JPH10332101A - Disposition structure of waste heat recovery boilers - Google Patents

Disposition structure of waste heat recovery boilers

Info

Publication number
JPH10332101A
JPH10332101A JP9141669A JP14166997A JPH10332101A JP H10332101 A JPH10332101 A JP H10332101A JP 9141669 A JP9141669 A JP 9141669A JP 14166997 A JP14166997 A JP 14166997A JP H10332101 A JPH10332101 A JP H10332101A
Authority
JP
Japan
Prior art keywords
heat recovery
flue
waste heat
recovery boiler
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9141669A
Other languages
Japanese (ja)
Inventor
Hideo Aoki
秀生 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9141669A priority Critical patent/JPH10332101A/en
Publication of JPH10332101A publication Critical patent/JPH10332101A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable full operation of heat source equipment even when periodic inspection of waste heat recovery boilers is taken into account, by providing the waste heat recovery boiler for each of a plurality of branch flues branching from the outlet of a main flue leading out waste gas from a heat source. SOLUTION: This waste heat recovery system comprises a blower 3 and an air duct 4 for sending air to a heat source 2, a main flue 5 for leading out waste gas from the heat source 2, a first flue 7 and a second flue 8 branching off in two from the outlet 6 of the main flue 5, a first waste heat recovery boiler 10 provided for the first flue 7 and a second waste heat recovery boiler 40 provided for the second flue 8. A first inlet damper 20 and a first inlet shielding mechanism 30 are provided for the first flue 7 so that the first inlet damper 20, the first inlet shielding mechanism 30 and the first waste heat recovery boiler 10 are disposed in this sequence, while a second inlet damper 50, a second inlet shielding mechanism 60 and the second waste heat recovery boiler 40 are provided for the second flue 8 in this sequence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は廃熱回収ボイラーの
レイアウトに関する。
[0001] The present invention relates to a layout of a waste heat recovery boiler.

【0002】[0002]

【従来の技術】例えば、高炉(溶鉱炉)の前設備とし
て、鉱石焼結設備がある。高炉に効率よく原料を装入し
て生産性を高めることを目的とし、粉鉄鉱石を焼結法に
よって塊にするものである。焼結法であるから、鉄鉱石
を溶融直前の温度(焼結温度)まで加熱する必要があ
り、その保有熱は甚大である。そこで、この熱を廃熱回
収ボイラーで回収する技術が実用化されている(例え
ば、特公昭58−15709号公報、特公昭58−15
710号公報)。
2. Description of the Related Art For example, there is an ore sintering facility as a facility before a blast furnace (blast furnace). The purpose is to efficiently charge raw materials into a blast furnace to increase productivity, and to lump fine iron ore by a sintering method. Since it is a sintering method, it is necessary to heat iron ore to a temperature just before melting (sintering temperature), and the retained heat is enormous. Therefore, techniques for recovering this heat with a waste heat recovery boiler have been put into practical use (for example, Japanese Patent Publication No. 58-15709, Japanese Patent Publication No. 58-15).
No. 710).

【0003】上記公報の設備と同様の廃熱回収ボイラー
のレイアウトを次図で説明する。図6は従来の廃熱回収
ボイラーを煙道に配置した例を示すフロー図であり、焼
結設備などの熱源101に、送風機102及び送風ダク
ト103で風を送り、得られた熱風を、煙道104へ送
り、この煙道104に取付けた廃熱回収ボイラー110
で熱回収する技術が知られている。
[0003] The layout of a waste heat recovery boiler similar to the equipment of the above publication will be described with reference to the following figure. FIG. 6 is a flow chart showing an example in which a conventional waste heat recovery boiler is arranged in a flue. A wind is sent to a heat source 101 such as a sintering facility by a blower 102 and a blow duct 103, and the obtained hot wind is smoked. Waste heat recovery boiler 110 attached to the flue 104
There is a known heat recovery technology.

【0004】廃熱回収ボイラー110は、給水タンク1
11、脱気器112、節炭器113、エバポレータ11
4、第2エバポレータ115、蒸気ドラム116、ポン
プ117・・・(・・・は複数個を示す。以下同様。)及び配
管類からなり、給水タンク111からの給水を脱気器1
12で真空脱気したものを節炭器113で加熱したのち
蒸気ドラム116に送る。蒸気ドラム116の熱水をエ
バポレータ114、更には第2エバポレータ115で加
熱して温度を高めて蒸気ドラム116へ戻し、蒸気ドラ
ム116で蒸気と熱水に分離し、蒸気を蒸気輸送管11
8を介して取り出せるようにしたものである。この間、
熱源101からの熱風は矢印の通りに流れて、第2エ
バポレータ115、エバポレータ114、節炭器113
の順に熱交換し、低温の空気となってボイラーから遠ざ
かる。
[0004] The waste heat recovery boiler 110 includes a water tank 1.
11, deaerator 112, economizer 113, evaporator 11
4, a second evaporator 115, a steam drum 116, a pump 117,... (Several numbers are shown, the same applies hereinafter), and pipes.
The gas degassed in 12 is heated by the economizer 113 and then sent to the steam drum 116. The hot water of the steam drum 116 is heated by the evaporator 114 and further by the second evaporator 115 to raise the temperature and return to the steam drum 116, separated into steam and hot water by the steam drum 116, and the steam is transferred to the steam transport pipe 11.
8 can be taken out. During this time,
The hot air from the heat source 101 flows as shown by the arrows, and the second evaporator 115, the evaporator 114, the economizer 113
Heat exchange in this order, and it becomes low-temperature air and moves away from the boiler.

【0005】[0005]

【発明が解決しようとする課題】廃熱回収ボイラー11
0は、法規の定めるところにより定期点検を実施する必
要があり、この間は、焼結設備を止めるなどしてライン
を止めなければならない。仮に発電用ボイラーの様な主
力設備であれば、定期点検を年間計画に組込んで、ライ
ン単位で休止することには問題はない。しかし、廃熱回
収ボイラー110は副次設備で、熱源設備が主たる設備
であるから、問題となる。すなわち、休止時間が例えば
月に1回約10時間であれば、熱源設備の生産性は2%
も低下することになる。
SUMMARY OF THE INVENTION Waste heat recovery boiler 11
In the case of 0, it is necessary to carry out a periodic inspection according to the regulations, and during this time, the line must be stopped by stopping the sintering equipment. If it is a major facility such as a boiler for power generation, there is no problem in incorporating periodic inspections into the annual plan and stopping on a line-by-line basis. However, the waste heat recovery boiler 110 poses a problem because it is a secondary facility and the heat source facility is the main facility. That is, if the downtime is, for example, about 10 hours once a month, the productivity of the heat source equipment is 2%.
Will also decrease.

