JPH1033697A - Charged particle beam radiating device and medical treatment device - Google Patents
Charged particle beam radiating device and medical treatment deviceInfo
- Publication number
- JPH1033697A JPH1033697A JP19457096A JP19457096A JPH1033697A JP H1033697 A JPH1033697 A JP H1033697A JP 19457096 A JP19457096 A JP 19457096A JP 19457096 A JP19457096 A JP 19457096A JP H1033697 A JPH1033697 A JP H1033697A
- Authority
- JP
- Japan
- Prior art keywords
- charged particle
- particle beam
- electromagnetic field
- scatterer
- shield
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Radiation-Therapy Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、荷電粒子線治療装
置の荷電粒子線照射装置、特に照射野形成装置にに関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam irradiation apparatus for a charged particle beam therapy apparatus, and more particularly to an irradiation field forming apparatus.
【0002】[0002]
【従来の技術】この種荷電粒子線照射装置では、照射野
拡大装置で広く平坦な照射線量分布を実現し、その下流
でコリメータによって照射範囲を限定する。2. Description of the Related Art In this kind of charged particle beam irradiation apparatus, a wide and flat irradiation dose distribution is realized by an irradiation field expanding apparatus, and an irradiation range is limited by a collimator downstream of the irradiation field expansion apparatus.
【0003】従来の荷電粒子線照射野拡大装置として
は、Review of Scientific Instruments Vol.64 No. 8
(1993年8月)の第2055頁から第2122頁に
おいて論じられているように、加速器からの荷電粒子線
を鉛等の材質の板を通過させて散乱させる方法が利用さ
れている。前記の鉛等の板を散乱体と呼ぶ。散乱体を使
った方法としては、回転する電磁場と散乱体の組み合わ
せによる方法(ウォブラー法)があった。また、Procee
dings NIRS International Seminar on the Applicatio
n of Heavy Ion Accelerator to Radiation Therapy of
Cancer in connection with XXI PTCOG Meeting(19
94年11月)の第100頁から第114頁に記載され
ている、2種類の散乱体を利用した方法もあった。[0003] As a conventional charged particle beam irradiation field expanding apparatus, there is a review of Scientific Instruments Vol. 64 No. 8
As discussed in (August 1993) pp. 2055 to 2122, a method of scattering charged particle beams from an accelerator through a plate made of a material such as lead is used. The plate made of lead or the like is called a scatterer. As a method using a scatterer, there has been a method (wobbler method) using a combination of a rotating electromagnetic field and a scatterer. Also, Procee
dings NIRS International Seminar on the Applicatio
n of Heavy Ion Accelerator to Radiation Therapy of
Cancer in connection with XXI PTCOG Meeting (19
(November 1994), pages 100 to 114, there is also a method using two types of scatterers.
【0004】図10は、従来のウォブラー法による照射
野拡大装置の構成を示す。荷電粒子線ビーム軸に、2組
の偏向手段10,11を設け、90度位相をずらして、
互いに直交する方向にビーム軸を偏向する。前記2組の
偏向手段10,11によって、荷電粒子ビームの進行方
向は、図に示すように楕円を描く。偏向手段の下流に
は、金属性の板(散乱体14)が配置されており、これ
により荷電粒子ビームを散乱させる。FIG. 10 shows the configuration of a conventional irradiation field enlarging apparatus using the wobbling method. Two sets of deflecting means 10 and 11 are provided on the charged particle beam axis, and the phases are shifted by 90 degrees.
The beam axes are deflected in directions orthogonal to each other. By the two sets of deflecting means 10 and 11, the traveling direction of the charged particle beam draws an ellipse as shown in the figure. Downstream of the deflecting means, a metal plate (scatterer 14) is arranged to scatter the charged particle beam.
