JPH10333193A - Photo-refractive device - Google Patents

Photo-refractive device

Info

Publication number
JPH10333193A
JPH10333193A JP14148097A JP14148097A JPH10333193A JP H10333193 A JPH10333193 A JP H10333193A JP 14148097 A JP14148097 A JP 14148097A JP 14148097 A JP14148097 A JP 14148097A JP H10333193 A JPH10333193 A JP H10333193A
Authority
JP
Japan
Prior art keywords
semiconductor crystal
pair
electrodes
crystal
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14148097A
Other languages
Japanese (ja)
Inventor
Masami Yamamoto
正美 山本
Satoshi Igawa
聖史 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP14148097A priority Critical patent/JPH10333193A/en
Publication of JPH10333193A publication Critical patent/JPH10333193A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a photo-refractive device capable of applying a uniform external electric field and ensuring enhanced performance by forming a pair of electrodes along a pair of opposite edge faces of a semiconductor crystal producing a photo-refractive effect when an external electric field is applied. SOLUTION: This photo-refractive device has a semiconductor crystal 1 producing a photo-refractive effect when an external electric field is applied and a pair of electrodes 3 formed along a pair of opposite edge faces of the crystal 1. The crystal 1 is an AlGaAs/GaAs multilayered film having a multiple quantum well structure and an insulating protective film 5 of SiO2 is formed on the top of the crystal 1. The electrodes 3 are formed by vapor-depositing gold on a pair of opposite edge faces 2 of the crystal 1 and the protective film 5. The crystal 1 and the electrodes 3 are formed on a glass substrate 6. The opposite electrode faces 4 of the electrodes 3 are parallel to each other and have mirror image relation with the crystal 1 in-between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、外部電界を印加す
ることでフォトリフラクティブ効果を発揮する半導体結
晶からなるフォトリフラクティブ素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photorefractive element made of a semiconductor crystal exhibiting a photorefractive effect by applying an external electric field.

【0002】[0002]

【従来の技術】近年、コンピュータ画像処理技術、及
び、半導体技術の飛躍的な進歩により、電気的な画像処
理技術が主流であったが、並列/直列変換による律速や
LSI(大規模集積回路)の配線遅延等による帯域制限
のため、電気的な画像処理技術だけによる高速化に限界
が見え始め、光本来の超並列性を生かし、新しい非線形
光学現象等を積極的に取り入れた新しい光情報処理に関
する研究が活発である。中でも、フォトリフラクティブ
効果に起因する光波の干渉現象である2光波混合、4光
波混合による位相共役波の発生の光情報処理への応用に
ついての有意義な示唆がなされている。
2. Description of the Related Art In recent years, electrical image processing technology has become mainstream due to the dramatic progress of computer image processing technology and semiconductor technology. However, rate limiting by parallel / serial conversion and LSI (Large Scale Integrated Circuit) Due to bandwidth limitations due to wiring delays, etc., the limit to speeding up with only electrical image processing technology is beginning to appear, and new optical information processing that actively takes advantage of new nonlinear optical phenomena, taking advantage of the massive parallelism inherent in light Research on is active. Above all, a significant suggestion has been made about the application of the generation of a phase conjugate wave by two-wave mixing and four-wave mixing, which is an interference phenomenon of light waves caused by the photorefractive effect, to optical information processing.

【0003】フォトリフラクティブ効果を有する材料と
しては、BSO(Bi12SiO20)等の常誘電体、Ga
As等の化合物半導体、LiNbO3 やBaTiO3
の強誘電体が知られているが、光情報処理への応用の中
でも実時間処理や高速処理が要求される応用では、フォ
トリフラクティブ効果における最小応答時間の短いもの
が要求される。この最小応答時間は、例えば、常誘電体
のBSO(Bi12SiO20)でミリ秒オーダーであるの
に対して、バルクのGaAs化合物半導体で10マイク
ロ秒オーダーと短く、更に高速化できる可能性がある。
Materials having a photorefractive effect include paraelectric materials such as BSO (Bi 12 SiO 20 ) and Ga
Compound semiconductors such as As and ferroelectrics such as LiNbO 3 and BaTiO 3 are known. However, among applications to optical information processing, applications requiring real-time processing or high-speed processing require a minimum response in the photorefractive effect. A short time is required. The minimum response time is, for example, on the order of milliseconds for BSO (Bi 12 SiO 20 ) as a paraelectric substance, whereas it is as short as 10 microseconds for a bulk GaAs compound semiconductor. is there.