【0006】そこで、本発明の目的は、廃熱回収ボイラ
ーの定期点検を見込んでも熱源設備をフルに稼働させる
ことが可能な技術を提供することにある。
Accordingly, an object of the present invention is to provide a technique capable of fully operating a heat source facility even in anticipation of periodic inspection of a waste heat recovery boiler.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1は、熱源から廃ガスを導き出す主煙道及び送
風機と、主煙道の出口から複数本に分岐した分岐煙道
と、これらの分岐煙道の各々に設けた廃熱回収ボイラー
とからなる廃熱回収ボイラーの配置構造である。
Means for Solving the Problems To achieve the above object, a first aspect of the present invention provides a main flue and a blower for extracting waste gas from a heat source, a plurality of branch flues from an outlet of the main flue, This is a layout structure of a waste heat recovery boiler including a waste heat recovery boiler provided in each of these branch flues.

【0008】ある廃熱回収ボイラーを点検するときに
は、残りの廃熱回収ボイラーの運転を継続して熱回収を
行なう。従って、廃熱回収ボイラーの定期点検を見込ん
でも熱源設備をフルに稼働させることが可能となる。ま
た、ボイラーを並列に設けたのでボイラー及び前後の煙
道の圧力損失が減少し、その分だけ送風機の能力を上げ
ることができ、総熱回収量を大幅に増加させることがで
きる。
When a certain waste heat recovery boiler is inspected, heat is recovered by continuing the operation of the remaining waste heat recovery boiler. Therefore, it is possible to fully operate the heat source equipment even when anticipating the periodic inspection of the waste heat recovery boiler. In addition, since the boilers are provided in parallel, the pressure loss in the boiler and the flue before and after the boiler is reduced, and the capacity of the blower can be increased accordingly, and the total heat recovery amount can be greatly increased.

【0009】請求項2は、分岐煙道に、入口ダンパー、
入口遮蔽機構、廃熱回収ボイラーの順になるように入口
ダンパー及び入口遮蔽機構を設け、入口ダンパーを閉
じ、次に入口遮蔽板で煙道を完全に遮蔽することができ
る構造にしたことを特徴とする。ある廃熱回収ボイラー
を止めるときには、そのラインの入口ダンパーを止め、
次に入口遮蔽機構を閉状態にすれば、その廃熱回収ボイ
ラーの点検が可能となる。入口ダンパー及び入口遮蔽機
構をシリーズに設けたので、入口遮蔽機構の耐圧・耐熱
はそれ程必要では無く、簡単な構造にすることができ
る。
[0009] The second aspect of the present invention provides an inlet damper for a branch flue.
An inlet damper and an inlet shield mechanism are provided in the order of the inlet shield mechanism and the waste heat recovery boiler, the inlet damper is closed, and then the flue is completely shielded by the inlet shield plate. I do. When shutting down a waste heat recovery boiler, shut off the line's entrance damper,
Next, if the entrance shielding mechanism is closed, the waste heat recovery boiler can be inspected. Since the entrance damper and the entrance shielding mechanism are provided in series, the pressure resistance and heat resistance of the entrance shielding mechanism are not so required, and the structure can be simplified.

【0010】[0010]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。なお、図面は符号の向きに見る
ものとする。また、実施例では分岐煙道の本数を2本と
し、それらを「第1煙道」、「第2煙道」と呼ぶことに
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals. In the embodiment, the number of branch flues is set to two, and they will be referred to as “first flue” and “second flue”.

【0011】図1は本発明に係る廃熱回収ボイラーの配
置例を示すフロー図であり、空気を熱源2へ送る送風機
3及び送風ダクト4と、熱源2から廃ガスを導き出す主
煙道5と、この主煙道5の出口6から2股に分岐した第
1煙道7及び第2煙道8と、第1煙道7に設けた第1廃
熱回収ボイラー10と、第2煙道8に設けた第2廃熱回
収ボイラー40とからなる廃熱回収システムであって、
第1煙道7に、第1入口ダンパー20、第1入口遮蔽機
構30、第1廃熱回収ボイラー10の順になるように第
1入口ダンパー20及び第1入口遮蔽機構30を設け、
第2煙道8に、第2入口ダンパー50、第2入口遮蔽機
構60、第2廃熱回収ボイラー40の順になるように第
2入口ダンパー50及び第2入口遮蔽機構60を設けこ
とを特徴とする。前記熱源2は焼結設備、焼却炉、コー
クス炉などがあり、種類を限定するものではない。
FIG. 1 is a flow chart showing an arrangement example of a waste heat recovery boiler according to the present invention. The blower 3 sends air to a heat source 2 and a blow duct 4, a main flue 5 which guides waste gas from the heat source 2, and the like. A first flue 7 and a second flue 8 branching from the outlet 6 of the main flue 5, a first waste heat recovery boiler 10 provided in the first flue 7, and a second flue 8 Waste heat recovery system comprising a second waste heat recovery boiler 40 provided in
In the first flue 7, the first inlet damper 20 and the first inlet shielding mechanism 30 are provided in the order of the first inlet damper 20, the first inlet shielding mechanism 30, and the first waste heat recovery boiler 10,
The second flue 8 is provided with a second inlet damper 50 and a second inlet shielding mechanism 60 in the order of a second inlet damper 50, a second inlet shielding mechanism 60, and a second waste heat recovery boiler 40. I do. The heat source 2 includes a sintering facility, an incinerator, a coke oven, and the like, and the type is not limited.

