JPH10337475A - Catalyst composition for catalystic decomposition of hydrocarbon - Google Patents
Catalyst composition for catalystic decomposition of hydrocarbonInfo
- Publication number
- JPH10337475A JPH10337475A JP16184397A JP16184397A JPH10337475A JP H10337475 A JPH10337475 A JP H10337475A JP 16184397 A JP16184397 A JP 16184397A JP 16184397 A JP16184397 A JP 16184397A JP H10337475 A JPH10337475 A JP H10337475A
- Authority
- JP
- Japan
- Prior art keywords
- activated clay
- range
- catalytic cracking
- catalyst composition
- clay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、炭化水素接触分解
用触媒組成物に関し、さらに詳しくは炭化水素、特にニ
ッケル、バナジウムなどの金属汚染物と硫黄化合物を含
有する重質炭化水素の流動接触分解に使用して、耐メタ
ル性、ボトム分解性などに優れ、コークおよびガスの生
成量が少ない、炭化水素接触分解用触媒組成物に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst composition for catalytic cracking of hydrocarbons, and more particularly, to the fluid catalytic cracking of hydrocarbons, especially heavy hydrocarbons containing metal contaminants such as nickel and vanadium and sulfur compounds. The present invention relates to a catalyst composition for catalytic cracking of hydrocarbon, which is excellent in metal resistance, bottom decomposition property, etc., and generates little coke and gas.
【0002】[0002]
【従来の技術およびその問題点】炭化水素の接触分解に
使用される触媒は、当然高い分解活性と高いガソリン選
択性を有し、コークおよびガスの生成が少ない特性を備
えていなければならない。さらに製油所によっては、灯
軽油留分(ライトサイクルオイル)の収率も高いことが
要望されている。近年の石油事情の悪化は低品位の原油
を常圧蒸留装置(トッパー)にかけなければならない事
態を生じさせ、トッパーから生じた通常沸点が650°
F以上の残渣油の割合を増大させる結果となっている。
そのため、このような残渣油を接触分解の原料に用いざ
せる得ないため、接触分解用油触媒組成物は重質留分を
分解する性能がますます要求されいる。2. Description of the Related Art A catalyst used for catalytic cracking of hydrocarbons must have high cracking activity, high gasoline selectivity, and low coke and gas generation characteristics. Further, some refineries are required to have a high yield of a light gas oil fraction (light cycle oil). The recent deterioration in petroleum circumstances has caused a situation in which low-grade crude oil has to be passed through a normal-pressure distillation unit (topper), and the normal boiling point generated from the topper is 650 °.
As a result, the ratio of the residual oil of F or more is increased.
For this reason, such residual oil cannot be used as a raw material for catalytic cracking, and therefore, an oil catalyst composition for catalytic cracking is increasingly required to have a performance of decomposing heavy fractions.
【0003】従来、重質油分の分解に優れた接触分解用
触媒組成物については種々の技術が提案されている。そ
して、そのような触媒ではカオリンなどの粘土物質は一
般に増量剤として使用されていた。とくに粘土物質を活
性成分として使用した触媒としては、つぎのようなもの
がある。Hitherto, various techniques have been proposed for catalytic cracking catalyst compositions excellent in cracking heavy oil components. And, in such catalysts, clay materials such as kaolin were generally used as extenders. Particularly, catalysts using a clay substance as an active ingredient include the following.
【0004】特開昭63−270545号公報において
は、結晶性アルミノシリケートゼオライトを3〜40w
t%、アルミナ、マグネシアおよびスメクタイト型粘土
鉱物からなるマトリックスを60〜97wt%含有し、
かつ該マトリックス中のアルミナ含有量が5〜80wt
%、マグネシア含有量が2〜40wt%、スメクタイト
型粘土鉱物含有量が10〜90wt%であることを特徴
とする炭化水素転化触媒が開示されている。In Japanese Patent Application Laid-Open No. 63-270545, crystalline aluminosilicate zeolite is used in an amount of 3 to 40 watts.
t-%, containing a matrix composed of alumina, magnesia and smectite-type clay minerals in an amount of 60 to 97 wt%,
And the alumina content in the matrix is 5 to 80 wt.
%, A magnesia content of 2 to 40 wt% and a smectite type clay mineral content of 10 to 90 wt% are disclosed.
【0005】また、特開平8−59228号公報におい
ては、MgとSiを主成分とするカチオン交換性のスメ
クタイト系粘土鉱物に、少なくとも脱マグネシウム処理
及びカチオン交換によるアルミニウムの導入を行うこと
によって、そのMg/Si比(モル比)を0.40〜
0.65の範囲の調整し、かつ、その導入アルミニウム
量を、Al/Si比(モル比)で表して、0.001以
上0.08未満に調整してなる粘土組成物、この粘土組
成物からなる接触分解用触媒及び石油系炭化水素の接触
分解をこの触媒を用い流動床で行う石油系炭化水素の接
触分解方法が開示されている。In Japanese Patent Application Laid-Open No. Hei 8-59228, a cation-exchangeable smectite clay mineral containing Mg and Si as main components is subjected to at least magnesium removal treatment and introduction of aluminum by cation exchange. An Mg / Si ratio (molar ratio) of 0.40 to
A clay composition which is adjusted in the range of 0.65 and the amount of introduced aluminum is adjusted to 0.001 or more and less than 0.08 in terms of Al / Si ratio (molar ratio), and this clay composition And a method for catalytically cracking petroleum hydrocarbons in a fluidized bed using this catalyst.