【0004】このように、実時間処理や高速処理に適用
可能なGaAs等の化合物半導体がフォトリフラクティ
ブ効果を発揮するには、半導体結晶に外部より10kV
/cm程度の強電界を印加する必要がある。従来の、G
aAs等の化合物半導体を使用したフォトリフラクティ
ブ素子は、上記強電界を半導体結晶内に形成するため
に、高電圧を印加するための一対の電極を、図3に示す
ように、半導体結晶表面上に並べて配置した構造のもの
があった。
As described above, in order for a compound semiconductor such as GaAs, which can be applied to real-time processing or high-speed processing, to exhibit a photorefractive effect, a semiconductor crystal must be applied with 10 kV
/ Cm strong electric field needs to be applied. Conventional G
In a photorefractive element using a compound semiconductor such as aAs, a pair of electrodes for applying a high voltage is formed on a surface of a semiconductor crystal as shown in FIG. Some structures were arranged side by side.

【0005】[0005]

【発明が解決しようとする課題】GaAs等の化合物半
導体の半導体結晶をフォトリフラクティブ素子として使
用する場合、半導体結晶内の入射光が通過する全域にわ
たり、フォトリフラクティブ効果が均一な特性を有する
ことが理想的であるが、上記の従来の電極構造を有した
フォトリフラクティブ素子では、半導体結晶内全域にわ
たって均一な電界を発生するのが困難であり、フォトリ
フラクティブ効果の性能向上を阻害する一因となってい
た。実際に、フォトリフラクティブ効果の性能指標の一
つである回折効率が、例えば、前掲のBSOが25%で
あるのに対し、上記従来の電極構造を有するGaAsの
場合は2〜3%と低く、GaAs等の化合物半導体は、
実時間処理や高速処理に適用できる高速応答性に優れて
いる一面、前掲のBSO並の特性を実現するための性能
改善が望まれていた。本発明は、上記問題点に鑑みてな
されたもので、その目的は、外部電界を印加することで
フォトリフラクティブ効果を発揮する半導体結晶に対し
て、従来の電極構造のものより均一な外部電界を印加可
能で高性能化を図ることのできるフォトリフラクティブ
素子を提供する点にある。
When a semiconductor crystal of a compound semiconductor such as GaAs is used as a photorefractive element, it is ideal that the photorefractive effect has a uniform characteristic over the entire region of the semiconductor crystal through which incident light passes. However, in the photorefractive element having the above-described conventional electrode structure, it is difficult to generate a uniform electric field over the entire region of the semiconductor crystal, which is one of the factors that hinders the improvement of the performance of the photorefractive effect. Was. In fact, the diffraction efficiency, which is one of the performance indicators of the photorefractive effect, is as low as 2-3% in the case of GaAs having the above-mentioned conventional electrode structure, whereas the above-mentioned BSO is 25%, for example. Compound semiconductors such as GaAs
While it is excellent in high-speed response that can be applied to real-time processing and high-speed processing, it has been desired to improve performance for realizing characteristics similar to those of the aforementioned BSO. The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor crystal exhibiting a photorefractive effect by applying an external electric field to a more uniform external electric field than that of the conventional electrode structure. It is an object of the present invention to provide a photorefractive element which can be applied and has high performance.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
の本発明によるフォトリフラクティブ素子の第一の特徴
構成は、特許請求の範囲の欄の請求項1に記載した通
り、外部電界を印加することでフォトリフラクティブ効
果を発揮する半導体結晶と、前記半導体結晶の対向する
一対の端面に沿って夫々形成された一対の電極とを備え
てなる点にある。
A first feature of a photorefractive element according to the present invention for achieving this object is to apply an external electric field as described in claim 1 of the claims. Thus, the semiconductor device has a semiconductor crystal exhibiting a photorefractive effect and a pair of electrodes formed along a pair of opposed end faces of the semiconductor crystal.