【0005】図12は、ウォブラー法による照射線量分
布(粒子分布)のグラフを示す。照射中の任意の瞬間に
おける照射線量分布は、散乱体がない場合のビーム軸を
中心とする正規分布(図12中aの曲線)であるが、ビ
ーム軸はウォブラー電磁石によって回転するため、照射
線量の時間平均は平坦になる(図12中bの曲線)。ビ
ーム軸の回転半径と、散乱体14の厚さを調節すること
で、照射線量の空間分布を調節できる。したがって荷電
粒子線治療では、荷電粒子線照射領域をむらなく照射す
るように、ビーム軸の回転半径と散乱体14の厚さ、材
質を設定する。照射範囲外の余分なビームは、コリメー
タで停止させる。FIG. 12 shows a graph of an irradiation dose distribution (particle distribution) by the wobbling method. The irradiation dose distribution at an arbitrary moment during irradiation is a normal distribution centered on the beam axis when there is no scatterer (curve in a in FIG. 12), but since the beam axis is rotated by the wobble electromagnet, the irradiation dose is Is flattened (curve b in FIG. 12). By adjusting the rotation radius of the beam axis and the thickness of the scatterer 14, the spatial distribution of the irradiation dose can be adjusted. Therefore, in the charged particle beam therapy, the radius of rotation of the beam axis and the thickness and material of the scatterer 14 are set so as to uniformly irradiate the charged particle beam irradiation area. Extra beams outside the irradiation range are stopped by the collimator.
【0006】図11は、従来のウォブラー法による照射
野拡大装置の装置構成と、患部位置における荷電粒子ビ
ームの照射線量の空間分布のグラフを示す。偏向手段と
しては、交流電源12、13から90度位相のずれた交
流電力を供給して、互いに直交する方向に交流磁場を発
生する電磁石(ウォブラー電磁石)10、11を使用す
る。正常運転時は、図11A下のように、ビーム軸の回
転中心の周りに平坦な照射線量分布を実現する。粒子線
量の平坦化技術に関しては特開平2−49670号公
報、特開平6−86833号公報等がある。しかし、ウ
ォブラー電磁石の励磁量が小さくなると、ビーム軸の回
転半径が変化し、図11B下のように、照射線量分布が
変化する。FIG. 11 is a graph showing a device configuration of a conventional irradiation field enlarging device using a wobbling method and a spatial distribution of a dose of a charged particle beam at an affected part. As the deflecting means, electromagnets (wobbler electromagnets) 10 and 11 that supply alternating-current power with a 90-degree phase shift from the alternating-current power supplies 12 and 13 to generate alternating magnetic fields in directions orthogonal to each other are used. During normal operation, a flat irradiation dose distribution is realized around the center of rotation of the beam axis as shown in FIG. 11A. Japanese Patent Application Laid-Open Nos. 2-49670 and 6-86833 disclose a technique for flattening the particle dose. However, when the amount of excitation of the wobble electromagnet decreases, the radius of rotation of the beam axis changes, and the irradiation dose distribution changes as shown in the lower part of FIG. 11B.
【0007】図13は、散乱体厚さを一定にして、ビー
ム軸の回転半径を変化させた場合の照射線量の空間分布
(時間平均)を示す。ビーム軸の回転中心から60mmの
範囲で、照射線量分布が平坦になるビーム軸の回転半径
を、R=1.0とした。ウォブラー電磁石の励磁量が半分ま
たは0になると、線量分布はそれぞれ図13中のR=0.
5、R=0のグラフに示した分布になる。R=0でのビーム軸
回転中心付近での照射線量は、正常運転時の約3倍にな
ることがわかる。FIG. 13 shows the spatial distribution (time average) of the irradiation dose when the radius of rotation of the beam axis is changed while keeping the thickness of the scatterer constant. The radius of rotation of the beam axis at which the irradiation dose distribution became flat within a range of 60 mm from the center of rotation of the beam axis was R = 1.0. When the amount of excitation of the wobbler electromagnet is reduced to half or zero, the dose distribution becomes R = 0.
5. The distribution shown in the graph of R = 0. It can be seen that the irradiation dose near the center of rotation of the beam axis at R = 0 is about three times that during normal operation.