【0006】さらに、特開平5−202366号公報に
おいては、石油系炭化水素を接触分解するにあたり、触
媒としてカチオン交換スチブンサイトを含む組成物を使
用することを特徴とする石油系炭化水素の接触分解法が
記載されている。[0006] Further, in Japanese Patent Application Laid-Open No. 5-202366, a catalytic cracking method for petroleum hydrocarbons is characterized in that a composition containing cation-exchanged stevensite is used as a catalyst in catalytic cracking of petroleum hydrocarbons. Is described.
【0007】しかし、従来のこれらの触媒は、重質留分
(ボトムと言うことがある)の分解性能などについて必
ずしも満足いくものではなく、改善が望まれていた。[0007] However, these conventional catalysts are not always satisfactory with respect to the cracking performance of heavy fractions (sometimes called bottoms), and improvements have been desired.
【0008】[0008]
【本発明が解決しようとする課題】本発明の目的は、重
質炭化水素の接触分解、特に流動接触分解に使用して、
耐メタル性、ボトム分解性などに優れ、コークおよびガ
スの生成量が少ない、活性成分として特定の粘土物質を
含有する炭化水素接触分解用触媒組成物を提供する点に
ある。SUMMARY OF THE INVENTION An object of the present invention is to use heavy hydrocarbons for catalytic cracking, particularly for fluid catalytic cracking.
An object of the present invention is to provide a catalyst composition for catalytic cracking of hydrocarbons which is excellent in metal resistance, bottom decomposability, etc., generates a small amount of coke and gas, and contains a specific clay substance as an active ingredient.
【0009】[0009]
【課題を解決するための手段】本発明は、結晶性アルミ
ノシリケートゼオライトおよびMgO量が0.5〜3w
t%の範囲にある活性白土とを含有する炭化水素接触分
解用触媒組成物に関する。According to the present invention, a crystalline aluminosilicate zeolite and an amount of MgO of 0.5 to 3 watts are provided.
The present invention relates to a catalyst composition for catalytic cracking of hydrocarbons containing activated clay in the range of t%.
【0010】本発明の活性白土はモンモリロナイトを主
成分とする酸性白土を酸処理してMgO量を0.5〜3
wt%の範囲に調製して製造することができる。活性白
土中のMgO量は酸性白土の酸処理の程度により変える
ことができる。The activated clay of the present invention is prepared by acid-treating an acidic clay composed mainly of montmorillonite to reduce the amount of MgO to 0.5-3.
It can be prepared and manufactured in the range of wt%. The amount of MgO in the activated clay can be changed depending on the degree of acid treatment of the acid clay.
【0011】前述の活性白土中のMgO量が0.5wt
%より少ない場合には、触媒組成物の耐メタル性の点で
効果が少なく、ニッケル、バナジウムなどの金属汚染物
が触媒組成物に沈着した場合に高い転化率が得られな
い。また、活性白土中のMgO量が3wt%より多い場
合には、活性白土の固体酸量が少なく充分なボトム分解
性能が得られないことがある。活性白土中のMgO量は
好ましくは1.0〜2.5wt%の範囲であることが望
ましい。The amount of MgO in the activated clay is 0.5 wt.
%, The effect is small in terms of metal resistance of the catalyst composition, and a high conversion cannot be obtained when metal contaminants such as nickel and vanadium are deposited on the catalyst composition. When the amount of MgO in the activated clay is more than 3% by weight, the amount of solid acid in the activated clay is small and sufficient bottom decomposition performance may not be obtained. The MgO content in the activated clay is preferably in the range of 1.0 to 2.5 wt%.
【0012】また、本発明における活性白土はMgO/
SiO2のモル比が0.01〜0.10の範囲にあるこ
とが好ましい。活性白土におけるMgO/SiO2モル
比が0.01より小さい場合には触媒組成物の耐メタル
性の点で効果が十分でないことがある。MgO/SiO
2モル比が0.10より大きい場合には触媒再生の際の
スチーミングのシビアリティーが高い状態においてMg
が活性成分であるゼオライトのイオン交換サイトに移動
し、活性点である固体酸を被毒してしまい、耐水熱性が
悪くなってしまうことがある。In the present invention, the activated clay is MgO /
It is preferred that the molar ratio of SiO 2 is in the range of 0.01 to 0.10. If the MgO / SiO 2 molar ratio in the activated clay is less than 0.01, the effect may not be sufficient in terms of the metal resistance of the catalyst composition. MgO / SiO
If the 2 molar ratio is greater than 0.10, Mg in a state where the severity of steaming during catalyst regeneration is high
May move to the ion-exchange site of the zeolite as the active component, poisoning the solid acid as the active site, resulting in poor hydrothermal resistance.