【0007】同第二の特徴構成は、特許請求の範囲の欄
の請求項2に記載した通り、上述の第一の特徴構成に加
えて、前記一対の電極の対向する電極面が互いに平行
で、前記半導体結晶を挟んで鏡像関係にある点にある。
According to a second feature of the invention, as described in claim 2 of the claims, in addition to the first feature of the invention, opposing electrode surfaces of the pair of electrodes are parallel to each other. And a mirror image relationship with respect to the semiconductor crystal.

【0008】同第三の特徴構成は、特許請求の範囲の欄
の請求項3に記載した通り、上述の第一または第二の特
徴構成に加えて、前記半導体結晶が積層構造によって量
子井戸構造を形成する化合物半導体であって、前記一対
の電極の前記電極面が前記半導体結晶の積層面に対して
垂直に形成されている点にある。
[0008] The third characteristic configuration is, as described in claim 3 of the claims, in addition to the above-mentioned first or second characteristic configuration, in which the semiconductor crystal has a quantum well structure by a laminated structure. Wherein the electrode surfaces of the pair of electrodes are formed perpendicular to the stacked surface of the semiconductor crystal.

【0009】同第四の特徴構成は、特許請求の範囲の欄
の請求項4に記載した通り、上述の第一、第二または第
三の特徴構成に加えて、前記半導体結晶の表面に所定波
長域の光を透過する絶縁保護膜が形成されている点にあ
る。
[0009] The fourth feature of the present invention, in addition to the above-mentioned first, second or third feature of the present invention, further includes a predetermined feature on the surface of the semiconductor crystal. The point is that an insulating protective film that transmits light in a wavelength range is formed.

【0010】以下に作用を説明する。第一の特徴構成に
よれば、前記一対の電極間に位置する前記半導体結晶内
に、前記電極間に所定の電圧を印加することで発生する
外部電界の向きが、上記従来の技術の欄、または、図3
に示した従来の電極構造の場合では前記電極近傍と前記
半導体結晶の中央部で大きく異なるのに対して、前記一
対の電極間の任意の位置で同方向または略同方向とする
ことができ、電界強度分布もより均一なものとなるので
ある。結果として、前記従来電極構造に比べ、前記半導
体結晶内でより一様な外部電界が生成されるため、その
外部電界によって発生するフォトリフラクティブ効果の
特性の均一化が図れるのである。
The operation will be described below. According to the first characteristic configuration, in the semiconductor crystal located between the pair of electrodes, the direction of an external electric field generated by applying a predetermined voltage between the electrodes is described in the column of the related art, Or Figure 3
In the case of the conventional electrode structure shown in the above, while the difference greatly in the vicinity of the electrode and the center of the semiconductor crystal, the same direction or substantially the same direction at any position between the pair of electrodes, The electric field intensity distribution becomes more uniform. As a result, since a more uniform external electric field is generated in the semiconductor crystal as compared with the conventional electrode structure, the characteristics of the photorefractive effect generated by the external electric field can be made uniform.

【0011】第二の特徴構成によれば、更に、前記半導
体結晶内の外部電界の均一化が図れ、フォトリフラクテ
ィブ効果の性能向上が図れるのである。
According to the second characteristic configuration, the external electric field in the semiconductor crystal can be made uniform, and the performance of the photorefractive effect can be improved.