【0008】このため、従来の荷電粒子線治療装置で
は、治療計画で計画した照射線量分布を得るために、各
機器が正常に動作していること及び荷電粒子ビームの軌
道、電流、分布が、正常であることを、種々のモニター
で検知していた。そのために、荷電粒子線発生装置から
患部照射までの間に多くの荷電粒子線測定器を配置し、
照射線量、荷電粒子ビーム位置、照射分布等を測定する
ことで、治療装置の運転状況の健全性を診断していた。
また、照射野拡大装置が正常に動作していることを確認
するために、照射野拡大装置の下流に荷電粒子線分布を
測定する多チャンネルの位置計測装置を配置し、照射量
の平坦度を直接測定していた。これら従来の安全対策
は、前記システム健全性診断の情報で機器を制御すると
いう能動的な手法を用いている。For this reason, in the conventional charged particle beam therapy apparatus, in order to obtain the irradiation dose distribution planned in the treatment plan, the normal operation of each device and the trajectory, current, and distribution of the charged particle beam are as follows. Normalness was detected by various monitors. For that purpose, many charged particle beam measuring instruments are arranged between the charged particle beam generator and the irradiation of the affected area,
By measuring the irradiation dose, charged particle beam position, irradiation distribution, etc., the health of the operating condition of the treatment device was diagnosed.
In addition, to confirm that the irradiation field expansion device is operating normally, a multi-channel position measurement device that measures the distribution of charged particle beams is placed downstream of the irradiation field expansion device, and the flatness of the irradiation amount is reduced. It was measured directly. These conventional safety measures use an active method of controlling devices based on the information of the system soundness diagnosis.
【0009】[0009]
【発明が解決しようとする課題】一般に陽子線や重粒子
線による荷電粒子線治療は、線量照射の位置分解能が良
く、患部へ的確に線量照射できるという利点をもつ。ま
た、特に重粒子線においては、線量照射による生物効果
が高いため、放射線感度の低い腫瘍にも高い治療効果が
ある。しかし、患部以外の正常組織への線量照射は、治
療計画時に予測されている最小線量に抑えなければなら
ない。各機器の動作が設計値からずれると、照射線量分
布が変化し、計画通りの治療ができなくなる。Generally, charged particle beam therapy using a proton beam or a heavy particle beam has the advantage that the positional resolution of dose irradiation is good and the dose can be accurately irradiated to an affected part. In addition, in particular, in the case of heavy ion beams, a biological effect due to radiation irradiation is high, so that a tumor with low radiation sensitivity has a high therapeutic effect. However, the dose to normal tissues other than the affected area must be reduced to the minimum dose expected at the time of treatment planning. If the operation of each device deviates from the design value, the irradiation dose distribution changes, and the treatment cannot be performed as planned.
【0010】本発明の目的は、従来のシステムの健全性
診断の情報で機器を制御するという能動的手法に加え
て、更に、システムの健全性が損なわれた場合の線量照
射を防ぎ、安全性をより一層向上させることにある。It is an object of the present invention to provide a conventional method of controlling equipment based on information on system soundness diagnosis, and furthermore, to prevent dose irradiation when the soundness of the system is impaired. Is to be further improved.
【0011】[0011]
【課題を解決するための手段】前記の目的は、ウォブラ
ー法による照射野拡大装置における、荷電粒子線を偏向
するための電磁場発生装置と散乱体の間、もしくは散乱
体の下流、またはそれら両方の位置に、該位置において
電磁場発生装置による偏向後の荷電粒子線のビーム軸と
干渉せず、電磁場発生装置の電磁場の励起状態が正常で
ない場合の荷電粒子線の通過領域と交わる領域に、遮蔽
物を配置したことによって達成される。SUMMARY OF THE INVENTION It is an object of the present invention to provide an apparatus for expanding an irradiation field by the Wobbler method, wherein an electromagnetic field generator for deflecting a charged particle beam and a scatterer, or downstream of the scatterer, or both. At the position, the shield does not interfere with the beam axis of the charged particle beam after being deflected by the electromagnetic field generator at the position and intersects with the passing area of the charged particle beam when the excitation state of the electromagnetic field of the electromagnetic field generator is not normal. Is achieved.
【0012】また、前記の目的は、前記遮蔽物へ流れる
電流量を検出する手段と、該検出信号に基づいて荷電粒
子線照射を制御する手段を設けたことによって達成され
る。Further, the above object is achieved by providing means for detecting the amount of current flowing to the shield, and means for controlling charged particle beam irradiation based on the detection signal.