【0013】さらに、本発明での活性白土は比表面積が
150〜400m2/g、600オングストローム以下
の細孔容積が0.2〜0.5ml/gの範囲にあること
が好ましい。活性白土の比表面積が150m2/gより
小さい場合には、活性白土の固体酸量が少なく十分なボ
トム分解性が得られないことがあり、またミクロボア域
の内部表面積が小さくなり、物理吸着能が低下すること
がある。比表面積が400m2/gより大きい場合に
は、触媒中の活性白土の添加量が多くなると触媒の嵩比
量(ABD)が軽くなり耐摩耗性(アトリッション)が
悪くなることがある。Further, the activated clay according to the present invention preferably has a specific surface area of 150 to 400 m 2 / g and a pore volume of 600 Å or less in a range of 0.2 to 0.5 ml / g. If the specific surface area of the activated clay is smaller than 150 m 2 / g, the amount of solid acid in the activated clay is small and sufficient bottom decomposability may not be obtained. May decrease. When the specific surface area is larger than 400 m 2 / g, when the added amount of the activated clay in the catalyst is increased, the bulk ratio (ABD) of the catalyst is reduced, and the abrasion resistance (attrition) may be deteriorated.
【0014】また、活性白土の細孔容積が0.2ml/
g以下の場合にはミクロボア域の内部表面積が小さくな
り、物理吸着能が低下することがあり、0.5ml/g
より大きい場合には触媒中の活性白土の添加量が多くな
ると触媒のABDが軽くなりアトリッションが悪くなる
ことがある。Further, the pore volume of the activated clay is 0.2 ml /
g or less, the internal surface area of the microbore region becomes small, and the physical adsorption ability may be reduced.
If it is larger, the ABD of the catalyst becomes lighter and the attrition may worsen if the amount of activated clay added in the catalyst increases.
【0015】前述の活性白土は、その平均粒径が60μ
m以下、好ましくは0.1〜30μmの範囲にあること
が望ましい。平均粒子径が60μmを上回ると最終的に
得られる触媒組成物の平均粒子径との関係で、流動床用
の触媒としては望ましくない。このような活性白土は、
酸性白土を硫酸などの酸で処理して得ることができる
し、また、前述の特性を有するものであれば市販の活性
白土を使用することができる。該活性白土は、強酸と弱
酸の固体酸を有し、適度の細孔容積を有するため、該活
性白土を含有する本発明の触媒組成物は分解活性が高
く、しかもコークおよびガスの生成が少ない。The above-mentioned activated clay has an average particle size of 60 μm.
m, preferably in the range of 0.1 to 30 μm. If the average particle size exceeds 60 μm, it is not desirable as a catalyst for a fluidized bed in relation to the average particle size of the finally obtained catalyst composition. Such activated clay is
Acid clay can be obtained by treating it with an acid such as sulfuric acid, and commercially available activated clay can be used as long as it has the above-mentioned properties. Since the activated clay has a solid acid of a strong acid and a weak acid, and has an appropriate pore volume, the catalyst composition of the present invention containing the activated clay has a high decomposition activity, and generates less coke and gas. .
【0016】本発明における結晶性アルミノシリケート
ゼオライトとしては、通常の炭化水素接触分解用触媒組
成物に用いられるゼオライトが使用可能であり、例え
ば、X型ゼオライト、Y型ゼオライト、モルデナイト、
ZSM型ゼオライトおよび天然ゼオライトなどを挙げる
ことができ、また、通常の接触分解用触媒組成物の場合
と同様、水素、アンモニウムおよび多価金属から選ばれ
るカチオンでイオン交換された形で使用される。Y型ゼ
オライト、特に超安定性Y型ゼオライトは耐水熱性に優
れているので好適である。As the crystalline aluminosilicate zeolite in the present invention, zeolites used in ordinary catalyst compositions for catalytic cracking of hydrocarbons can be used. For example, X-type zeolites, Y-type zeolites, mordenite,
Examples thereof include ZSM-type zeolites and natural zeolites, and are used in the form of being ion-exchanged with cations selected from hydrogen, ammonium and polyvalent metals, as in the case of ordinary catalyst compositions for catalytic cracking. Y-type zeolites, particularly ultra-stable Y-type zeolites, are preferred because of their excellent hydrothermal resistance.
【0017】本発明の炭化水素接触分解用触媒組成物で
は、前述の結晶性アルミノシリケートゼオライトおよび
前述の活性白土を無機酸化物マトリックスに分散してな
り、該結晶性アルミノシリケートゼオライトを5〜50
重量%、好ましくは15〜35重量%および該活性白土
を1〜20重量%、好ましくは2〜15重量%の範囲で
含有することが望ましい。In the catalyst composition for catalytic cracking of hydrocarbons of the present invention, the above-mentioned crystalline aluminosilicate zeolite and the above-mentioned activated clay are dispersed in an inorganic oxide matrix.