【0012】ところで、前記半導体結晶が、例えば、A
lGaAs/GaAs量子井戸構造化合物半導体等の積
層構造によって量子井戸構造を形成する化合物半導体の
場合、上記最小応答時間がマイクロ秒オーダー以下まで
高速化できる可能性が指摘されている。一般に、前記量
子井戸構造を形成する積層構造の積層面に平行な外部電
界を印加する場合と、垂直な外部電界を印加する場合が
ある。後者の場合、交番電界を印加した場合の電界の極
性反転時の一瞬だけフォトリフラクティブ効果が現出す
るという特徴を有し、フォトリフラクティブ効果を連続
的に使用する応用には不適当である。一方、前者の場合
は静電界の印加で連続的にフォトリフラクティブ効果が
発揮され、また、位相共役波を出力する応用では増幅効
果が期待できるため、前記量子井戸構造を形成する積層
構造の積層面に平行な外部電界を印加するのが好まし
い。第三の特徴構成によれば、前記積層面に平行な均一
な外部電界が生成されることより、連続的なフォトリフ
ラクティブ効果の発揮と量子井戸構造による上記最小応
答時間の高速化が図れるのである。また、前掲の従来の
電極構造と量子井戸構造の組み合わせた場合に比べ、フ
ォトリフラクティブ効果の性能向上が図れるのである。
The semiconductor crystal is, for example, A
It has been pointed out that in the case of a compound semiconductor that forms a quantum well structure by a laminated structure such as an lGaAs / GaAs quantum well structure compound semiconductor, the minimum response time can be shortened to the order of microseconds or less. In general, there are cases where an external electric field is applied parallel to the stacking surface of the stacked structure forming the quantum well structure, and cases where an external electric field is applied vertically. The latter case has a feature that the photorefractive effect appears only for a moment when the polarity of the electric field is reversed when an alternating electric field is applied, and is not suitable for applications in which the photorefractive effect is used continuously. On the other hand, in the former case, a photorefractive effect is continuously exhibited by application of an electrostatic field, and an amplifying effect can be expected in an application for outputting a phase conjugate wave. It is preferable to apply an external electric field parallel to. According to the third characteristic configuration, since a uniform external electric field is generated in parallel with the lamination plane, continuous photorefractive effect can be exhibited and the minimum response time can be shortened by the quantum well structure. . Further, the performance of the photorefractive effect can be improved as compared with the case where the above-described conventional electrode structure and quantum well structure are combined.

【0013】また、前記半導体結晶がフォトリフラクテ
ィブ効果を有効に発揮するためには、前記半導体結晶内
に自由電子が殆ど存在しない高抵抗状態であることが要
求されるが、第四の特徴構成によれば、前記絶縁保護膜
が外部からの入射光を前記半導体結晶内に透過させなが
らも、水分等の前記高抵抗状態を阻害する成分の侵入を
防止し、性能劣化を防止できるのである。更に、前記電
極の一部を前記絶縁保護膜の上面にかけて形成すること
で、水分等の侵入防止効果を向上できるが、この時、当
該電極部分によって外部電界が歪曲されるが、その歪曲
された電界が専ら前記絶縁保護膜内に形成されるため、
結果として、前記絶縁保護膜の存在によって、前記半導
体結晶内では均一な外部電界を得ることができ、フォト
リフラクティブ効果の性能向上と、信頼性の向上を同時
に図ることができるのである。
In order for the semiconductor crystal to exhibit the photorefractive effect effectively, it is required that the semiconductor crystal has a high resistance state in which free electrons hardly exist in the semiconductor crystal. According to this, while the insulating protective film allows external incident light to penetrate into the semiconductor crystal, it is possible to prevent penetration of components such as moisture that inhibit the high resistance state, thereby preventing performance degradation. Further, by forming a part of the electrode over the upper surface of the insulating protective film, the effect of preventing intrusion of moisture or the like can be improved. At this time, the external electric field is distorted by the electrode part. Since the electric field is formed exclusively in the insulating protective film,
As a result, a uniform external electric field can be obtained in the semiconductor crystal due to the presence of the insulating protective film, and the performance of the photorefractive effect and the reliability can be improved at the same time.