【0012】第1廃熱回収ボイラー10は、給水タンク
11、脱気器12、節炭器13、エバポレータ14、第
2エバポレータ15、蒸気ドラム16、ポンプ17・・・
及び配管類からなり、給水タンク11からの給水を脱気
器12で真空脱気したものを節炭器13で加熱したのち
蒸気ドラム16に送る。蒸気ドラム16の熱水をエバポ
レータ14、更には第2エバポレータ15で加熱して温
度を高めて蒸気ドラム16へ戻し、蒸気ドラム16で蒸
気と熱水に分離し、蒸気を蒸気輸送管18を介して取り
出せるようにしたものである。
The first waste heat recovery boiler 10 includes a water supply tank 11, a deaerator 12, a economizer 13, an evaporator 14, a second evaporator 15, a steam drum 16, a pump 17,.
The water supplied from the water supply tank 11 is vacuum-degassed by the deaerator 12, heated in the economizer 13, and then sent to the steam drum 16. The hot water of the steam drum 16 is heated by the evaporator 14 and further by the second evaporator 15 to increase the temperature and return to the steam drum 16, separated into steam and hot water by the steam drum 16, and the steam is passed through the steam transport pipe 18. It can be taken out.

【0013】この間、熱源2からの熱風の半分は矢印
の通りに流れて、第2エバポレータ15、エバポレータ
14、節炭器13の順に熱交換し、低温の空気となって
ボイラー10から遠ざかる。
During this time, half of the hot air from the heat source 2 flows as shown by the arrow, and exchanges heat in the order of the second evaporator 15, the evaporator 14, and the economizer 13, and becomes low-temperature air and moves away from the boiler 10.

【0014】同様に、第2廃熱回収ボイラー40は、給
水タンク41、脱気器42、節炭器43、エバポレータ
44、第2エバポレータ45、蒸気ドラム46、ポンプ
47・・・及び配管類からなり、給水タンク41からの給
水を脱気器42で真空脱気したものを節炭器43で加熱
したのち蒸気ドラム46に送る。蒸気ドラム46の熱水
をエバポレータ44、更には第2エバポレータ45で加
熱して温度を高めて蒸気ドラム46へ戻し、蒸気ドラム
46で蒸気と熱水に分離し、蒸気を蒸気輸送管48を介
して取り出せるようにしたものである。
Similarly, the second waste heat recovery boiler 40 includes a water supply tank 41, a deaerator 42, a economizer 43, an evaporator 44, a second evaporator 45, a steam drum 46, a pump 47, and piping. The water supplied from the water supply tank 41 is vacuum-degassed by the deaerator 42, heated in the economizer 43, and then sent to the steam drum 46. The hot water of the steam drum 46 is heated by the evaporator 44 and further by the second evaporator 45 to raise the temperature and return to the steam drum 46, separated into steam and hot water by the steam drum 46, and the steam is passed through the steam transport pipe 48. It can be taken out.

【0015】この間、熱源2からの熱風の半分は矢印
の通りに流れて、第2エバポレータ45、エバポレータ
44、節炭器43の順に熱交換し、低温の空気となって
ボイラー40から遠ざかる。
During this time, half of the hot air from the heat source 2 flows as shown by the arrow, and exchanges heat in the order of the second evaporator 45, the evaporator 44, and the economizer 43, and turns into low-temperature air and moves away from the boiler 40.

【0016】図2は本発明に係る入口ダンパー及び入口
遮蔽機構の原理図であり、図右下の第1入口ダンパー2
0は、ダンパー軸21と、このダンパー軸21に取付け
たダンパープレート22,22と、前記ダンパー軸21
をアーム23を介して90度回転するアクチエータ24
とからなる。アクチエータ24は電動シリンダ、空圧シ
リンダが好適であり、実線で示した全開状態のダンパー
プレート22,22を矢印,のごとく移動して、全
閉状態にする如くに短時間で流路を開閉する駆動部であ
る。25,25はストッパである。図1に示した第2入
口ダンパー50は、第1入口ダンパー20と同構造であ
るから、説明を省略する。
FIG. 2 is a principle diagram of an entrance damper and an entrance shielding mechanism according to the present invention.
Numeral 0 denotes a damper shaft 21, damper plates 22 attached to the damper shaft 21, and the damper shaft 21.
Actuator 90 that rotates 90 degrees through arm 23
Consists of The actuator 24 is preferably an electric cylinder or a pneumatic cylinder, and moves the damper plates 22, 22 in the fully open state shown by the solid line as indicated by arrows to open and close the flow path in a short time so as to be in the fully closed state. Drive unit. 25, 25 are stoppers. Since the second inlet damper 50 shown in FIG. 1 has the same structure as the first inlet damper 20, the description is omitted.

【0017】第1入口遮蔽機構30は、遮蔽板31と、
この遮蔽板31を昇降するアクチエータ32とからな
り、33は第1煙道7の途中に設けた遮蔽板収納部、3
4,34はシール材、35は架台である。アクチエータ
32は電動シリンダ、油圧シリンダが好適である。図1
に示した第2入口遮蔽機構60は、第1入口遮蔽機構3
0と同構造であるから、説明を省略する。
The first entrance shielding mechanism 30 includes a shielding plate 31 and
An actuator 32 moves up and down the shielding plate 31. Reference numeral 33 denotes a shielding plate storage part provided in the middle of the first flue 7, 3.
Reference numerals 4 and 34 denote sealing materials, and 35 denotes a gantry. The actuator 32 is preferably an electric cylinder or a hydraulic cylinder. FIG.
The second entrance shielding mechanism 60 shown in FIG.
0, the description is omitted.

【0018】白抜き矢印の通りに、廃ガスが流れてい
るときに、第1入口ダンパー20を閉じ、閉め切りを確
認した後に、遮蔽板31を下げて流路を遮蔽する。遮蔽
状態から流れを再開するには、遮蔽板31を上げ、全開
を確認した後に、第1入口ダンパー20を全開する。
As shown by the white arrow, when the waste gas is flowing, the first inlet damper 20 is closed, and after confirming the closing, the shielding plate 31 is lowered to block the flow path. In order to restart the flow from the shielding state, the shielding plate 31 is raised, and after confirming the full opening, the first inlet damper 20 is fully opened.