【0013】前記の手段よれば、電磁場発生装置の励起
状態が正常である場合は、偏向後の荷電粒子線は遮蔽物
と干渉せず、予定された線量の荷電粒子線を患部に照射
する。しかし、電磁場発生装置を励起しないなどの励起
状態が正常でない場合は、荷電粒子線の通過領域が変化
し、変化した領域には遮蔽物が存在し衝突することによ
って荷電粒子線は通過を遮断される。これにより患部へ
は的確に線量照射されるが、患部以外の正常組織への照
射は抑えられる。According to the above-described means, when the excited state of the electromagnetic field generator is normal, the charged particle beam after deflection does not interfere with the shield and irradiates the affected part with a predetermined dose of the charged particle beam. However, when the excitation state is not normal, such as when the electromagnetic field generator is not excited, the passing area of the charged particle beam changes, and a shield exists in the changed area. You. Thereby, the dose is accurately irradiated to the affected part, but the irradiation to normal tissues other than the affected part is suppressed.
【0014】また、遮蔽物を金属製とし、これに荷電粒
子線が交叉したときに流れる電流量を検出することによ
って荷電粒子線の通過領域等の変化状態が的確に検出で
きる。従って、この検出信号に基づいて荷電粒子線照射
を制御することにより正常でない場合の患部以外への照
射を確実に防ぐことができる。Further, the shield is made of metal, and by detecting the amount of current flowing when the charged particle beam crosses the metal, it is possible to accurately detect the change state of the passage area of the charged particle beam. Therefore, by controlling the charged particle beam irradiation based on this detection signal, it is possible to surely prevent the irradiation to a part other than the affected part when the irradiation is not normal.
【0015】[0015]
【発明の実施の形態】以下本発明の実施の形態を図面に
より説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0016】図2は、本発明第1の実施形態による荷電
粒子線治療装置の構成を示す。加速器システム1は、イ
オン源2、前段加速器3、シンクロトロン4からなり、
治療に必要な高エネルギー粒子ビームを発生する。シン
クロトロンで加速された粒子ビームは、遅い取り出し法
と呼ばれる手法を用いて、約0.5秒間の長さを持つパ
ルスビームとしてシンクロトロン外へ取り出され、取り
出された粒子ビームは、照射野拡大装置5、コリメータ
6によってビーム形状を患部形状に成形される。また、
レンジシフタ7、リッジフィルタ8によって、エネルギ
ー分布を調節され、調節された荷電粒子ビームは、患者
9に照射される。なお、各機器は、治療計画で計画され
た照射領域の照射線量が高くなるように設定されてい
る。FIG. 2 shows the configuration of the charged particle beam therapy system according to the first embodiment of the present invention. The accelerator system 1 comprises an ion source 2, a pre-accelerator 3, and a synchrotron 4.
Generates high energy particle beams required for treatment. The particle beam accelerated by the synchrotron is extracted out of the synchrotron as a pulse beam having a length of about 0.5 seconds using a technique called slow extraction, and the extracted particle beam is expanded in the irradiation field The beam shape is shaped into the affected part shape by the device 5 and the collimator 6. Also,
The energy distribution is adjusted by the range shifter 7 and the ridge filter 8, and the adjusted charged particle beam is irradiated to the patient 9. Note that each device is set so that the irradiation dose in the irradiation area planned in the treatment plan is high.
【0017】図1は、本発明の第1の実施形態の照射野
拡大装置5の装置構成と、患部位置における荷電粒子ビ
ームの照射線量の空間分布のグラフを示す。FIG. 1 is a graph showing the configuration of the irradiation field enlarging device 5 according to the first embodiment of the present invention and the spatial distribution of the dose of the charged particle beam at the affected part.
【0018】ウォブラー電磁石10、11の下流かつ散
乱体14の上流に、遮蔽物15を配置する。図3に遮蔽
物15をビーム軸上流側から見た図を示す。遮蔽物15
は、正常運転時のビーム通過領域に干渉しないよう偏向
した楕円筒形荷電粒子線のビーム軸形状のスリット16
を形成した円柱体で、正常運転時は、荷電粒子線はスリ
ット16を通過し、従来と同様の荷電粒子分布を得るこ
とができる(図1A下)。しかし、ウォブラー電磁石の
健全性が損なわれ、励磁量が小さくなってビーム軸がず
れると、ビームは遮蔽物15に衝突する。遮蔽物15の
ビーム進行方向の厚さは、治療に利用する荷電粒子ビー
ムの最大飛程より厚くする。すると、遮蔽物15に衝突
したビームは完全に停止する(図1B下)。A shield 15 is arranged downstream of the wobbler electromagnets 10 and 11 and upstream of the scatterer 14. FIG. 3 shows the shield 15 as viewed from the beam axis upstream side. Shield 15
Is a beam axis-shaped slit 16 of an elliptical cylindrical charged particle beam deflected so as not to interfere with the beam passage area during normal operation.