【0014】[0014]

【発明の実施の形態】以下に、本発明に係るフォトリフ
ラクティブ素子の一実施形態(以下、本発明素子とい
う)について図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a photorefractive element according to the present invention (hereinafter referred to as the element of the present invention) will be described below with reference to the drawings.

【0015】図1に示すように、本発明素子は、SiO
2 の絶縁保護膜5が上面に形成された多重量子井戸構造
を有するAlGaAs/GaAsの多層膜の半導体結晶
1と、その半導体結晶1と前記絶縁保護膜5の対向する
一対の端面2に金を蒸着させて夫々形成された電極3が
ガラス基板6上に形成された構造である。前記一対の電
極3の対向する電極面4が互いに平行で、前記半導体結
晶1を挟んで鏡像関係にある。
As shown in FIG. 1, the device according to the present invention comprises SiO 2
A semiconductor crystal 1 of an AlGaAs / GaAs multilayer film having a multiple quantum well structure in which two insulating protective films 5 are formed on the upper surface, and a pair of opposite end surfaces 2 of the semiconductor crystal 1 and the insulating protective film 5 are coated with gold. This is a structure in which electrodes 3 formed by vapor deposition are formed on a glass substrate 6. The opposing electrode surfaces 4 of the pair of electrodes 3 are parallel to each other and have a mirror image relationship with the semiconductor crystal 1 interposed therebetween.

【0016】本発明素子の製造工程につき、図2に示す
工程図に基づいて説明する。工程1では、GaAs基板
7上にMBE(分子線成長法)またはMOCVD(有機
金属気相成長法)等によってAlGaAs/GaAsの
多層膜を成長させて、前記半導体結晶1を形成する。前
記半導体結晶1の厚みは約2μである。
The manufacturing process of the device of the present invention will be described with reference to the process chart shown in FIG. In step 1, the semiconductor crystal 1 is formed by growing an AlGaAs / GaAs multilayer film on the GaAs substrate 7 by MBE (Molecular Beam Epitaxy) or MOCVD (Metal Organic Chemical Vapor Deposition). The thickness of the semiconductor crystal 1 is about 2 μ.

【0017】工程2では、熱CVDまたはスパッタリン
グで、SiO2 の絶縁保護膜5を前記半導体結晶1上に
形成する。
In step 2, an insulating protective film 5 of SiO 2 is formed on the semiconductor crystal 1 by thermal CVD or sputtering.

【0018】工程3では、レジストを用いた通常のフォ
トリソグラフィ処理により、前記絶縁保護膜5のパター
ニングを行う。
In step 3, the insulating protective film 5 is patterned by ordinary photolithography using a resist.

【0019】工程4では、工程3でパターニングされた
前記絶縁保護膜5をマスクとしてプラズマエッチングま
たは気相エッチングで前記半導体結晶1を前記GaAs
基板7までエッチングする。尚、本工程のエッチングに
よって形成された前記対向する一対の端面2は、前記G
aAs基板に対して略垂直に形成される。前記一対の端
面2間の距離は2mmである。
In step 4, the semiconductor crystal 1 is subjected to the GaAs etching by plasma etching or vapor phase etching using the insulating protective film 5 patterned in step 3 as a mask.
The substrate 7 is etched. Note that the pair of opposed end faces 2 formed by the etching in this step is the G
It is formed substantially perpendicular to the aAs substrate. The distance between the pair of end faces 2 is 2 mm.

【0020】工程5では、前記GaAs基板7及び工程
4で形成された前記半導体結晶1と前記絶縁保護膜5全
面にレジスト8を塗布した後、前記絶縁保護膜5上の一
部及びその他の電極を形成しない部分を残して当該レジ
スト8を除去するレジストのパターニングを行う。
In step 5, a resist 8 is applied to the entire surface of the GaAs substrate 7 and the semiconductor crystal 1 formed in step 4 and the insulating protection film 5, and then a part of the insulating protection film 5 and other electrodes are applied. A resist patterning is performed to remove the resist 8 except for a portion where no resist is formed.