%, Preferably 15 to 35% by weight and the activated clay in a range of 1 to 20% by weight, preferably 2 to 15% by weight.
【0018】該活性白土の含有量が1重量%未満では所
望の効果が得られず、また20重量%を超えて高くなる
と触媒の耐摩耗性が低下する傾向にあるので好ましくな
い。If the content of the activated clay is less than 1% by weight, the desired effect cannot be obtained, and if it exceeds 20% by weight, the abrasion resistance of the catalyst tends to decrease.
【0019】前述の無機酸化物マトリックスとしては、
シリカ、シリカ−アルミナ、アルミナ、シリカ−マグネ
シア、アルミナ−マグネシア、リン−アルミナ、シリカ
−ジルコニアなど、結合剤としても作用する通常の接触
分解用触媒に使用されるマトリックス成分が使用でき
る。また、マトリックス成分には、従来の粘土物質や、
アルミナ、マンガン化合物などのメタル捕捉剤を併用し
て含有せしめることもできる。As the above-mentioned inorganic oxide matrix,
A matrix component used for a usual catalyst for catalytic cracking that also acts as a binder, such as silica, silica-alumina, alumina, silica-magnesia, alumina-magnesia, phosphorus-alumina, and silica-zirconia can be used. In addition, the matrix component, conventional clay substances,
A metal scavenger such as alumina or a manganese compound may be used in combination.
【0020】本発明の触媒組成物は、例えば、シリカヒ
ドロゾル、シリカ−アルミナヒドロゾルなどの前述の無
機酸化物マトリックス前駆物質に前述の結晶性アルミノ
シリケートゼオライトおよび活性白土を加えて均一に分
散させ、得られ混合物スラリーを噴霧乾燥する通常の方
法によって製造することができる。そして噴霧乾燥によ
り得られた粒子は必要に応じて洗浄され、洗浄後は再び
乾燥または乾燥焼成される。The catalyst composition of the present invention is prepared by adding the above-mentioned crystalline aluminosilicate zeolite and activated clay to the above-mentioned inorganic oxide matrix precursor such as silica hydrosol or silica-alumina hydrosol and dispersing the mixture uniformly. The resulting mixture slurry can be produced by a usual method of spray drying. The particles obtained by spray drying are washed as necessary, and after the washing, they are dried or fired again.
【0021】本発明の触媒組成物は、ニッケル、バナジ
ウムなどの金属汚染物質含有重質炭化水素の接触分解で
使用するのに好適であるが、金属汚染物質を含有しない
炭化水素の接触分解にも使用可能であり、灯・軽油から
高沸点の脱れき油にいたるまでの広範囲の石油留分の接
触分解に利用することができる。該触媒組成物を使用し
た接触分解では、通常の接触分解条件を採用することが
できる。The catalyst composition of the present invention is suitable for the catalytic cracking of heavy hydrocarbons containing metal contaminants such as nickel and vanadium, but is also suitable for the catalytic cracking of hydrocarbons containing no metal pollutants. It can be used and can be used for catalytic cracking of a wide range of petroleum fractions, from lamps and light oils to high boiling degreasing oils. In the catalytic cracking using the catalyst composition, ordinary catalytic cracking conditions can be adopted.
【0022】[0022]
【実施例】以下に実施例を示し具体的に本発明を説明す
るが、これらのものに本発明が限定されるものではな
い。以下の実施例、比較例には市販の活性白土を使用し
た。その活性白土の性状は表1に示す。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, commercially available activated clay was used. Table 1 shows the properties of the activated clay.
【0023】[0023]
【表1】 活性白土タイプ1から5には、SiO2、Al2O3、M
gOの成分の他に、いずれもFe2O3および少量のNa
2O、K2O、TiO2、CaOが含まれていた。[Table 1] Activated clay types 1 to 5 include SiO 2 , Al 2 O 3 , M
In addition to the components of gO, all of them contain Fe 2 O 3 and a small amount
It contained 2 O, K 2 O, TiO 2 , and CaO.
【0024】実施例1 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
875g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および表1に示す性状の活性白土
タイプ1を125g(乾燥基準)加えて混合スラリーを
調製し、この混合スラリーを噴霧乾燥して微小球状粒子
を得た。ついでこの微小球状粒子を洗浄し、乾燥して本
発明の接触分解用触媒組成物を得た。この接触分解用触
媒組成物は、活性アルミナを10重量%、NH4Yゼオ
ライトを30重量%、活性白土タイプ1を5重量%含有
し、その平均粒径は63μであった。この接触分解用触
媒組成物をAとする。触媒の性状は表2に示した。Example 1 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
875 g (dry basis) of kaolin clay, 250 g (dry basis) of activated alumina, and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 125 g (dry basis) of activated clay type 1 having the properties shown in Table 1 were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. This catalytic composition for catalytic cracking contained 10% by weight of activated alumina, 30% by weight of NH 4 Y zeolite, and 5% by weight of activated clay type 1 and had an average particle diameter of 63 μm. This catalytic cracking catalyst composition is designated as A. The properties of the catalyst are shown in Table 2.