During normal operation, the charged particle beam passes through the slit 16 and can obtain the same charged particle distribution as in the related art (FIG. 1A, bottom). However, if the soundness of the wobble electromagnet is impaired, the excitation amount is reduced, and the beam axis shifts, the beam collides with the shield 15. The thickness of the shield 15 in the beam traveling direction is set to be larger than the maximum range of the charged particle beam used for the treatment. Then, the beam that has collided with the shield 15 stops completely (FIG. 1B, lower).
【0019】図5Aは、ウォブラー電磁石の励磁量が大
きくなった場合に、ビーム19が遮蔽物15に衝突する
領域を示す。また図5Bは、ウォブラー電磁石の励磁量
が小さくなった場合に、ビーム19が遮蔽物15に衝突
する領域を示す。これらの場合は、ビームが完全に停止
するため、照射は行われない。図6Aは、2台のウォブ
ラー電磁石のうち1台の励磁量が小さくなった場合のビ
ーム19が遮蔽物15に衝突する領域を示し、図7A
は、2台のウォブラー電磁石のうち1台の励磁量が大き
くなった場合のビーム19が遮蔽物に衝突する領域を示
し、図8Aに、2台のウォブラー電磁石の磁場強度の時
間変化の位相が90度からずれた場合のビーム19が遮
蔽物に衝突する領域を示す。いずれの場合も遮蔽物15
によって、大部分のビームを停止するため、照射量は小
さくなる。FIG. 5A shows a region where the beam 19 collides with the shield 15 when the amount of excitation of the wobble electromagnet increases. FIG. 5B shows a region where the beam 19 collides with the shield 15 when the amount of excitation of the wobble electromagnet is reduced. In these cases, no irradiation is performed because the beam is completely stopped. FIG. 6A shows a region where the beam 19 collides with the shield 15 when the excitation amount of one of the two wobble electromagnets is reduced, and FIG.
FIG. 8A shows a region where the beam 19 collides with the shield when the excitation amount of one of the two wobble electromagnets is increased. FIG. 8A shows the phase of the time change of the magnetic field strength of the two wobble electromagnets. The area where the beam 19 collides with the shield when the angle is shifted from 90 degrees is shown. Shield 15 in each case
As a result, most of the beams are stopped, so that the irradiation amount is reduced.
【0020】図6B、図7B、図8Bは、それぞれの場
合の照射線量分布を等高線図で表わす。従来の遮蔽物が
ない構成での照射線量分布を、図6C、図7C、図8C
に示す。また、正常動作時のビーム通過領域と照射線量
分布を、図4A、図4Bにそれぞれ示す。FIGS. 6B, 7B, and 8B show the irradiation dose distribution in each case in a contour map. FIG. 6C, FIG. 7C, and FIG.
Shown in 4A and 4B show the beam passage area and the irradiation dose distribution during normal operation.
【0021】図9は、本発明の第2の実施形態による荷
電粒子線治療装置の装置構成を示す。鉛等の金属製の遮
蔽物15に電流計18を接続し、電流計の計測値(i)
を判断装置20に出力する。遮蔽物15にビームが当る
と正常時よりも大きな電流が流れるから、これを判断装
置20は、あらかじめ設定し、記憶装置21に記憶した
許容範囲(i0)を超える電流が遮蔽物15に流れた場
合、ビームが遮蔽物15に衝突していると判断し、信号
をシンクロトロン運転制御部22へ出力する。運転制御
部22はその信号を受け、システムの異常を知らせる警
告を表示装置23に示すとともに、ビームの出射を停止
する。FIG. 9 shows the configuration of a charged particle beam therapy system according to a second embodiment of the present invention. An ammeter 18 is connected to a shield 15 made of metal such as lead, and the measured value (i) of the ammeter
Is output to the determination device 20. When the beam hits the shield 15, a larger current flows than in the normal state. Therefore, the determination device 20 sets a current in advance and a current exceeding the allowable range (i0) stored in the storage device 21 flows to the shield 15. In this case, it is determined that the beam has collided with the shield 15, and a signal is output to the synchrotron operation control unit 22. Upon receiving the signal, the operation control unit 22 displays a warning notifying the abnormality of the system on the display device 23 and stops emitting the beam.