【0019】第1入口ダンパー20と第1入口遮蔽機構
30とのいづれか一方のみを設け、これで流路を開閉す
ることは可能である。この場合は、第1入口ダンパー2
0の気密性を高めなければならないので、複雑で高価な
ダンパーとなる。または遮蔽板31に高圧、高温の廃ガ
スが直接作用するために、遮蔽板31を丈夫にし、水冷
構造にする必要があり、第1入口遮蔽機構30は複雑で
高価なものとなる。
It is possible to provide only one of the first entrance damper 20 and the first entrance shielding mechanism 30, and to open and close the flow path. In this case, the first inlet damper 2
Since the airtightness of the zero must be increased, the damper becomes complicated and expensive. Alternatively, since high-pressure, high-temperature waste gas directly acts on the shielding plate 31, the shielding plate 31 needs to be rugged and have a water-cooled structure, and the first entrance shielding mechanism 30 is complicated and expensive.

【0020】この点、本実施例では上流側に第1入口ダ
ンパー20、その下流側に第1入口遮蔽機構30を配置
したので、先ず第1入口ダンパー20で廃ガスの圧力及
び温度を下げ、その後に第1入口遮蔽機構30を作動さ
せるので、遮蔽板31は耐圧及び耐熱性を要せず、簡単
で軽量なものが採用でき、第1入口遮蔽機構30のコス
トを下げることができる。第1入口ダンパー20は気密
性を要しないので、簡単で軽量なものが採用できる。第
2入口ダンパー50及び第2入口遮蔽機構60も同様で
ある。
In this regard, in this embodiment, since the first inlet damper 20 is disposed on the upstream side and the first inlet shielding mechanism 30 is disposed on the downstream side, first, the pressure and temperature of the waste gas are reduced by the first inlet damper 20. After that, the first entrance shielding mechanism 30 is operated, so that the shielding plate 31 does not require pressure resistance and heat resistance, a simple and lightweight one can be adopted, and the cost of the first entrance shielding mechanism 30 can be reduced. Since the first inlet damper 20 does not require airtightness, a simple and lightweight one can be employed. The same applies to the second entrance damper 50 and the second entrance shielding mechanism 60.

【0021】以上の構成からなる廃熱回収ボイラーの配
置構造の作用を、(A)定期点検、(B)熱回収量増
加、(C)改造及び官庁検査に分けて説明する。 (A)定期点検;図1において、通常は第1入口ダンパ
ー20、第1入口遮蔽機構30、第2入口ダンパー50
及び第2入口遮蔽機構60を開放状態にして、熱源2の
廃ガスを第1廃熱回収ボイラー10及び第2廃熱回収ボ
イラー40へ送り、それらで熱回収する。第1廃熱回収
ボイラー10が点検時期になったら、第2入口ダンパー
50及び第2入口遮蔽機構60は開放したままで、第1
入口ダンパー20及び第1入口遮蔽機構30を閉じる。
第2廃熱回収ボイラー40を運転しながら、第1廃熱回
収ボイラー10を点検することができる。第2廃熱回収
ボイラー40が点検時期になったら、逆にすればよい。
The operation of the arrangement structure of the waste heat recovery boiler having the above configuration will be described separately for (A) periodic inspection, (B) increase in heat recovery amount, (C) remodeling and government office inspection. (A) Periodic inspection; In FIG. 1, the first inlet damper 20, the first inlet shielding mechanism 30, and the second inlet damper 50 are usually used.
Then, the second inlet shielding mechanism 60 is opened, and the waste gas from the heat source 2 is sent to the first waste heat recovery boiler 10 and the second waste heat recovery boiler 40 to recover heat therefrom. When the first waste heat recovery boiler 10 comes to the inspection time, the first inlet damper 50 and the second inlet shielding mechanism 60 are kept open and the first
The entrance damper 20 and the first entrance shielding mechanism 30 are closed.
While operating the second waste heat recovery boiler 40, the first waste heat recovery boiler 10 can be inspected. When the second waste heat recovery boiler 40 comes to the inspection time, the reverse may be performed.

【0022】(B)熱回収量増加;図3(a),(b)
は圧力系統図である。(a)は図6で述べた従来技術に
係る比較例を示し、煙道を流れる廃ガスの流量をq、送
風機〜熱源出口までの圧力勾配をΔp1、熱源出口〜ボ
イラー出口までの圧力勾配をΔp2、合計圧力勾配をΔ
ptotal=Δp1+Δp2とする。(b)は本発明に係
る実施例であり、送風機〜熱源を流れる廃ガスの流れを
Q、送風機〜熱源出口までの圧力勾配をΔP11、第1
煙道を流れる廃ガスの流量を0.5×Q、熱源出口〜第
1ボイラー出口までの圧力勾配をΔP12、合計圧力勾
配をΔP1total=ΔP11+ΔP12とする。第2煙
道を流れる廃ガスの流量を0.5×Q、熱源出口〜第2
ボイラー出口までの圧力勾配をΔP22、合計圧力勾配
をΔP2total=ΔP11+ΔP22とする。
(B) Increase in heat recovery amount; FIGS. 3 (a) and 3 (b)
Is a pressure system diagram. (A) shows a comparative example according to the prior art described in FIG. 6, in which the flow rate of waste gas flowing through the flue is q, the pressure gradient from the blower to the heat source outlet is Δp1, and the pressure gradient from the heat source outlet to the boiler outlet is q. Δp2, total pressure gradient Δ
Let ptotal = Δp1 + Δp2. (B) is an embodiment according to the present invention, in which the flow of the waste gas flowing from the blower to the heat source is Q, the pressure gradient from the blower to the heat source outlet is ΔP11,
The flow rate of the waste gas flowing through the flue is 0.5 × Q, the pressure gradient from the heat source outlet to the first boiler outlet is ΔP12, and the total pressure gradient is ΔP1total = ΔP11 + ΔP12. The flow rate of the waste gas flowing through the second flue is 0.5 × Q, the heat source outlet to the second
The pressure gradient to the boiler outlet is ΔP22, and the total pressure gradient is ΔP2total = ΔP11 + ΔP22.