【0021】工程6では、全面に電極用金属9である金
を蒸着する。
In step 6, gold as an electrode metal 9 is deposited on the entire surface.

【0022】工程7では、工程5でパターニングした前
記レジスト8をリフトオフ処理で除去すると、前記レジ
スト8に接触していた前記電極用金属9が同時に除去さ
れ、前記電極用金属9がパターニングされ、前記電極3
が形成される。
In step 7, when the resist 8 patterned in step 5 is removed by a lift-off process, the electrode metal 9 that has been in contact with the resist 8 is simultaneously removed, and the electrode metal 9 is patterned. Electrode 3
Is formed.

【0023】工程8では、工程7で完成されたフォトリ
フラクティブ素子を、裏面研磨して、前記ガラス基板6
上に接着して、図1に示すフォトリフラクティブ素子が
作製される。
In step 8, the back surface of the photorefractive element completed in step 7 is polished, and the glass substrate 6 is polished.
The photorefractive element shown in FIG.

【0024】前記一対の端面2間の距離(2mm)が前
記一対の電極3間の距離となり、その電極間に印加すべ
き電圧は、所定の電界(10kV/cm)を得るために
2kVが印加される。尚、この印加電圧は、前記電極間
間隔が変わればそれに応じて調整を要するが、その電極
間間隔は、フォトリフラクティブ素子に入射するビーム
径より決定される。
The distance (2 mm) between the pair of end faces 2 is the distance between the pair of electrodes 3. The voltage to be applied between the electrodes is 2 kV to obtain a predetermined electric field (10 kV / cm). Is done. The applied voltage needs to be adjusted accordingly if the inter-electrode interval changes, but the inter-electrode interval is determined by the beam diameter incident on the photorefractive element.

【0025】尚、本発明素子に使用する入射光のレーザ
光源の発振波長は、AlGaAs/GaAsの感度域に
合わせて決定され、約800nmから1500nmであ
り、前記絶縁保護膜5及び前記ガラス基板6は当該波長
域の入射光を透過する。
The oscillation wavelength of the laser light source of the incident light used in the device of the present invention is determined in accordance with the sensitivity range of AlGaAs / GaAs, and is about 800 nm to 1500 nm. Transmits incident light in the wavelength range.

【0026】以下に、別実施形態を説明する。本実施形
態では、前記半導体結晶1は多重量子井戸構造を有する
AlGaAs/GaAs多層膜の化合物半導体であった
が、必ずしも、多重量子井戸構造でなくても構わず、A
lGaAs/GaAs化合物半導体でなくても構わな
い。外部電界を印加することでフォトリフラクティブ効
果を発揮する半導体結晶であれば、同様の改善効果が期
待できるのである。
Hereinafter, another embodiment will be described. In the present embodiment, the semiconductor crystal 1 is an AlGaAs / GaAs multilayer compound semiconductor having a multiple quantum well structure. However, the semiconductor crystal 1 does not necessarily have to have a multiple quantum well structure.
It does not have to be lGaAs / GaAs compound semiconductor. The same improvement effect can be expected if the semiconductor crystal exhibits a photorefractive effect by applying an external electric field.