【0022】このように誤った照射が行なわれる場合に
は照射を停止でき、停止されるまでの照射量を減らすこ
とができる。In the case where erroneous irradiation is performed as described above, irradiation can be stopped, and the amount of irradiation until the irradiation is stopped can be reduced.
【0023】また、制御はシンクロトロン制御に限ら
ず、電磁場発生装置の制御によりビームの偏向を修正す
ることもできる。The control is not limited to the synchrotron control, and the deflection of the beam can be corrected by controlling the electromagnetic field generator.
【0024】また、電流の検出及び制御をすることによ
って、遮蔽物の厚さ、形状等が充分でなくも正常でない
ときの照射停止をすることができる。Further, by detecting and controlling the current, the irradiation can be stopped when the thickness, shape, etc., of the shield are not sufficient or abnormal.
【0025】なお、遮蔽物15は、散乱体14の下流、
ビーム通過領域と干渉しない位置に配置してもよい。The shield 15 is located downstream of the scatterer 14,
You may arrange | position at the position which does not interfere with a beam passage area.
【0026】また、本発明の照射野形成装置は、荷電粒
子線発生装置がシンクロトロン以外の場合にも、利用で
きる。The irradiation field forming apparatus of the present invention can also be used when the charged particle beam generator is other than a synchrotron.
【0027】[0027]
【発明の効果】以上のように本発明によれば、ウォブラ
ー電磁石が正常に動作している状態では、治療に必要な
照射領域をむらなく照射し、ウォブラー電磁石の健全性
が損なわれた場合は、患者への線量照射を低減する。こ
れによって、荷電粒子線治療装置の安全性が向上する。As described above, according to the present invention, when the wobble electromagnet is operating normally, the irradiation area required for treatment is evenly irradiated, and when the soundness of the wobble electromagnet is impaired. , Reduce the dose exposure to the patient. Thereby, the safety of the charged particle beam therapy system is improved.
【0028】また、システムが正常に運転し、荷電粒子
ビーム軸が設計値通りの軌道をとっている状態では、治
療に必要な照射領域をむらなく照射し、システムの健全
性が損なわれ、荷電粒子ビーム軸が設計値の軌道からず
れた場合は、患者への線量照射を低減する。また、シス
テムの異常は、ただちに加速器運転者に示され、荷電粒
子線治療が停止される。これによって、荷電粒子線治療
装置の安全性を向上させることができる。In a state where the system operates normally and the charged particle beam axis follows a trajectory as designed, the irradiation area required for treatment is evenly irradiated, and the soundness of the system is impaired. When the particle beam axis deviates from the design value trajectory, the dose irradiation to the patient is reduced. In addition, the abnormality of the system is immediately indicated to the accelerator driver, and the charged particle beam therapy is stopped. Thereby, the safety of the charged particle beam therapy system can be improved.
【図1】本発明の第1の実施形態の照射野拡大装置の装
置構成と照射線量の空間分布図。FIG. 1 is a diagram showing a device configuration of an irradiation field enlarging device and a spatial distribution of irradiation dose according to a first embodiment of the present invention.
【図2】本発明の第1の実施形態のシステム構成図。FIG. 2 is a system configuration diagram according to the first embodiment of the present invention.
【図3】ビーム軸上流部から見た遮蔽物構造図。FIG. 3 is a block diagram of a shield viewed from an upstream part of a beam axis.
【図4】正常動作時のビームの通過領域と照射量の分布
図。FIG. 4 is a distribution diagram of a beam passing area and a dose in a normal operation.
【図5】電磁石の健全性が損なわれた場合のビームの通
過領域図。FIG. 5 is a diagram showing a beam passing area when the soundness of the electromagnet is impaired.
【図6】電磁石の健全性が損なわれた場合のビームの通
過領域と照射線量分布図。FIG. 6 is a diagram showing a beam passage area and an irradiation dose distribution when the soundness of the electromagnet is impaired.
【図7】電磁石の健全性が損なわれた場合のビームの通
過領域と照射線量分布図。FIG. 7 is a diagram showing a beam passage area and an irradiation dose distribution when the soundness of the electromagnet is impaired.