【0023】流路の圧力損失は、ガス密度×流路損失係
数×(流速)2/2gに比例する。gは重力加速度であ
る。(a)における煙道の流路面積と(b)における第
1煙道,第2煙道の流路面積を同一とし、ガス密度×流
路損失係数は殆ど差がないとすれば、第1煙道,第2煙
道におけるガス流速は1/2となり、ΔP12はΔp2
の1/4、ΔP22もΔp2の1/4となる。ΔP1to
tal,ΔP2totalはともに、ほぼΔptotal等しくする
ことができるので、ΔP11は、Δp1より十分に大き
くすることができる。すなわち、Q=(1.3〜1.
6)×qとなり、この廃ガス流量増加が熱回収増加に直
接つながる。具体的な数値は後述の「実施例」の項で説
明する。
The pressure loss of the passage is proportional to the gas density × passage loss coefficient × (flow rate) 2/2 g. g is the gravitational acceleration. If the flow area of the flue in (a) is the same as the flow area of the first and second flue in (b), and if there is almost no difference in gas density × flow path loss coefficient, the first The gas velocities in the flue and the second flue are halved, and ΔP12 is Δp2
And ΔP22 are also 1 / of Δp2. ΔP1to
Since both tal and ΔP2total can be made substantially equal to Δptotal, ΔP11 can be made sufficiently larger than Δp1. That is, Q = (1.3-1.
6) × q, and this increase in waste gas flow rate directly leads to an increase in heat recovery. Specific numerical values will be described in the “Example” section below.

【0024】(C)改造及び官庁検査:ボイラーの耐圧
(官庁検査対象部)を改造しようとすると、従来はライ
ンを止め、改造工事を行ない、官庁の立合い検査を受け
る必要があり、この間はラインを連続して止めておく必
要があった。これに対して、第1廃熱回収ボイラー10
を改造するときには、第2廃熱回収ボイラー40を運転
させておくことができる。同様に、第2廃熱回収ボイラ
ー40を改造するときには、第1廃熱回収ボイラー10
を運転させておくことができる。従って、改造をし、官
庁検査を受けるときであっても、熱源設備を止める必要
がないので、廃熱回収計画を高水準で維持できる。
(C) Remodeling and Government Inspection: In order to modify the pressure resistance of boilers (portion subject to governmental inspection), conventionally, it is necessary to stop the line, carry out the remodeling work, and undergo a line inspection by the government office. Had to be stopped continuously. In contrast, the first waste heat recovery boiler 10
When remodeling, the second waste heat recovery boiler 40 can be operated. Similarly, when modifying the second waste heat recovery boiler 40, the first waste heat recovery boiler 10
Can be operated. Therefore, even when remodeling and receiving inspection by government offices, it is not necessary to stop the heat source equipment, so that the waste heat recovery plan can be maintained at a high level.

【0025】図4は図1の別実施例図であり、図1と異
なる点のみ述べると、第1煙道7の出口に、第1出口遮
蔽機構70、第1出口ダンパー72をこの順に設けたの
ち、第1煙道7を送風機吸込ダクト74に連結し、ま
た、第2煙道8の出口に、第2出口遮蔽機構76、第2
出口ダンパー78をこの順に設けたのち、第2煙道8を
送風機吸込ダクト74に連結して、クローズドサイクル
にしたことを特徴とする。その他は、図1と同一である
から、符号を準用して詳細な説明は省略する。
FIG. 4 is a view showing another embodiment of FIG. 1. Only points different from FIG. 1 will be described. A first outlet shielding mechanism 70 and a first outlet damper 72 are provided in this order at the outlet of the first flue 7. After that, the first flue 7 is connected to the blower suction duct 74, and the second flue 8 has a second outlet shielding mechanism 76 and a second
After the outlet dampers 78 are provided in this order, the second flue 8 is connected to the blower suction duct 74 to form a closed cycle. Other components are the same as those in FIG. 1, and the detailed description is omitted by using the reference numerals.

【0026】第1・第2出口遮蔽機構70,76は前記
第1・2入口遮蔽機構30,60と同じものであり、第
1・第2出口ダンパー72,78は前記第1・第2入口
ダンパー20,50と同じものである。
The first and second outlet blocking mechanisms 70 and 76 are the same as the first and second inlet blocking mechanisms 30 and 60, and the first and second outlet dampers 72 and 78 are connected to the first and second inlets. It is the same as the dampers 20, 50.

【0027】この別実施例の作用を説明する。通常は、
第1入口ダンパー20、第1入口遮蔽機構30、第1出
口遮蔽機構70及び第1出口ダンパー72を開状態にし
て、第1廃熱回収ボイラー10で熱回収すると共に、第
2入口ダンパー50、第2入口遮蔽機構60、第2出口
遮蔽機構76及び第2出口ダンパー78を開状態にし
て、第2廃熱回収ボイラー40で熱回収する。
The operation of the other embodiment will be described. Normally,
The first inlet damper 20, the first inlet shielding mechanism 30, the first outlet shielding mechanism 70, and the first outlet damper 72 are opened, heat is recovered by the first waste heat recovery boiler 10, and the second inlet damper 50, The second inlet shield mechanism 60, the second outlet shield mechanism 76, and the second outlet damper 78 are opened, and heat is recovered by the second waste heat recovery boiler 40.

【0028】第1廃熱回収ボイラー10を点検するとき
には、先ず第1入口ダンパー20及び第1出口ダンパー
72を閉じる。第2煙道8に廃ガスが流れているので、
それをダンパー20,72で仮締めするわけである。そ
のために、入口側はダンパー→遮蔽機構、出口側は遮蔽
機構→ダンパーの順で配置したわけである。次に、内側
(第1廃熱回収ボイラー10寄り)の第1入口遮蔽機構
30及び第1出口遮蔽機構70を閉じる。第2廃熱回収
ボイラー40を点検するときも同様である。
When inspecting the first waste heat recovery boiler 10, first, the first inlet damper 20 and the first outlet damper 72 are closed. Since waste gas is flowing through the second flue 8,
It is temporarily fastened with the dampers 20, 72. Therefore, the entrance side is arranged in the order of the damper → the shielding mechanism, and the exit side is arranged in the order of the shielding mechanism → the damper. Next, the first inlet shielding mechanism 30 and the first outlet shielding mechanism 70 inside (closer to the first waste heat recovery boiler 10) are closed. The same applies when the second waste heat recovery boiler 40 is inspected.