【0025】実施例2 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
875g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ2(表1参
照)を125g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して本発明
の接触分解用触媒組成物を得た。この接触分解用触媒組
成物は、活性アルミナを10重量%、NH4Yゼオライ
トを30重量%、活性白土タイプ2を5重量%含有し、
その平均粒径は63μであった。この接触分解用触媒組
成物をBとする。触媒の性状は表2に示した。Example 2 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
875 g (dry basis) of kaolin clay, 250 g (dry basis) of activated alumina, and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 125 g (dry basis) of activated clay type 2 (see Table 1) were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. This catalytic composition for catalytic cracking contains 10% by weight of activated alumina, 30% by weight of NH 4 Y zeolite, and 5% by weight of activated clay type 2;
Its average particle size was 63μ. This catalytic composition for catalytic cracking is referred to as B. The properties of the catalyst are shown in Table 2.
【0026】実施例3 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
750g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ2(表1参
照)を250g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して本発明
の接触分解用触媒組成物を得た。この接触分解用触媒組
成物は、活性アルミナを10重量%、NH4Yゼオライ
トを30重量%、活性白土タイプ2を10重量%含有
し、その平均粒径は62μであった。この接触分解用触
媒組成物をCとする。触媒の性状は表2に示した。Example 3 12.5% by weight of SiO 2 prepared by adding water glass to sulfuric acid
750 g of kaolin clay (dry basis), 250 g of activated alumina (dry basis), and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 250 g (dry basis) of activated clay type 2 (see Table 1) were added to prepare a mixed slurry, and the mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. The catalytic composition for catalytic cracking contained 10% by weight of activated alumina, 30% by weight of NH 4 Y zeolite, and 10% by weight of activated clay type 2 and had an average particle size of 62 μm. This catalytic cracking catalyst composition is designated as C. The properties of the catalyst are shown in Table 2.
【0027】実施例4 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
500g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ2(表1参
照)を500g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して本発明
の接触分解用触媒組成物を得た。この接触分解用触媒組
成物は、活性アルミナを10重量%、NH4Yゼオライ
トを30重量%、活性白土タイプ2を20重量%含有
し、その平均粒径は62μであった。この接触分解用触
媒組成物をDとする。触媒の性状は表2に示した。Example 4 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
500 g of kaolin clay (dry basis), 250 g of activated alumina (dry basis) and 4000 g of ammonium ion-exchanged Y at a conversion rate of 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 500 g (dry basis) of activated clay type 2 (see Table 1) were added to prepare a mixed slurry, and the mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. This catalytic composition for catalytic cracking contained 10% by weight of activated alumina, 30% by weight of NH 4 Y zeolite, and 20% by weight of activated clay type 2 and had an average particle size of 62 μm. This catalytic cracking catalyst composition is designated as D. The properties of the catalyst are shown in Table 2.
【0028】実施例5 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
875g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ3(表1参
照)を125g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して本発明
の接触分解用触媒組成物を得た。この接触分解用触媒組
成物は、活性アルミナを10重量%、NH4Yゼオライ
トを30重量%、活性白土タイプ3を5重量%含有し、
その平均粒径は62μであった。この接触分解用触媒組
成物をEとする。触媒の性状は表3に示した。Example 5 12.5% by weight SiO 2 prepared by adding water glass to sulfuric acid
875 g (dry basis) of kaolin clay, 250 g (dry basis) of activated alumina, and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 125 g (dry basis) of activated clay type 3 (see Table 1) were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition of the present invention. This catalytic composition for catalytic cracking contains 10% by weight of activated alumina, 30% by weight of NH 4 Y zeolite, and 5% by weight of activated clay type 3;
Its average particle size was 62μ. This catalytic cracking catalyst composition is designated as E. The properties of the catalyst are shown in Table 3.
【0029】比較例1 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
1000g(乾燥基準)、活性アルミナ250g(乾燥
基準)、交換率90%でアンモニウムイオン交換された
Y型結晶性アルミノシリケート(NH4Yゼオライト)
750g(乾燥基準)加えて混合スラリーを調製し、こ
の混合スラリーを噴霧乾燥して微小球状粒子を得た。つ
いでこの微小球状粒子を洗浄し、乾燥して活性白土を含
まない接触分解用触媒組成物を得た。この接触分解用触
媒組成物は、活性アルミナを10重量%、NH4Yゼオ
ライトを30重量%含有し、その平均粒径は63μであ
った。この接触分解用触媒組成物をFとする。触媒の性
状は表3に示した。Comparative Example 1 12.5% by weight of SiO 2 prepared by adding water glass to sulfuric acid
1000 g of kaolin clay (dry basis), 250 g of activated alumina (dry basis) in 4000 g of silica hydrosol containing 2 and ammonium ion-exchanged Y-type crystalline aluminosilicate (NH 4 Y zeolite) at an exchange rate of 90%
750 g (dry basis) was added to prepare a mixed slurry, and the mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking-free catalytic composition containing no activated clay. This catalytic composition for catalytic cracking contained 10% by weight of activated alumina and 30% by weight of NH 4 Y zeolite, and had an average particle size of 63 μm. This catalytic cracking catalyst composition is designated as F. The properties of the catalyst are shown in Table 3.