【0027】前記半導体結晶1の前記端面2の加工に関
して、前記端面2は前記GaAs基板に対して略垂直に
形成され、更に、真に垂直に加工できれば好ましいが、
必ずしも厳密に垂直でなくても構わない。また、前記一
対の電極3の対向する電極面4、つまりは、前記端面2
が互いに平行で、前記半導体結晶1を挟んで鏡像関係に
厳密になっていなくても構わない。前記半導体結晶1の
断面形状は必ずしも左右対称な矩形でなく、前記工程4
におけるエッチング方法によっては、台形状または逆台
形状になっても構わない。このような場合であっても、
前掲或いは図3に示す従来の電極構造に比べて、外部電
界の均一性は大幅に改善される。
Regarding the processing of the end face 2 of the semiconductor crystal 1, it is preferable that the end face 2 is formed substantially perpendicular to the GaAs substrate, and that it can be further processed vertically.
It does not have to be strictly vertical. Further, the opposing electrode surfaces 4 of the pair of electrodes 3, that is, the end surfaces 2.
May be parallel to each other, and the mirror image relationship may not be strict with the semiconductor crystal 1 interposed therebetween. The cross-sectional shape of the semiconductor crystal 1 is not necessarily a symmetrical rectangular shape.
May be trapezoidal or inverted trapezoidal depending on the etching method. Even in such a case,
The uniformity of the external electric field is greatly improved as compared with the conventional electrode structure shown in FIG.

【0028】本発明素子の作製方法は必ずしも前記工程
1乃至8に示す加工方法によらずとも構わない。また、
前記絶縁保護膜5は、絶縁性を有し、水分等の侵入を防
止でき、所定の波長域の光を透過可能であれば、必ずし
もSiO2 膜でなくとも構わない。更に、工程8におい
て、工程7で完成されたフォトリフラクティブ素子はガ
ラス基板以外の絶縁性基板上に設けても構わない。ま
た、当該絶縁性基板は所定の波長域の光を透過可能かそ
の表面で当該波長域の光を反射できればよい。
The method for manufacturing the element of the present invention does not necessarily have to be the processing method shown in the above steps 1 to 8. Also,
The insulating protective film 5 does not necessarily have to be a SiO 2 film as long as it has insulating properties, can prevent moisture and the like from entering, and can transmit light in a predetermined wavelength range. Further, in step 8, the photorefractive element completed in step 7 may be provided on an insulating substrate other than a glass substrate. In addition, the insulating substrate only needs to be able to transmit light in a predetermined wavelength range or reflect light in the wavelength range on its surface.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
外部電界を印加することでフォトリフラクティブ効果を
発揮する半導体結晶に対して、従来の技術の欄に記載し
た従来の電極構造のものより均一な外部電界を印加可能
となり、フォトリフラクティブ効果の高性能化が図るこ
とができる。
As described above, according to the present invention,
A more uniform external electric field can be applied to a semiconductor crystal that exhibits a photorefractive effect by applying an external electric field than that of the conventional electrode structure described in the section of the conventional technology, thereby improving the performance of the photorefractive effect. Can be achieved.

【0030】尚、特許請求の範囲の項に、図面との対照
を便利にするために符号を記すが、該記入により本発明
は添付図面の構成に限定されるものではない。
In the claims, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the attached drawings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るフォトリフラクティブ素子の縦断
面図
FIG. 1 is a longitudinal sectional view of a photorefractive element according to the present invention.

【図2】本発明に係るフォトリフラクティブ素子の製造
工程図
FIG. 2 is a manufacturing process diagram of the photorefractive element according to the present invention.

【図3】従来の電極構造を有するフォトリフラクティブ
素子の縦断面図
FIG. 3 is a longitudinal sectional view of a photorefractive element having a conventional electrode structure.

【符号の説明】[Explanation of symbols]