【0029】図5は図2の別実施例を示す図であり、図
右下の第1入口ダンパー20Bは、複数のダンパープレ
ート81・・・(この例では3個)を、ダンパー軸82・・・
でスイング可能に取付け、ダンパー軸82・・・に各々レ
バー83・・・を取付け、これらのレバー83・・・をリンク
プレート84で互いに連結し、このリンクプレート84
を直接又は間接的にアクチエータ85で上下させること
で、ダンパープレート81・・・を90度旋回させる。構
造はやや複雑になるが、アクチエータ85のストローク
が小さくなり、開閉動作に要する時間が短くなり、作業
時間を短縮することができる。
FIG. 5 is a view showing another embodiment of FIG. 2. The first inlet damper 20B at the lower right of the figure comprises a plurality of damper plates 81... (Three in this example) and a damper shaft 82.・ ・
. Are mounted on the damper shafts 82..., Each of which is connected to each other by a link plate 84.
Are directly or indirectly moved up and down by the actuator 85, so that the damper plates 81 are rotated by 90 degrees. Although the structure is slightly complicated, the stroke of the actuator 85 is small, the time required for the opening and closing operation is short, and the working time can be shortened.

【0030】第1入口遮蔽機構30Bは、遮蔽板86
と、この遮蔽板86を昇降するためのロープ87、プー
リ88、ウインチ89とからなり、33は第1煙道7の
途中に設けた遮蔽板収納部、34,34はシール材、3
5は架台である。
The first entrance shielding mechanism 30B includes a shielding plate 86.
And a rope 87, a pulley 88, and a winch 89 for raising and lowering the shielding plate 86. Reference numeral 33 denotes a shielding plate storage provided in the middle of the first flue 7, and reference numerals 34, 34 denote sealing materials,
Reference numeral 5 denotes a gantry.

【0031】以上に説明した通り、ダンパー20,20
B,50は単板式ダンパー(図2参照)、分割式ダンパ
ー(図5参照)のいづれでもよい。また、遮蔽機構3
0,30B,60のアクチエータはシリンダ(図2参
照)、ウインチ(図5参照)のいづれであってもよく、
遮蔽板31,86を上げ下げする手段は任意である。
As described above, the dampers 20, 20
B and 50 may be either a single-plate damper (see FIG. 2) or a split-type damper (see FIG. 5). In addition, the shielding mechanism 3
The actuators 0, 30B, and 60 may be cylinders (see FIG. 2) or winches (see FIG. 5).
Means for raising and lowering the shielding plates 31 and 86 are optional.

【0032】尚、実施例では分岐煙道を2本としたが、
3本以上であってもよい。2本の場合は原則として分岐
煙道の流路面積は主煙道のそれと同一とする。3本の場
合は、残りの分岐煙道2本の流路面積が、主煙道のそれ
と同一であればよいから、各分岐煙道の流路面積は、
(主煙道の流路面積)/2でよい。4本以上も同様であ
り、各分岐煙道の流路面積は、(主煙道の流路面積)/
(分岐煙道の数−1)であればよく、本数の増加に伴な
って、分岐煙道を細くし、ボイラーの容量を小さくする
ことは可能である。
In the embodiment, two branch flues are used.
There may be three or more. In the case of two pipes, the flow area of the branch flue is basically the same as that of the main flue. In the case of three, since the flow area of the remaining two branch flue may be the same as that of the main flue, the flow area of each branch flue is
(The area of the flow path of the main flue) / 2 may be sufficient. The same applies to four or more pipes, and the flow passage area of each branch flue is (flow passage area of the main flue) /
(Number of branch flues-1) is sufficient, and it is possible to make the branch flue thinner and reduce the capacity of the boiler as the number increases.

【0033】ただし、3本以上で且つ分岐煙道を細く
し、ボイラーの容量を小さくした場合は、通常運転時の
廃熱回収の増加は2本のときほど見込めない。そこで、
次の式に基づいて各々の分岐煙道の流路面積を決め、こ
の流路面積から内径を決定すればよい。
However, when three or more pipes are used, the branch flue is made thinner, and the capacity of the boiler is made smaller, the increase in waste heat recovery during normal operation is not as expected as when two pipes are used. Therefore,
The flow path area of each branch flue may be determined based on the following equation, and the inner diameter may be determined from the flow path area.

【0034】[0034]

【数1】 (Equation 1)

【0035】Sb=Smでは、十分に大きな熱回収量が
見込めるが、設備費用は嵩む。逆に、Sm/(n−1)
=Sbであれば、設備費用は抑えることができるが、熱
回収量の増加はそれほど見込めない。また、分岐煙道が
3本以上のときには、それらの分岐煙道が全て同一の流
路面積である必要はなく、各々が上記の式の範囲に入っ
ておればよい。この結果、既存の大径煙道に、より小径
の分岐煙道を2本以上繋ぐことも可能となる。
When Sb = Sm, a sufficiently large amount of heat recovery can be expected, but the equipment cost increases. Conversely, Sm / (n-1)
If = Sb, the equipment cost can be reduced, but the increase in the amount of heat recovery is not so expected. When there are three or more branch flues, all of the branch flues do not need to have the same flow passage area, and each may be within the range of the above formula. As a result, it becomes possible to connect two or more smaller-diameter branch flues to the existing large-diameter flue.

【0036】また、図6の従来設備に、第2煙道8及び
第2廃熱回収ボイラー40を加えるだけで図1の本発明
設備に変更することができることから、本発明は新設設
備に限らず既存設備の改造にも適用できる。さらには、
請求項1においては、第1煙道及び第2煙道に盲板を差
込むことのできるフランジ部を第1・第2廃熱回収ボイ
ラーの上流側に設けておき、必要なときにのみ、一方の
煙道に盲板を挿入しもよい。
Further, the present invention can be changed to the equipment of the present invention of FIG. 1 only by adding the second flue 8 and the second waste heat recovery boiler 40 to the conventional equipment of FIG. It can also be applied to retrofitting existing equipment. Moreover,
In claim 1, a flange portion into which a blind plate can be inserted into the first flue and the second flue is provided upstream of the first and second waste heat recovery boilers, and only when necessary, A blind plate may be inserted into one of the flues.