【図8】電磁石の健全性が損なわれた場合のビームの通
過領域と照射線量分布図。FIG. 8 is a diagram showing a beam passage area and an irradiation dose distribution when the soundness of the electromagnet is impaired.
【図9】本発明の第2の実施形態のシステム構成図。FIG. 9 is a system configuration diagram according to a second embodiment of the present invention.
【図10】従来の照射野拡大装置の装置構成図。FIG. 10 is a configuration diagram of a conventional irradiation field enlarging device.
【図11】従来のウォブラー法による照射野拡大装置の
装置構成と照射線量の空間分布図。FIG. 11 is a diagram showing a device configuration and a spatial distribution of irradiation dose of a conventional irradiation field expansion device using a wobbling method.
【図12】ウォブラー法による照射線量分布図。FIG. 12 is an irradiation dose distribution diagram by the wobbling method.
【図13】ビーム軸の回転半径を変化させた場合の照射
線量の空間分布の変化説明図。FIG. 13 is a diagram illustrating a change in the spatial distribution of the irradiation dose when the radius of gyration of the beam axis is changed.
1…加速器システム、2…イオン源、3…前段加速器、
4…シンクロトロン、5…照射野拡大装置、6…コリメ
ータ、7…レンジシフタ、8…リッジフィルタ、9…患
者、10、11…ウォブラー電磁石、12、13…交流
電源、14…散乱体、15…遮蔽物、16…スリット、
18…電流計、19…ビーム、20…判断装置、21…
記憶装置、22…シンクロトロン運転制御部、23…表
示装置。1. Accelerator system, 2. Ion source, 3. Pre-accelerator,
4 synchrotron, 5 irradiation field expander, 6 collimator, 7 range shifter, 8 ridge filter, 9 patient, 11 wobbler electromagnet, 12 13 AC power supply, 14 scatterer, 15 Shield, 16 slits,
18 ... ammeter, 19 ... beam, 20 ... judgment device, 21 ...
Storage device, 22: synchrotron operation control unit, 23: display device.
Claims (5)
電磁場発生装置および該電磁場発生装置の下流に配置さ
れた前記荷電粒子線を散乱する散乱体を構成要素として
備えた荷電粒子線照射装置において、前記電磁場発生装
置と散乱体との間、もしくは散乱体の下流、またはそれ
ら両方の位置に、該位置において前記電磁場発生装置に
よる偏向後の荷電粒子線のビーム軸と干渉せず、かつ電
磁場発生装置の電磁場の励起状態が正常でない場合の荷
電粒子線の通過領域と交わる領域に、遮蔽物を配置した
ことを特徴とする荷電粒子線照射装置。1. A charged particle beam irradiation apparatus comprising, as constituent elements, an electromagnetic field generator for generating an electromagnetic field for deflecting a charged particle beam and a scatterer disposed downstream of the electromagnetic field generator for scattering the charged particle beam. At a position between the electromagnetic field generator and the scatterer, or downstream of the scatterer, or at both positions, does not interfere with the beam axis of the charged particle beam after being deflected by the electromagnetic field generator at the position, and generates the electromagnetic field. A charged particle beam irradiation apparatus characterized in that a shield is disposed in a region intersecting with a passage region of a charged particle beam when an excitation state of an electromagnetic field of the device is not normal.
とする請求項1記載の荷電粒子線照射装置。2. The charged particle beam irradiation apparatus according to claim 1, wherein the shield is made of metal.
って偏向したまたは前記散乱体によって散乱した楕円筒
形荷電粒子線のビー軸形状にスリットを形成した円柱体
であることを特徴とする請求項1記載の荷電粒子線照射
装置。3. The shield according to claim 2, wherein the shield is a cylindrical body having a slit formed in a bee-axis shape of an elliptic cylindrical charged particle beam deflected by the electromagnetic field generator or scattered by the scatterer. 2. The charged particle beam irradiation apparatus according to 1.