1 半導体結晶 2 端面 3 電極 4 電極面 5 絶縁保護膜 6 ガラス基板 7 GaAs基板 8 レジスト 9 電極用金属 DESCRIPTION OF SYMBOLS 1 Semiconductor crystal 2 End surface 3 Electrode 4 Electrode surface 5 Insulating protective film 6 Glass substrate 7 GaAs substrate 8 Resist 9 Metal for electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 外部電界を印加することでフォトリフラ
クティブ効果を発揮する半導体結晶(1)と、前記半導
体結晶(1)の対向する一対の端面(2)に沿って夫々
形成された一対の電極(3)とを備えてなるフォトリフ
ラクティブ素子。
1. A semiconductor crystal (1) exhibiting a photorefractive effect by applying an external electric field, and a pair of electrodes formed along a pair of opposite end faces (2) of the semiconductor crystal (1). (3) A photorefractive element comprising:
【請求項2】 前記一対の電極(3)の対向する電極面
(4)が互いに平行で、前記半導体結晶(1)を挟んで
鏡像関係にある請求項1記載のフォトリフラクティブ素
子。
2. The photorefractive element according to claim 1, wherein opposing electrode surfaces of said pair of electrodes are parallel to each other, and have a mirror image relationship with respect to said semiconductor crystal.
【請求項3】 前記半導体結晶(1)が積層構造によっ
て量子井戸構造を形成する化合物半導体であって、前記
一対の電極(3)の前記電極面(4)が前記半導体結晶
の積層面に対して垂直に形成されている請求項1または
2記載のフォトリフラクティブ素子。
3. The semiconductor crystal (1) is a compound semiconductor forming a quantum well structure by a laminated structure, wherein the electrode surfaces (4) of the pair of electrodes (3) are arranged with respect to a laminated surface of the semiconductor crystal. The photorefractive element according to claim 1, wherein the photorefractive element is formed vertically.
【請求項4】 前記半導体結晶(1)の表面に所定波長
域の光を透過する絶縁保護膜(5)が形成されている請
求項1、2または3記載のフォトリフラクティブ素子。
4. The photorefractive element according to claim 1, wherein an insulating protective film for transmitting light in a predetermined wavelength range is formed on a surface of said semiconductor crystal.
JP14148097A 1997-05-30 1997-05-30 Photo-refractive device Pending JPH10333193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14148097A JPH10333193A (en) 1997-05-30 1997-05-30 Photo-refractive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14148097A JPH10333193A (en) 1997-05-30 1997-05-30 Photo-refractive device

Publications (1)

Publication Number Publication Date
JPH10333193A true JPH10333193A (en) 1998-12-18

Family

ID=15292884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14148097A Pending JPH10333193A (en) 1997-05-30 1997-05-30 Photo-refractive device

Country Status (1)

Country Link
JP (1) JPH10333193A (en)

Similar Documents

Publication Publication Date Title
US6373620B1 (en) Thin film electro-optic beam steering device
CN104849903A (en) Reflective LC devices including thin film metal grating
WO2021136756A1 (en) Transducer structure for single-port resonator with transverse mode suppression
JPH07199134A (en) Structure and method for photoelecton device for reducing temperature effect in lightguide modulator
US5436758A (en) Quasi-phasematched frequency converters
US7317860B2 (en) Optical device having photonic crystal structure
KR102187443B1 (en) Optical device and method for manufacturing the same
JPH0451812B2 (en)
JPH10333193A (en) Photo-refractive device
US11668962B2 (en) Meta device and manufacturing method thereof
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
US6574028B2 (en) Opposing electrode light modulator array and method for manufacturing the same
US7112263B2 (en) Polarization inversion method for ferroelectric substances
US5715092A (en) Ferroelectric light frequency doubler device with a surface coating and having an inverted domain structure
US6396618B1 (en) Opposing electrode light modulator array and method for manufacturing the same
JP4372489B2 (en) Method for manufacturing periodically poled structure
US4403202A (en) Surface acoustic wave device and method for producing the same
JP2002182173A (en) Optical waveguide element and method of manufacturing optical waveguide element
JPH0251124A (en) Optical waveguide progressive wave electrode
JP4642065B2 (en) Method for manufacturing periodic polarization reversal part
JP2000331944A (en) Compound semiconductor manufacture and semiconductor device
JP2016024423A (en) Manufacturing method of wavelength conversion element, and wavelength conversion element
JPH08304863A (en) Production of optical device
JPS61188968A (en) Thin film transistor
WO2019073713A1 (en) Method for manufacturing periodic polarization reversed structure