【0037】[0037]

【実施例】以下に本発明に係る実施例を示すが、本発明
はこれらに限定されるものではない。 比較例: 設備レイアウト 図6(送風機1+熱源1+ボイラ1) 送風機の風量 500×103 NM3/時 (Nはノルマル) ボイラーの圧力損失 145 mmAq ボイラー蒸気発生量 44 t/時 (tはトン)
EXAMPLES Examples according to the present invention will be shown below, but the present invention is not limited to these examples. Comparative example: Equipment layout Fig. 6 (Blower 1 + heat source 1 + boiler 1) Air volume of blower 500 × 10 3 NM 3 / hour (N is normal) Boiler pressure loss 145 mmAq Boiler steam generation 44 t / hour (t is ton)

【0038】 実施例: 設備レイアウト 図1(送風機1+熱源1+ボイラ2) 送風機の風量 744×103 NM3/時 (Nはノルマル) ボイラーの圧力損失 45 mmAq 第1ボイラー蒸気発生量 32.8 t/時 (tはトン) 第2ボイラー蒸気発生量 32.8 t/時 (tはトン)Example: Equipment Layout FIG. 1 (Blower 1 + Heat Source 1 + Boiler 2) Air Volume of Blower 744 × 10 3 NM 3 / hr (N is Normal) Boiler Pressure Loss 45 mmAq First Boiler Steam Generation 32.8 t / H (t is ton) Second boiler steam generation 32.8 t / h (t is ton)

【0039】評価:図3で説明した通り、2台のボイラ
ーを並行に設置したことにより、実施例では風量を74
4×103 NM3/時まで増加させることができた。こ
れの1/2すなわち372×103 NM3/時 を第1ボ
イラー(第1廃熱回収ボイラー)に供給したことによ
り、第1ボイラーで32.8t/時の蒸気を得ることが
できた。同様に第2ボイラーで32.8t/時の蒸気を
得ることができた。この結果、比較例の蒸気発生量が4
4t/時、実施例の蒸気発生量が32.8×2=65.
6t/時であるから、熱回収量において、実施例は比較
例の約50%増しとなった。
Evaluation: As described with reference to FIG. 3, two boilers were installed in parallel, and in this embodiment, the air volume was 74
It could be increased to 4 × 10 3 NM 3 / hour. By supplying 1/2 of this, that is, 372 × 10 3 NM 3 / hour, to the first boiler (first waste heat recovery boiler), 32.8 t / hour of steam could be obtained in the first boiler. Similarly, 32.8 t / h of steam could be obtained in the second boiler. As a result, the steam generation amount of the comparative example was 4
At 4 t / h, the amount of steam generated in the example is 32.8 × 2 = 65.
Since the rate was 6 t / hour, the heat recovery amount of the example was increased by about 50% of the comparative example.

【0040】[0040]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1は、熱源から廃ガスを導き出す主煙道及
び送風機と、主煙道の出口から複数本に分岐した分岐煙
道と、これらの分岐煙道の各々に設けた廃熱回収ボイラ
ーとからなる廃熱回収ボイラーの配置構造である。
According to the present invention, the following effects are exhibited by the above configuration. Claim 1 comprises a main flue and a blower that guide waste gas from a heat source, a plurality of branch flues branched from an outlet of the main flue, and a waste heat recovery boiler provided in each of these branch flues. It is an arrangement structure of a waste heat recovery boiler.

【0041】ある廃熱回収ボイラーを点検するときに
は、残りの廃熱回収ボイラーの運転を継続して熱回収を
行なう。従って、廃熱回収ボイラーの定期点検を見込ん
でも熱源設備をフルに稼働させることが可能となる。ま
た、ボイラーを並列に設けたのでボイラー及び前後の煙
道の圧力損失が減少し、その分だけ送風機の能力を上げ
ることができ、総熱回収量を大幅に増加させることがで
きる。
When checking a waste heat recovery boiler, the operation of the remaining waste heat recovery boiler is continued to recover heat. Therefore, it is possible to fully operate the heat source equipment even when anticipating the periodic inspection of the waste heat recovery boiler. In addition, since the boilers are provided in parallel, the pressure loss in the boiler and the flue before and after the boiler is reduced, and the capacity of the blower can be increased accordingly, and the total heat recovery amount can be greatly increased.

【0042】請求項2は、分岐煙道に、入口ダンパー、
入口遮蔽機構、廃熱回収ボイラーの順になるように入口
ダンパー及び入口遮蔽機構を設け、入口ダンパーを閉
じ、次に入口遮蔽板で煙道を完全に遮蔽することができ
る構造にしたことを特徴とする。ある廃熱回収ボイラー
を止めるときには、そのラインの入口ダンパーを止め、
次に入口遮蔽機構を閉状態にすれば、その廃熱回収ボイ
ラーの点検が可能となる。入口ダンパー及び入口遮蔽機
構をシリーズに設けたので、入口遮蔽機構の耐圧・耐熱
はそれ程必要では無く、簡単な構造にすることができ
る。
[0042] The second aspect of the present invention provides an inlet damper for a branch flue,
An inlet damper and an inlet shield mechanism are provided in the order of the inlet shield mechanism and the waste heat recovery boiler, the inlet damper is closed, and then the flue is completely shielded by the inlet shield plate. I do. When shutting down a waste heat recovery boiler, shut off the line's entrance damper,
Next, if the entrance shielding mechanism is closed, the waste heat recovery boiler can be inspected. Since the entrance damper and the entrance shielding mechanism are provided in series, the pressure resistance and heat resistance of the entrance shielding mechanism are not so required, and the structure can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃熱回収ボイラーの配置例を示す
フロー図
FIG. 1 is a flowchart showing an example of an arrangement of a waste heat recovery boiler according to the present invention.

【図2】本発明に係る入口ダンパー及び入口遮蔽機構の
原理図
FIG. 2 is a principle diagram of an entrance damper and an entrance shielding mechanism according to the present invention.

【図3】圧力系統図FIG. 3 Pressure system diagram

【図4】図1の別実施例図FIG. 4 is a view showing another embodiment of FIG. 1;

【図5】図2の別実施例を示す図FIG. 5 is a diagram showing another embodiment of FIG. 2;

【図6】従来の廃熱回収ボイラーを煙道に配置した例を
示すフロー図
FIG. 6 is a flowchart showing an example in which a conventional waste heat recovery boiler is arranged in a flue.