【0030】比較例2 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
875g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ4(表1参
照)を125g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して接触分
解用触媒組成物を得た。この接触分解用触媒組成物は、
活性アルミナを10重量%、NH4Yゼオライトを30
重量%、活性白土タイプ4を5重量%含有し、その平均
粒径は63μであった。この接触分解用触媒組成物をG
とする。触媒の性状は表3に示した。Comparative Example 2 12.5% by weight of SiO 2 prepared by adding water glass to sulfuric acid
875 g (dry basis) of kaolin clay, 250 g (dry basis) of activated alumina, and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 125 g (dry basis) of activated clay type 4 (see Table 1) were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition. This catalytic composition for catalytic cracking,
10% by weight of activated alumina and 30% of NH 4 Y zeolite
5% by weight of activated clay type 4 and an average particle size of 63 μm. This catalytic composition for catalytic cracking is called G
And The properties of the catalyst are shown in Table 3.
【0031】比較例3 水硝子を硫酸に加えて調製した12.5重量%のSiO
2を含むシリカヒドロゾル4000gにカオリンクレー
875g(乾燥基準)、活性アルミナ250g(乾燥基
準)、交換率90%でアンモニウムイオン交換されたY
型結晶性アルミノシリケート(NH4Yゼオライト)7
50g(乾燥基準)、および活性白土タイプ5(表1参
照)を125g(乾燥基準)加えて混合スラリーを調製
し、この混合スラリーを噴霧乾燥して微小球状粒子を得
た。ついでこの微小球状粒子を洗浄し、乾燥して接触分
解用触媒組成物を得た。この接触分解用触媒組成物は、
活性アルミナを10重量%、NH4Yゼオライトを30
重量%、活性白土タイプ5を5重量%含有し、その平均
粒径は63μであった。この接触分解用触媒組成物をH
とする。触媒の性状は表3に示した。Comparative Example 3 12.5% by weight of SiO 2 prepared by adding water glass to sulfuric acid
875 g (dry basis) of kaolin clay, 250 g (dry basis) of activated alumina, and ammonium ion-exchanged Y at an exchange rate of 90% are added to 4000 g of silica hydrosol containing 2
-Type crystalline aluminosilicate (NH 4 Y zeolite) 7
50 g (dry basis) and 125 g (dry basis) of activated clay type 5 (see Table 1) were added to prepare a mixed slurry, and this mixed slurry was spray-dried to obtain fine spherical particles. Then, the fine spherical particles were washed and dried to obtain a catalytic cracking catalyst composition. This catalytic composition for catalytic cracking,
10% by weight of activated alumina and 30% of NH 4 Y zeolite
5% by weight of activated clay type 5 and an average particle size of 63 μm. This catalytic cracking catalyst composition is treated with H
And The properties of the catalyst are shown in Table 3.
【0032】[0032]
【表2】 [Table 2]
【0033】[0033]
【表3】 [Table 3]
【0034】実施例6〈性能試験〉 実施例および比較例で調製した触媒A、B、C、D、
E、F、G、HはASTM MAT(小型活性試験装
置)により性能を評価した。MATの評価条件は次の通
り。 原料油:脱硫減圧軽油(60%)と脱硫常圧残さ油(4
0%)の混合油 重量空間速度:40hr-1 触媒/油:5重量比 反応温度:510℃Example 6 <Performance Test> The catalysts A, B, C, D and D prepared in Examples and Comparative Examples
E, F, G and H were evaluated for performance by ASTM MAT (small activity test device). The MAT evaluation conditions are as follows. Feedstock: desulfurized vacuum gas oil (60%) and desulfurized atmospheric residue (4
0%) mixed oil Weight hourly space velocity: 40 hr -1 catalyst / oil: 5 weight ratio Reaction temperature: 510 ° C
【0035】性能を評価するにあたり、各触媒にはバナ
ジウム、ニッケルを各4000ppm、2000ppm
沈着させ、ついでスチーミングして擬平衡化処理を行っ
た。具体的には、各触媒を予め600℃で焼成した後、
所定量のナフテン酸バナジウム、ナフテン酸ニッケル溶
液を吸収させ、次いて110℃で乾燥後、600℃で
1.5時間焼成し、次いで780℃で13時間スチーム
処理焼成した後、性能試験に供した。測定結果を表4〜
5に示した。In evaluating the performance, each catalyst contains 4000 ppm and 2000 ppm of vanadium and nickel, respectively.
