate-selective anion exchange resins for use in combination with TRSS resins in feed water treatment
JPS6228698B2 (en)
US5942122A (en) Method of deodorizing ion-exchanged purified water
JPH09206604A (en) Regeneration method of weak basic anion exchange resin
JPH0754200A (en) Treatment of waste nickel plating liquid
US3175981A (en) Method for producing silica hydro-organosols
JP2000169410A (en) Treatment of crude phenol liquid

Legal Events

Date Code Title Description
RVOP Cancellation by post-grant opposition