【符号の説明】[Explanation of symbols]

2…熱源、3…送風機、5…主煙道、6…主煙道の出
口、7…分岐煙道(第1煙道)、8…分岐煙道(第2煙
道)、10…廃熱回収ボイラー(第1廃熱回収ボイラ
ー)、20,20B…入口ダンパー(第1入口ダンパ
ー)、30,30B…入口遮蔽機構(第1入口遮蔽機
構)、31,86…遮蔽板、40…廃熱回収ボイラー
(第2廃熱回収ボイラー)、50…入口ダンパー(第2
入口ダンパー)、60…入口遮蔽機構(第2入口遮蔽機
構)。
2: heat source, 3: blower, 5: main flue, 6: exit of main flue, 7: branch flue (first flue), 8: branch flue (second flue), 10: waste heat Recovery boiler (first waste heat recovery boiler), 20, 20B ... inlet damper (first inlet damper), 30, 30B ... inlet shielding mechanism (first inlet shielding mechanism), 31, 86 ... shielding plate, 40 ... waste heat Recovery boiler (second waste heat recovery boiler), 50 inlet damper (second
Entrance damper), 60 ... entrance shielding mechanism (second entrance shielding mechanism).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱源から廃ガスを導き出す主煙道及び送
風機と、前記主煙道の出口から複数本に分岐した分岐煙
道と、これらの分岐煙道の各々に設けた廃熱回収ボイラ
ーとからなる廃熱回収ボイラーの配置構造。
1. A main flue and a blower for extracting waste gas from a heat source, a plurality of branch flues branched from an outlet of the main flue, and a waste heat recovery boiler provided in each of these branch flues. Structure of waste heat recovery boiler.
【請求項2】 前記分岐煙道に、入口ダンパー、入口遮
蔽機構、廃熱回収ボイラーの順になるように入口ダンパ
ー及び入口遮蔽機構を設け、前記入口ダンパーを閉じ、
次に入口遮蔽板で煙道を完全に遮蔽することができる構
造にしたことを特徴とする請求項1記載の廃熱回収ボイ
ラーの配置構造。
2. An entrance damper, an entrance shielding mechanism, and an entrance damper and an entrance shielding mechanism are provided in the branch flue in the order of an entrance damper, an entrance shielding mechanism, and a waste heat recovery boiler, and the entrance damper is closed.
2. The arrangement of claim 1, wherein the flue is completely shielded by the entrance shield plate.
JP9141669A 1997-05-30 1997-05-30 Disposition structure of waste heat recovery boilers Pending JPH10332101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9141669A JPH10332101A (en) 1997-05-30 1997-05-30 Disposition structure of waste heat recovery boilers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9141669A JPH10332101A (en) 1997-05-30 1997-05-30 Disposition structure of waste heat recovery boilers

Publications (1)

Publication Number Publication Date
JPH10332101A true JPH10332101A (en) 1998-12-15

Family

ID=15297442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9141669A Pending JPH10332101A (en) 1997-05-30 1997-05-30 Disposition structure of waste heat recovery boilers

Country Status (1)

Country Link
JP (1) JPH10332101A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249480A (en) * 2009-04-20 2010-11-04 Chugoku Electric Power Co Inc:The Method of blocking boiler flue
KR101045802B1 (en) 2008-11-24 2011-07-04 에스티엑스조선해양 주식회사 Marine Manifold Waste Heat Recovery System
CN108036288A (en) * 2017-11-20 2018-05-15 江苏太湖锅炉股份有限公司 The crossed configuration of more waste heat boilers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045802B1 (en) 2008-11-24 2011-07-04 에스티엑스조선해양 주식회사 Marine Manifold Waste Heat Recovery System
JP2010249480A (en) * 2009-04-20 2010-11-04 Chugoku Electric Power Co Inc:The Method of blocking boiler flue
CN108036288A (en) * 2017-11-20 2018-05-15 江苏太湖锅炉股份有限公司 The crossed configuration of more waste heat boilers

Similar Documents

Publication Publication Date Title
CA1046033A (en) System for recovering heat from the exhaust gases of a heat generator
CN106867549B (en) Method for realizing maintenance of dry quenching boiler without stopping production
CN105157047A (en) Method and system for debugging boiler of 1045MW ultra-supercritical coal-fired unit through pipe purging
CN106969638A (en) Rotary hearth furnace fume afterheat gradient utilization system and application method
EP2682677B1 (en) Heat exchanger
EP2586850A1 (en) Coke dry quenching plant and method for operating same
JP2012180958A5 (en)
JPH10332101A (en) Disposition structure of waste heat recovery boilers
CN107699255B (en) High-efficiency control method and device for dust removal of cyclone dust collector during low-load production of coke dry quenching
CN116753505A (en) Plate-type waste heat boiler device
KR101365530B1 (en) Apparatus and method for controling negative pressure in cokes dry quenching facilities
CN101349511A (en) Flue gas waste heat recovery method and apparatus for ferroalloy cluster electric stove
KR101341180B1 (en) Waste heat recovery apparatus
CN209726852U (en) A kind of heated-air drying cleaning raising condenser vacuum device
CN109612285B (en) Cold quick-witted waste heat recovery device of ring of variable operating mode grading
KR100752126B1 (en) System for detecting and controling initial trouble in the cooling chamber for coke dry quencher
CN110423626A (en) Dry coke quenching primary dedusting van-type coke powder cooling device
CN105650658A (en) Online maintenance device and method of low-temperature economizer
CN218544506U (en) Boiler cooling system
CN108709093A (en) A kind of gas burner tube-type air preheater fluorescent powder leakage inspection method
CN205535888U (en) Low -level (stack -gas) economizer overhauls device on line
CN113124255B (en) Hot air piping system maintenance cooling method
CN108543389A (en) Active coke desulphurizing denitrification apparatus Analytic Tower is quickly cooled down system and method
JP2020180719A (en) Heat pipe type exhaust heat recovery facility and hot stove facility equipped therewith
CN114033513B (en) Emergency starting steam supply system and method for thermal power generating unit