They were deposited and then steamed to give a pseudo-equilibrium treatment. Specifically, after firing each catalyst at 600 ° C. in advance,
A predetermined amount of vanadium naphthenate and nickel naphthenate solution were absorbed, then dried at 110 ° C., baked at 600 ° C. for 1.5 hours, and then steamed at 780 ° C. for 13 hours, and then subjected to a performance test. . Table 4 ~
5 is shown.
【0036】[0036]
【表4】 *1)転化率:100−(LCO+HCO) *2)ガソリン沸点範囲:C5−204℃*9 *3)LCO沸点範囲:204℃−343℃ *4)HCO沸点範囲:343℃以上 *5)K(二次反応速度定数)=転化率/(100−転化率) *6)水素選択性を表わす *7)コーク選択性を表わす *8)ボトム分解性を表わす *9)C5−204℃は炭素数5の炭化水素から沸点204℃の 炭化水素までを含んでいるという意味である。[Table 4] * 1) conversion: 100- (LCO + HCO) * 2) gasoline boiling range: C 5 -204 ℃ * 9 * 3) LCO boiling range: 204 ℃ -343 ℃ * 4) HCO boiling range: 343 ° C. or higher * 5) K (secondary reaction rate constant) = conversion / (100-conversion) * 6) represents a hydrogen selective * 7) represents the coke selectivity * 8) represents the bottom degradable * 9) C 5 -204 ° C. Means that it contains from hydrocarbons having 5 carbon atoms to hydrocarbons having a boiling point of 204 ° C.
【0037】[0037]
【表5】 *1)転化率:100−(LCO+HCO) *2)ガソリン沸点範囲:C5−204℃ *3)LCO沸点範囲:204℃−343℃ *4)HCO沸点範囲:343℃以上 *5)K(二次反応速度定数)=転化率/(100−転化率) *6)水素選択性を表わす *7)コーク選択性を表わす *8)ボトム分解性を表わす[Table 5] * 1) conversion: 100- (LCO + HCO) * 2) gasoline boiling range: C 5 -204 ℃ * 3) LCO boiling range: 204 ℃ -343 ℃ * 4) HCO boiling range: 343 ° C. or higher * 5) K ( Second-order reaction rate constant) = conversion / (100-conversion) * 6) Indicates hydrogen selectivity * 7) Indicates coke selectivity * 8) Indicates bottom decomposition
【0038】以上の測定結果によれば、本発明の活性白
土含有触媒A、B、C、DおよびEはニッケルおよびバ
ナジウムを高濃度で含有した高温での水熱処理条件にお
いて高い転化率を示した。このことは本発明の触媒が通
常の触媒Fおよび活性白土中のMgO量が3.0wt%
を越えて多量に含有する活性白土を使用した触媒G、H
に比べて耐メタル性および耐水熱性に優れていることが
分る。さらに転化率が高いことにも拘らず水素生成量、
コーク生成量およびボトム生成量が低く、ライトサイク
ルオイル収率が高い結果が得られた。このことは、弱い
固体酸を有する活性白土が高分子炭化水素の粗分解に貢
献し、コーク生成量を低く保ちつつ、ボトムの分解を促
進した結果であるといえる。According to the above measurement results, the activated clay-containing catalysts A, B, C, D and E of the present invention exhibited high conversion under hydrothermal treatment conditions at high temperatures containing nickel and vanadium at high concentrations. . This indicates that the catalyst of the present invention has a MgO content of 3.0 wt% in the ordinary catalyst F and activated clay.
G, H using activated clay containing a large amount beyond
It can be seen that they are superior in metal resistance and hydrothermal resistance as compared with. Despite the high conversion, the amount of hydrogen generated,
The results showed that the amount of coke and the amount of bottom formed were low and the light cycle oil yield was high. This can be said to be the result of the fact that activated clay having a weak solid acid contributed to the crude decomposition of the high molecular hydrocarbons, and promoted the decomposition of the bottom while keeping the amount of coke low.
【0039】[0039]
【結果】本発明の触媒を炭化水素、特に重質炭化水素の
接触分解に用いると、コーク、ドライガスの生成量が少
なく、ガソリンおよびライトサイクルオイル(LCO)
等の液収率が高い。[Results] When the catalyst of the present invention is used for catalytic cracking of hydrocarbons, especially heavy hydrocarbons, the amount of coke and dry gas generated is small, and gasoline and light cycle oil (LCO)
Liquid yield is high.
Claims (3)
よびMgO量が0.5〜3wt%の範囲にある活性白土
とを含有する炭化水素接触分解用触媒組成物。1. A catalyst composition for catalytic cracking of hydrocarbons comprising crystalline aluminosilicate zeolite and activated clay having an amount of MgO in the range of 0.5 to 3 wt%.