電磁場発生装置および該電磁場発生装置の下流に配置さ
れた前記荷電粒子線を散乱する散乱体を構成要素として
備えた荷電粒子線照射装置において、前記電磁場発生装
置と散乱体との間、もしくは散乱体の下流、またはそれ
ら両方の位置に、該位置において前記電磁場発生装置に
よる偏向後の荷電粒子線のビーム軸と干渉せず、かつ電
磁場発生装置の電磁場の励起状態が正常でない場合の荷
電粒子線の通過領域と交わる領域に、金属製の遮蔽物を
配置し、該遮蔽物へ流れる電流量を検出する手段と、該
検出信号に基づいて荷電粒子線照射を制御する手段とを
設けたことを特徴とする荷電粒子線照射装置。4. A charged particle beam irradiation apparatus comprising, as constituent elements, an electromagnetic field generator for generating an electromagnetic field for deflecting a charged particle beam and a scatterer disposed downstream of the electromagnetic field generator for scattering the charged particle beam. At a position between the electromagnetic field generator and the scatterer, or downstream of the scatterer, or at both positions, does not interfere with the beam axis of the charged particle beam after being deflected by the electromagnetic field generator at the position, and generates the electromagnetic field. In a region where the excited state of the electromagnetic field of the device is not normal and intersects with the passage region of the charged particle beam, a metal shield is arranged, and means for detecting the amount of current flowing to the shield, based on the detection signal, A means for controlling charged particle beam irradiation.
の荷電粒子線照射装置を備えたことを特徴とする荷電粒
子線治療装置。5. A charged particle beam therapy apparatus comprising the charged particle beam irradiation apparatus according to claim 1. Description:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19457096A JPH1033697A (en) | 1996-07-24 | 1996-07-24 | Charged particle beam radiating device and medical treatment device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19457096A JPH1033697A (en) | 1996-07-24 | 1996-07-24 | Charged particle beam radiating device and medical treatment device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1033697A true JPH1033697A (en) | 1998-02-10 |
Family
ID=16326740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19457096A Pending JPH1033697A (en) | 1996-07-24 | 1996-07-24 | Charged particle beam radiating device and medical treatment device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1033697A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586948B2 (en) | 2010-07-15 | 2013-11-19 | Mitsubishi Electric Corporation | Particle beam irradiation apparatus and particle beam therapy system |
-
1996
- 1996-07-24 JP JP19457096A patent/JPH1033697A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586948B2 (en) | 2010-07-15 | 2013-11-19 | Mitsubishi Electric Corporation | Particle beam irradiation apparatus and particle beam therapy system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4206414B2 (en) | Charged particle beam extraction apparatus and charged particle beam extraction method | |
JP7066621B2 (en) | Particle therapy using magnetic resonance imaging | |
JP4494848B2 (en) | Particle beam therapy system | |
EP1152436A2 (en) | Charged particle irradiation apparatus and operating method thereof | |
US8232536B2 (en) | Particle beam irradiation system and method for controlling the particle beam irradiation system | |
US7456415B2 (en) | Charged particle beam extraction system and method | |
US8903471B2 (en) | Beam deflection arrangement within a combined radiation therapy and magnetic resonance unit | |
US9492684B2 (en) | Particle therapy system | |
JP2007296321A (en) | Charged particle beam discharge equipment and charged particle beam discharge method | |
CN102905761B (en) | Particle beam irradiation apparatus and particle beam therapy apparatus provided with same | |
Renner et al. | Wobbler facility for biomedical experiments | |
US20060022152A1 (en) | Particle beam therapy system and control system for particle beam therapy | |
JP2006288875A (en) | Particle beam treatment system | |
EP2186542A1 (en) | Method and device for determining a radiation isocenter in a particle therapy room | |
JP2004321408A (en) | Radiation irradiation device and radiation irradiation method | |
JPH1052421A (en) | Device and method for inspecting radioactive rays supplied to object | |
JP2008173182A (en) | Radiation irradiation method and radiotherapy apparatus controller | |
JP5155127B2 (en) | Charged particle beam irradiation system and irradiation nozzle device | |
JP5058932B2 (en) | Particle beam therapy system and charged particle beam energy confirmation method in particle beam therapy system | |
JPH11169469A (en) | Irradiation of charged particle beam and device therefor | |
JP4486610B2 (en) | Radiation irradiation equipment | |
JPH1033697A (en) | Charged particle beam radiating device and medical treatment device | |
JP2895716B2 (en) | Radiotherapy equipment | |
JPH09265000A (en) | Charged particle beam transporting system | |
JP4348470B2 (en) | Particle beam irradiation equipment |