のモル比が0.01〜0.10の範囲にある請求項1記
載の炭化水素接触分解用触媒組成物。2. MgO / SiO 2 in said activated clay
The catalyst composition for catalytic cracking of hydrocarbons according to claim 1, wherein the molar ratio is in the range of 0.01 to 0.10.
〜400m2/g、600オングストローム以下の細孔
容積が0.2〜0.5ml/gの範囲にある請求項1ま
たは2記載の炭化水素接触分解用触媒組成物。3. The activated clay has a specific surface area of 150.
The catalyst composition for catalytic cracking of hydrocarbons according to claim 1 or 2, wherein the pore volume of 400400 m 2 / g and 600 Å or less is in the range of 0.2-0.5 ml / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16184397A JP3586544B2 (en) | 1997-06-04 | 1997-06-04 | Catalyst composition for catalytic cracking of hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16184397A JP3586544B2 (en) | 1997-06-04 | 1997-06-04 | Catalyst composition for catalytic cracking of hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10337475A true JPH10337475A (en) | 1998-12-22 |
JP3586544B2 JP3586544B2 (en) | 2004-11-10 |
Family
ID=15743005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16184397A Expired - Lifetime JP3586544B2 (en) | 1997-06-04 | 1997-06-04 | Catalyst composition for catalytic cracking of hydrocarbons |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3586544B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150036718A (en) * | 2012-07-23 | 2015-04-07 | 더블유.알. 그레이스 앤드 캄파니-콘. | Magnesium stabilized ultra low soda cracking catalysts |
JP2020520798A (en) * | 2017-05-17 | 2020-07-16 | ビーエーエスエフ コーポレーション | Bottom-up grading and low coke fluid catalytic cracking catalyst |
-
1997
- 1997-06-04 JP JP16184397A patent/JP3586544B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150036718A (en) * | 2012-07-23 | 2015-04-07 | 더블유.알. 그레이스 앤드 캄파니-콘. | Magnesium stabilized ultra low soda cracking catalysts |
JP2015528744A (en) * | 2012-07-23 | 2015-10-01 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | Magnesium stabilized ultra-low soda decomposition catalyst |
JP2020520798A (en) * | 2017-05-17 | 2020-07-16 | ビーエーエスエフ コーポレーション | Bottom-up grading and low coke fluid catalytic cracking catalyst |
US11471862B2 (en) | 2017-05-17 | 2022-10-18 | Basf Corporation | Bottoms upgrading and low coke fluid catalytic cracking catalyst |
US11904302B2 (en) | 2017-05-17 | 2024-02-20 | Basf Corporation | Bottoms upgrading and low coke fluid catalytic cracking catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP3586544B2 (en) | 2004-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5051385A (en) | Monodispersed mesoporous catalyst matrices and FCC catalysts thereof | |
US4968405A (en) | Fluid catalytic cracking using catalysts containing monodispersed mesoporous matrices | |
US5601699A (en) | Method for cracking hydrocarbons | |
CA1183828A (en) | Carbo-metallic oil conversion process and catalysts | |
JP5706429B2 (en) | Improved heavy metal capture promoter for FCC process | |
US5126298A (en) | Cracking catalysts comprising clays with different particle sizes, and method of preparing and using the same | |
US4588496A (en) | Process for the catalytic cracking of metals-containing feedstocks | |
US4707461A (en) | Vanadium passivation in a hydrocarbon catalytic cracking process | |
JP2554706B2 (en) | Method for catalytic cracking of feedstock containing high levels of nitrogen | |
JPH0513708B2 (en) | ||
US4919787A (en) | Metal passivating agents | |
JPS62275192A (en) | Catalytic cracking of nitrogen-containing raw oil | |
JP4689472B2 (en) | Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method | |
CN101405078A (en) | Cracking catalyst, process for preparation thereof, and process for catalytic cracking of hydrocarbon oil | |
US5472922A (en) | Manufacture of improved catalyst | |
JP2000514863A (en) | Catalysts for optimal resid cracking of heavy feedstocks. | |
US5174890A (en) | Catalytic cracking using a metals scavenging composition | |
AU643736B2 (en) | Dual component cracking catalyst and process for vanadium passivation and improved sulfur tolerance | |
JPS63107748A (en) | Catalyst composition and manufacture and application thereof | |
US4920087A (en) | Vanadium scavenging compositions | |
JP3527036B2 (en) | Method for producing catalyst composition for catalytic cracking of hydrocarbons | |
JP3586544B2 (en) | Catalyst composition for catalytic cracking of hydrocarbons | |
JP5283745B2 (en) | Process for producing desulfurization catalyst for catalytic cracking gasoline | |
JPS6128376B2 (en) | ||
JP2005270851A (en) | Catalyst composition for increasing octane number of gasoline and/or lower olefin, and fluidized catalytic cracking process of hydrocarbon using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040809 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080813 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090813 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100813 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110813 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120813 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130813 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |