JPH10330193A - Production of oxide superconducting film - Google Patents

Production of oxide superconducting film

Info

Publication number
JPH10330193A
JPH10330193A JP10098192A JP9819298A JPH10330193A JP H10330193 A JPH10330193 A JP H10330193A JP 10098192 A JP10098192 A JP 10098192A JP 9819298 A JP9819298 A JP 9819298A JP H10330193 A JPH10330193 A JP H10330193A
Authority
JP
Japan
Prior art keywords
film
melt
substrate
liquid phase
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10098192A
Other languages
Japanese (ja)
Inventor
Sadahiko Miura
貞彦 三浦
Tadataka Morishita
忠隆 森下
Yoichi Enomoto
陽一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
NEC Corp
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, NEC Corp filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP10098192A priority Critical patent/JPH10330193A/en
Publication of JPH10330193A publication Critical patent/JPH10330193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make at high rate an oxide superconducting film with smooth surface and uniform thickness on a simple substrate structure. SOLUTION: This oxide supreconducting film is produced by the following method: a melt 1 for liquid phase epitaxial growth to be used comprises 10 wt.% Y1 Ba2 Cu3 Ox and 90 wt.% Ba3 Cu7 O10 , while a seed crystal (substrate) 2 to be used comprises 100 wt.% MgO; a film-forming atmosphere consists of 2 at.% oxygen and 98 at.% nitrogen; film-forming temperature is set at 900-970 deg.C; the objective film, i.e., Y1 Ba2 Cu3 Ox film 3, is formed by immersing the seed crystal 2 in the melt 1; after finishing the film formation, a rotating shaft 4 supporting the seed crystal 2 is gradually pulled up from position (a) via position (b) to position (c) as shown in the figure; the appropriate angle of inclination of the substrate relative to the melt 1 is 1 to 44 degree; subsequently, the shaft 4 is revolved at a rate of as high as 300 to 3,000 rpm for 5 s to 5 min as shown in (d) in the figure to remove an excess of residual melt 5 from the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面平滑で、厚み
の均一性の高い酸化物超電導膜の製造方法に関する。ま
た、本発明は、結晶性及びエピタキシャル性が優れ、良
好なマイクロ波特性を有する酸化物超電導膜の製造方法
に関する。
The present invention relates to a method for producing an oxide superconducting film having a smooth surface and a high uniformity of thickness. The present invention also relates to a method for producing an oxide superconducting film having excellent crystallinity and epitaxial properties and having good microwave characteristics.

【0002】[0002]

【従来の技術】酸化物高温超電導体を用いた超電導リー
ド、超電導配線、超電導マイクロ波素子等の電力応用な
らびに電子デバイス応用の研究が、現在行われている。
この様な応用においては、(1)ゼロ抵抗温度が高いこ
と、(2)臨界電流値が高いこと、(3)大面積性、均
一性、表面平滑性が、求められる。なお(2)の要求を
満たす為には厚膜作製が可能であり、かつ、その膜厚で
高い臨界電流密度値を示すことが望まれる。
2. Description of the Related Art Research on power application and electronic device application of superconducting leads, superconducting wirings, superconducting microwave devices and the like using an oxide high-temperature superconductor is currently being conducted.
In such applications, (1) high zero resistance temperature, (2) high critical current value, and (3) large area, uniformity, and surface smoothness are required. In order to satisfy the requirement (2), it is desired that a thick film can be produced and that the film has a high critical current density value at the film thickness.

【0003】これらの要求を満たす為に従来厚さ1μm
の膜を共蒸着法ならびにスパッタ法で作製し、酸素雰囲
気中高温熱処理を行うことが報告されているが、77K
での臨界電流密度は105 A/cm2 であり、まだ薄い
薄膜での最高値と比較し1/50程度であった。
In order to satisfy these requirements, the conventional thickness of 1 μm
It has been reported that a high-temperature film is formed by a co-evaporation method and a sputtering method and subjected to a high-temperature heat treatment in an oxygen atmosphere.
The critical current density was 10 5 A / cm 2 , which was about 1/50 as compared with the maximum value of the still thin film.

【0004】最近フォルトン(Foltyn)等は、C
eO2 /YSZ(100)基板上にパルスレーザ蒸着法
を用いて作製した6μm膜厚のY1 Ba2 Cu3 Ox
(YBCO)薄膜が臨界電流密度1×106 A/cm2
を示すことをアプライド・フィジックス・レター(Ap
plied Physics Letters)第63
巻13号1848〜1850項で報告している。基板構
造自身が多層構造で複雑であり、また厚膜の成膜手法と
しては、パルスレーザ蒸着法の成膜速度は0.1〜0.
2μm/minであり、遅いことが報告されている。
Recently, Foltyn et al.
6 μm-thick Y 1 Ba 2 Cu 3 Ox formed on the eO 2 / YSZ (100) substrate by using the pulse laser deposition method
(YBCO) thin film with critical current density of 1 × 10 6 A / cm 2
The Applied Physics Letter (Ap
Plied Physics Letters) No. 63
Volume 13 No. 1848-1850. The substrate structure itself is a multilayer structure and complicated, and as a method for forming a thick film, the film forming speed of the pulse laser vapor deposition method is 0.1 to 0.1.
2 μm / min, which is reported to be slow.

【0005】一方北村等は、MgO(100)基板上に
10μm膜厚Y1 Ba2 Cu3 Ox膜を液相エピタキシ
ャル成長法で作製し、膜作製後450℃5時間酸素雰囲
気中で熱処理することにより、77Kで1×105 A/
cm2 の臨界電流密度値をフィジカ・シー(Physi
cs C)第256巻第64〜72項で報告している。
この成膜手法では成長速度は約2μm/minであっ
て、高速であり、かつ、膜厚と臨界密度値の積に比例す
る臨界電流値も高く、成膜技術として有望である。しか
しながら膜上に融液の一部のBa−Cu酸化物が付着
し、電子デバイスとしての超電導膜(超電導配線、超電
導マイクロ波線路)としては、表面平滑性、均一性に問
題があった。
On the other hand, Kitamura et al. Prepared a 10 μm thick Y 1 Ba 2 Cu 3 Ox film on a MgO (100) substrate by a liquid phase epitaxial growth method, and heat-treated at 450 ° C. for 5 hours in an oxygen atmosphere after forming the film. 1 × 10 5 A / at 77K
The critical current density value of cm 2 was determined by Physi
cs C) reported in Vol. 256, pp. 64-72.
This film formation technique has a high growth rate of about 2 μm / min, is high in speed, and has a high critical current value proportional to the product of the film thickness and the critical density value, and is promising as a film formation technique. However, a part of the Ba-Cu oxide of the melt adheres to the film, and there is a problem in surface smoothness and uniformity as a superconducting film (superconducting wiring, superconducting microwave line) as an electronic device.

【0006】更に、酸化物高温超電導体を用いた電子デ
バイスの応用研究が現在行われている。その中で超電導
マイクロ波受動素子(共振器、フィルター)の研究開発
が、移動体通信の分野の急速な発展に伴って活発に行わ
れている。
Further, application studies of electronic devices using oxide high-temperature superconductors are currently being conducted. Among them, research and development of superconducting microwave passive elements (resonators and filters) have been actively conducted with the rapid development of the field of mobile communication.

【0007】これらのデバイスを構成する超電導膜を作
製する手法として、従来パルスレーザ蒸着法、スパッタ
法、共蒸着法そして有機金属化学気相成長法が知られて
おり、これらの膜がマイクロ波領域で比較的良好な表面
抵抗値を示すことが例えばジャーナル・オブ・スーパー
コンダクティビティー(Journal of Sup
erconductivity)第6巻3号119〜1
60項において、報告されている。しかしながら、これ
らの膜においては、解決しなければならない問題があっ
た。一般に共振器及びフィルター等の高周波デバイスに
おいて相互変調歪みが大きくなると、通信システムにお
いて混信が生じることが知られている。その為、超電導
膜を用いた共振器及びフィルターにおいては、相互変調
歪みを小さく抑える必要がある。
Conventionally, pulse laser deposition, sputtering, co-deposition, and metal organic chemical vapor deposition have been known as methods for producing superconducting films constituting these devices. Shows a relatively good surface resistance value in, for example, Journal of Super Conductivity.
erconductivity) Vol. 6, No. 3, 119-1
Reported in paragraph 60. However, these films have problems that need to be solved. In general, it is known that when the intermodulation distortion increases in high-frequency devices such as a resonator and a filter, interference occurs in a communication system. Therefore, in the resonator and the filter using the superconducting film, it is necessary to suppress the intermodulation distortion.

【0008】酸化物超電導膜の相互変調歪みは、作製手
法及び作製条件に強く依存することが例えばアイ・トリ
プルイー・トランズアクション・オン・アプライド・ス
ーパーコンダクティビティー(IEEE Transa
ctions on Applied Superco
nductivity)第7巻2号1911〜1916
項で報告されており、その起源として膜中の粒界の存在
が指摘されているが、その軽減が困難であることが報告
されている。
[0008] The intermodulation distortion of an oxide superconducting film strongly depends on the manufacturing technique and manufacturing conditions, for example, eye triple-e transaction on applied superconductivity (IEEE Transa).
ctions on Applied Superco
nudity) Vol. 7, No. 2, 1911-1916
The existence of grain boundaries in the film has been pointed out as a source of the problem, but it has been reported that the reduction is difficult.

【0009】一方Y1 Ba2 Cu3 Ox膜の液相エピタ
キシャル成長法は、成長条件が低過飽和で熱平衡に近
く、高品質な単結晶膜が高速で作製できることが例えば
ジャーナル・オブ・クリスタル・グロース(Journ
al of CrystalGrowth)第158巻
61〜67項で報告されている。更に液相成長Y1 Ba
2 Cu3 Ox膜は、先程述べたマイクロ波領域での表面
抵抗の相互変調歪みが非常に小さいことが例えばExt
ended Abstracts of 6th In
ternational Superconducti
ve Conference2号J16で報告されてい
る。
On the other hand, in the liquid phase epitaxial growth method of a Y 1 Ba 2 Cu 3 Ox film, the growth conditions are close to thermal equilibrium with low supersaturation, and a high-quality single crystal film can be produced at high speed. Journal
al. Crystal Growth), Vol. 158, pp. 61-67. Furthermore, liquid phase growth Y 1 Ba
The 2 Cu 3 Ox film has very small intermodulation distortion of the surface resistance in the microwave region as described above, for example, Ext.
ended Abstracts of 6th In
international Superconductor
ve Conference No. 2 J16.

【0010】しかしながら、その表面抵抗値は、スパッ
タ法及びパルス・レーザ蒸着法により作製された膜の値
と比べて7〜8倍高い値を示した。
However, the surface resistance value is 7 to 8 times higher than that of the film formed by the sputtering method and the pulse laser deposition method.

【0011】[0011]

【発明が解決しようとする課題】本発明は、簡単な基板
構造上に臨界温度が高く、臨界電流値の高い酸化物超電
導膜を早い成膜速度で作製することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to prepare an oxide superconducting film having a high critical temperature and a high critical current value on a simple substrate structure at a high deposition rate.

【0012】更に、本発明は、液相エピタキシャル成長
法において特に問題となる融液の一部が基板に付着する
ことを有効に防ぎ、均一で良質な膜を作製する製造技術
を提供するものである。
Further, the present invention provides a manufacturing technique for effectively preventing a part of the melt, which is particularly problematic in the liquid phase epitaxial growth method, from adhering to the substrate and producing a uniform and high quality film. .

【0013】本発明は、液相エピタキシャル成長法によ
るY1 Ba2 Cu3 Ox膜作製において、臨界温度が高
く、更にマイクロ波領域での表面抵抗の低い膜を作製す
ることを目的とする。
An object of the present invention is to prepare a film having a high critical temperature and a low surface resistance in a microwave region in the production of a Y 1 Ba 2 Cu 3 Ox film by a liquid phase epitaxial growth method.

【0014】更に、本発明は、液相エピタキシャル成長
1 Ba2 Cu3 Ox膜に特徴的な、粒界が少なく、そ
の傾角が非常に小さい単結晶的な膜を作製可能である
為、マイクロ波領域での表面抵抗の相互変調歪みの非常
に小さい膜を作製する製造技術を提供するものである。
Further, the present invention can produce a single crystal film having a small number of grain boundaries and a very small tilt angle, which is characteristic of a liquid phase epitaxially grown Y 1 Ba 2 Cu 3 Ox film. An object of the present invention is to provide a manufacturing technique for manufacturing a film having very small intermodulation distortion of surface resistance in a region.

【0015】[0015]

【課題を解決するための手段】本発明においては、酸化
物超電導単結晶作製技術を応用した液相エピタキシャル
成長法を用いて作製し、それを超電導配線、超電導マイ
クロ波素子等に応用するものである。液相エピタキシャ
ル成長法を用いることにより、結晶性、面内配向性の優
れた厚膜を早い成膜速度で簡単な構造の基板上に作製す
ることが可能になる。
According to the present invention, a liquid crystal epitaxial growth method is applied to a superconducting oxide superconducting single crystal, which is applied to a superconducting wiring, a superconducting microwave device, or the like. . By using the liquid phase epitaxial growth method, a thick film having excellent crystallinity and in-plane orientation can be formed on a substrate having a simple structure at a high film forming rate.

【0016】更に液相エピタキシャル作製膜で問題とな
る融液の一部が基板内に残留し、膜の均一性、表面平滑
性を劣化させることを、基板を傾斜して融液の粘性を利
用して、融液より引きはなすことにより、大部分解決す
ることを見い出した。その上基板を傾斜し、融液より引
き離した後、基板のすみに残留した融液を、基板を高速
回転し、遠心力を用いて膜面内から除去可能であること
が明瞭となった。本発明により、超電導配線、超電導マ
イクロ波素子等用の結晶性、超電導特性が良好で、か
つ、均一性、表面平滑性の優れた超電導膜が作製可能と
なり、本発明の波及効果は甚大である。
Further, the fact that a part of the melt, which is a problem in the liquid phase epitaxially formed film, remains in the substrate and deteriorates the uniformity and surface smoothness of the film can be obtained by tilting the substrate and utilizing the viscosity of the melt. Then, it was found that most of the problems could be solved by pulling away from the melt. After the substrate was tilted and separated from the melt, it became clear that the melt remaining in the corners of the substrate could be removed from the film surface by centrifugal force by rotating the substrate at high speed. According to the present invention, superconducting films having excellent crystallinity and superconducting properties for superconducting wiring and superconducting microwave elements, and having excellent uniformity and surface smoothness can be produced, and the ripple effect of the present invention is enormous. .

【0017】また、本発明においては、単結晶作製技術
を応用した液相エピタキシャル成長法を用いて酸化物超
電導膜を作製し、それを超電導配線、超電導マイクロ波
素子等に応用するものである。液相エピタキシャル成長
法を用いることにより、結晶性、面内配向性の優れた厚
膜を早い成膜速度で簡単な構造の基板上に作製すること
が可能である。
Further, in the present invention, an oxide superconducting film is produced by using a liquid phase epitaxial growth method to which a single crystal producing technique is applied, and is applied to a superconducting wiring, a superconducting microwave element and the like. By using the liquid phase epitaxial growth method, a thick film having excellent crystallinity and in-plane orientation can be formed on a substrate having a simple structure at a high film forming rate.

【0018】更に成膜時及び基板冷却時の酸素分圧を2
%以上にすることにより、更に結晶性、面内配向性が向
上することを見い出した。その上その酸素分圧の上昇に
より、マイクロ波領域での表面抵抗値を大幅に減少可能
であることが明瞭となった。本発明により、超電導配
線、超電導マイクロ波受動素子等用の結晶性、超電導特
性が良好で、かつマイクロ波領域で低い表面抵抗値を示
す超電導膜が作製可能であり、本発明の波及効果は甚大
である。
Further, the oxygen partial pressure during film formation and during substrate cooling is reduced to 2
% Or more, it was found that the crystallinity and the in-plane orientation were further improved. Furthermore, it became clear that the surface resistance in the microwave region could be significantly reduced by increasing the oxygen partial pressure. According to the present invention, a superconducting film having good crystallinity and superconductivity for superconducting wiring and a superconducting microwave passive element and exhibiting a low surface resistance value in a microwave region can be produced. It is.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態については、
実施例の項で図1〜図8を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment will be described in detail with reference to FIGS.

【0020】[0020]

【実施例】まず、本発明の実施例1について説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a first embodiment of the present invention will be described.

【0021】図1に本発明の液相エピタキシャル成長法
の概略図を、又比較の為に図2に従来のエピタキシャル
成長法の概略図を示す。液晶エピタキシャル成長の融液
1としては10wt.%Y1 Ba2 Cu3 Ox、90w
t.%Ba3 Cu7 10を用い、種結晶(基板)2とし
てはMgO(100)を用いた。ここで、Xは酸素量で
ある。また、種結晶(基板)2の形状は、正方形又は円
形である。成膜雰囲気として酸素2at.%、窒素98
at.%とし、成膜温度は960〜970℃とした。図
2(a)のように種結晶(基板)2を融液1に浸すこと
によりY1 Ba2 Cu3 Ox膜3の成膜を行う。
FIG. 1 is a schematic view of a liquid phase epitaxial growth method of the present invention, and for comparison, FIG. 2 is a schematic view of a conventional epitaxial growth method. As the melt 1 for the liquid crystal epitaxial growth, 10 wt. % Y 1 Ba 2 Cu 3 Ox, 90w
t. % Ba 3 Cu 7 O 10 and MgO (100) as the seed crystal (substrate) 2. Here, X is the amount of oxygen. The shape of the seed crystal (substrate) 2 is a square or a circle. Oxygen 2 at. %, Nitrogen 98
at. %, And the film formation temperature was 960 to 970 ° C. As shown in FIG. 2A, a Y 1 Ba 2 Cu 3 Ox film 3 is formed by immersing a seed crystal (substrate) 2 in a melt 1.

【0022】成膜終了後図2(b)のように種結晶2を
支持する回転軸4を徐々に引き上げていく。通常の引き
上げ手法においては図2(c)のように引き上げ後にB
a−Cuの残留した融液5の一部が基板中心付近に残
り、Ba−Cuの残留した融液5とY1 Ba2 Cu3
x膜3及び種結晶2の熱膨張係数の違いにより、Ba−
Cuの残留した融液5の下のY1 Ba2 Cu3 Ox膜3
の剥離及び種結晶2自身の劈開を生じた。
After the film formation, the rotating shaft 4 supporting the seed crystal 2 is gradually pulled up as shown in FIG. In a normal pulling method, as shown in FIG.
A part of the melt 5 where a-Cu remains remains near the center of the substrate, and the melt 5 where Ba-Cu remains and Y 1 Ba 2 Cu 3 O
Due to the difference in thermal expansion coefficient between the x film 3 and the seed crystal 2, Ba-
Y 1 Ba 2 Cu 3 Ox film 3 under melt 5 with Cu remaining
Of the seed crystal 2 and cleavage of the seed crystal 2 itself.

【0023】本発明においては図1(a)のように基板
傾斜を行うことにより、成膜終了後種結晶2を支持する
回転軸4を徐々に引き上げていく際、Y1 Ba2 Cu3
Ox膜3とBa−Cu融液1との濡れ性及びBa−Cu
融液1自身の粘性により、引き上げ速度と傾斜角を最適
化することにより、徐々に融液を基板から引き離し、過
剰なBa−Cu融液を除去することが可能となる。更に
図1(c)のようにこの手法においては、Ba−Cuの
残留した融液5を基板の端に追いやることが可能とな
る。図3(a)にこの手法で作製した薄膜の実体の顕微
鏡写真を示す。なお左端に見えるのはマーカーであり、
1目盛1mmを示す。図からも明らかなように、図中右
下のBa−Cuの残留した融液5によるY1 Ba2 Cu
3 Ox膜の剥離部を除き、20mm×20mmの領域に
おいてほぼ均一な薄膜が作製可能であることが判明す
る。図4にその試料の超電導特性の面内分布を示す。横
軸はある一辺からの距離を示し、縦軸には超電導臨界温
度を示す。なお試料は薄膜作製後600℃10時間、5
00℃10時間、400℃60時間酸素雰囲気中熱処理
を行った。図からも明らかな様に、ゼロ抵抗温度(Tc
end)が90K以上の特性をこの領域においては、
持っており、良好でかつ均一な超電導特性をもっている
ことが判明する。また、超電導開始温度(Tc ons
et)が92K以上の特性を持っており、良好でかつ均
一な超電導特性をもつことも判明する。
In the present invention, by tilting the substrate as shown in FIG. 1A, when the rotating shaft 4 supporting the seed crystal 2 is gradually pulled up after the film formation, Y 1 Ba 2 Cu 3
Wettability between Ox film 3 and Ba-Cu melt 1 and Ba-Cu
By optimizing the lifting speed and the inclination angle based on the viscosity of the melt 1 itself, it is possible to gradually separate the melt from the substrate and remove excess Ba-Cu melt. Further, as shown in FIG. 1C, in this method, the melt 5 in which Ba-Cu remains can be driven to the edge of the substrate. FIG. 3A shows a micrograph of the substance of the thin film produced by this method. The marker at the left end is a marker,
One scale represents 1 mm. As is clear from the figure, Y 1 Ba 2 Cu by the melt 5 in which Ba—Cu remains at the lower right in the figure.
It turns out that a substantially uniform thin film can be produced in a region of 20 mm × 20 mm except for the portion where the 3 Ox film is separated. FIG. 4 shows the in-plane distribution of the superconducting characteristics of the sample. The horizontal axis indicates the distance from a certain side, and the vertical axis indicates the superconducting critical temperature. The sample was prepared at 600 ° C for 10 hours,
The heat treatment was performed in an oxygen atmosphere at 00 ° C. for 10 hours and at 400 ° C. for 60 hours. As is clear from the figure, the zero resistance temperature (Tc
end) is 90K or more in this region.
It has a good and uniform superconducting property. In addition, the superconducting start temperature (Tcons)
et) has a characteristic of 92K or more, and also has a good and uniform superconducting characteristic.

【0024】実験的に基板が融液面から7mm程度離れ
ると、融液が基板から離れることが確認されている。そ
のため最小基板寸法を直径10mmとすると、約44度
が最大傾斜角となる。一方、傾斜角が1度以下において
は、融液の粘性がうまく作用せず、引き上げ後の膜中に
おいて、多数の残留融液が確認された。故に基板の融液
面に対する傾斜角度は、1度乃至44度が適切であると
考えられる。
It has been experimentally confirmed that when the substrate is separated from the melt surface by about 7 mm, the melt is separated from the substrate. Therefore, if the minimum substrate size is 10 mm in diameter, about 44 degrees is the maximum inclination angle. On the other hand, when the tilt angle was 1 degree or less, the viscosity of the melt did not work well, and many residual melts were confirmed in the film after lifting. Therefore, it is considered that an appropriate inclination angle of the substrate with respect to the melt surface is 1 to 44 degrees.

【0025】なお、本実験の引き上げ速度は、1mm乃
至10mm/minである。
The pulling speed in this experiment is 1 mm to 10 mm / min.

【0026】次に、本発明の実施例2について説明す
る。
Next, a second embodiment of the present invention will be described.

【0027】実施例1と同様な作製条件で薄膜を作製
し、図1で示す引き上げ手法で融液1からの引き離しを
行った後、温度900〜960℃の場所で図1(d)で
示すように引き上げ、回転軸4を中心として種結晶2を
1000rpm、10秒間回転を行った。その時基板の
端にBa−Cuの残留した融液5に働く遠心力はω2 ×
Rに比例し(ω=引き上げ軸の角回転速度、R=引き上
げ軸中心からBa−Cuの残留した融液5までの距
離)、基板から引き離そうとする力が働く。図3(b)
にその条件で作製した薄膜の実体の顕微鏡写真を示す。
図3(a)と比較し、Ba−Cuの残留した融液5によ
るY1 Ba2 Cu3 Ox膜の剥離部がなくなり、Ba−
Cuの残留した融液5が高速回転により除去されている
ことが判明する。その結果23mm×23mmの領域に
おいて均一な薄膜が作製された。図3(b)で示す膜の
超電導臨界温度の面内分布は図4と同様であり、均一で
良好な薄膜が作製可能であることが判明した。
A thin film was formed under the same manufacturing conditions as in Example 1, separated from the melt 1 by the pulling method shown in FIG. 1, and then shown in FIG. 1D at a temperature of 900 to 960 ° C. And the seed crystal 2 was rotated about the rotation axis 4 at 1000 rpm for 10 seconds. At that time, the centrifugal force acting on the melt 5 with Ba-Cu remaining on the edge of the substrate is ω 2 ×
In proportion to R (ω = angular rotation speed of the pulling shaft, R = distance from the center of the pulling shaft to the melt 5 where Ba-Cu remains), a force acts to separate the substrate from the substrate. FIG. 3 (b)
Fig. 3 shows a micrograph of the substance of the thin film produced under the conditions.
Compared to FIG. 3A, the peeled portion of the Y 1 Ba 2 Cu 3 Ox film due to the melt 5 in which Ba—Cu remains is eliminated, and Ba—
It turns out that the melt 5 in which Cu remained is removed by high-speed rotation. As a result, a uniform thin film was formed in an area of 23 mm × 23 mm. The in-plane distribution of the superconducting critical temperature of the film shown in FIG. 3B is similar to that in FIG. 4, and it has been found that a uniform and good thin film can be produced.

【0028】実験の結果、基板の回転速度は300rp
m乃至3000rpmが適切であり、また、基板の回転
時間は5秒乃至5分が適切であることを確認した。
As a result of the experiment, the rotation speed of the substrate was 300 rpm
It was confirmed that m to 3000 rpm was appropriate, and that the substrate rotation time was 5 seconds to 5 minutes.

【0029】続いて、本発明の実施例3について説明す
る。
Next, a third embodiment of the present invention will be described.

【0030】Y1 Ba2 Cu3 Ox膜は、液相エピタキ
シャル成長法により作製した。液相エピタキシャル成長
の融液としては18wt.%Y1 Ba2 Cu3 Ox、8
2wt.%Ba3 Cu7 10を用い、種結晶基板として
はMgO(100)を用いた。図5は得られた膜のθ−
2θX線回折ピーク(005)のロッキング・カーブの
半値幅の膜厚依存性を示す。図5中、四角は、成膜及び
冷却時雰囲気が酸素1.3at.%、窒素98.7a
t.%、成膜温度は958℃で作製した膜(低酸素雰囲
気、低温で作製した膜)のデータを示す。なお、1気圧
の空気中でのY1Ba2 Cu3 Ox膜の分解温度は10
00℃である。又図5中、三角は、成膜及び冷却時雰囲
気が酸素13at.%、窒素87at.%、成膜温度は
980℃で作製した膜(高酸素雰囲気、高温で作製した
膜)のデータを示す。なお、すべての膜は、基板に対し
C軸が垂直に強く配向していた。膜厚の増加とともに両
方ともロッキング・カーブの半値幅は減少する傾向にあ
る。これは膜厚の増加とともに平均粒径が大きくなって
いることに対応する。更に低酸素雰囲気、低温で作製し
た膜(図5中四角)に比べ、高酸素雰囲気、高温で作製
した膜はどの膜厚においてもロッキング・カーブの半値
幅が小さいことがわかる。つまり高酸素雰囲気、高温で
作製した膜は、良好な結晶性を有していることがわか
る。
The Y 1 Ba 2 Cu 3 Ox film was formed by a liquid phase epitaxial growth method. As a melt for liquid phase epitaxial growth, 18 wt. % Y 1 Ba 2 Cu 3 Ox, 8
2 wt. % Ba 3 Cu 7 O 10 and MgO (100) as a seed crystal substrate. FIG. 5 shows θ- of the obtained film.
The thickness dependence of the half width of the rocking curve of the 2θ X-ray diffraction peak (005) is shown. In FIG. 5, squares indicate that the atmosphere at the time of film formation and cooling is 1.3 at. %, Nitrogen 98.7a
t. % And data of a film formed at a film formation temperature of 958 ° C. (a film formed in a low oxygen atmosphere at a low temperature). The decomposition temperature of the Y 1 Ba 2 Cu 3 Ox film in air at 1 atm is 10
00 ° C. In FIG. 5, the triangle indicates that the atmosphere during film formation and cooling is 13 at. %, 87 at. %, And data of a film formed at a deposition temperature of 980 ° C. (a film formed in a high oxygen atmosphere at a high temperature) are shown. In all the films, the C-axis was strongly oriented perpendicular to the substrate. In both cases, the half width of the rocking curve tends to decrease as the film thickness increases. This corresponds to the fact that the average particle size increases as the film thickness increases. Further, it can be seen that the full width at half maximum of the rocking curve of the film formed in a high oxygen atmosphere and at a high temperature is smaller than that of the film formed in a low oxygen atmosphere and at a low temperature (square in FIG. 5). That is, it is understood that the film formed in a high oxygen atmosphere and at a high temperature has good crystallinity.

【0031】更に本発明の実施例4について説明する。Next, a fourth embodiment of the present invention will be described.

【0032】実施例3と同様な2種類の作製条件で成膜
した膜についてラザフォード後方散乱法(RBS)によ
り評価したスペクトルを図6に示す。なお、膜厚は共に
2μmとした。図6(a)は低酸素雰囲気、低温で作製
した膜のRBSスペクトルを、図6(b)は高酸素雰囲
気、高温で作製した膜のRBSスペクトルを、それぞれ
示す。
FIG. 6 shows a spectrum of a film formed under the same two kinds of manufacturing conditions as in Example 3 evaluated by Rutherford backscattering method (RBS). The film thickness was 2 μm. FIG. 6A shows an RBS spectrum of a film manufactured in a low oxygen atmosphere and a low temperature, and FIG. 6B shows an RBS spectrum of a film manufactured in a high oxygen atmosphere and a high temperature.

【0033】どちらの試料においても、ランダム・スペ
クトルと比べ、アライン・スペクトルが低くなっている
ことがわかる。図6(a)のχmin値(チャンネル・
ナンバー860付近のアライン・スペクトル極小値での
アライン・スペクトルとランダム・スペクトルの比)は
3.1%と比較的エピタキシャル性は良好ではあるが、
まだ若干の結晶性の乱れがあると考えられる。一方図6
(b)の試料においてはχmin値は1.9%となり、
そのエピタキシャル性は非常に良好であり、このRBS
装置の検出感度の限界に近いと思われる。このように低
酸素雰囲気、低温で作製した膜に比べ、高酸素雰囲気、
高温で作製した膜は、更に良好なエピタキシャル性を示
すことがわかる。
It can be seen that in both samples, the aligned spectrum is lower than the random spectrum. The χmin value of FIG.
The ratio between the aligned spectrum and the random spectrum at the minimum value of the aligned spectrum near the number 860) is 3.1%, which is relatively good in epitaxial property.
It is considered that there is still some disorder in crystallinity. On the other hand, FIG.
In the sample of (b), the Δmin value was 1.9%,
Its epitaxial properties are very good and this RBS
It seems to be near the limit of the detection sensitivity of the device. As compared to a film prepared at a low oxygen atmosphere and a low temperature, a high oxygen atmosphere,
It can be seen that the film produced at a high temperature shows even better epitaxial properties.

【0034】更に本発明の実施例5について説明する。
実施例3と同様な作製条件で膜を作製し、図7に示すよ
うなマイクロストリップ共振器を作製し、その特性を調
べた。基板13の寸法は、長さ20mm、幅8mmであ
り、ストリップ部11の中心長さ5mm、幅0.5m
m、カップリング・ギャップ0.5mmとし、共振周波
数は約10.8GHzとした。またストリップ部11は
液相エピタキシャル成長膜を用い、またグラウンド部1
2としてはパルス・レーザ蒸着法で作製した膜厚1μm
のY1 Ba2 Cu3 Ox膜を用いた。なお、液相エピタ
キシャル成長Y1Ba2 Cu3 Ox膜を酸化するため
に、膜作製後酸素雰囲気中500℃50時間、400℃
60時間熱処理を行った。これらの共振器の無負荷Q
(Qo)値の温度変化を図8に示す。図8中、四角は、
低酸素雰囲気、低温で作製した膜のデータを、又三角は
高酸素雰囲気、高温で作製した膜のデータをそれぞれ示
す。低酸素雰囲気、低温で作製した膜を用いた共振器は
77KでQo=3500、60KでQo=11000の
値を示した。一方高酸素雰囲気、高温で作製した膜を用
いた共振器は77KでQo=14000、40KでQo
=23000の値を示した。マイクロ・ストリップ共振
器においてはQo値は膜の表面抵抗の逆数に比例するこ
とより、高酸素雰囲気、高温で作製した膜を用いること
により、マイクロ波領域での表面抵抗が減少したことが
わかる。特性が成膜条件を変更することにより向上した
理由としては、次の事項等が考えられる。
Next, a fifth embodiment of the present invention will be described.
A film was manufactured under the same manufacturing conditions as in Example 3, a microstrip resonator as shown in FIG. 7 was manufactured, and its characteristics were examined. The dimensions of the substrate 13 are 20 mm in length and 8 mm in width, and the center length of the strip portion 11 is 5 mm and the width is 0.5 m.
m, the coupling gap was 0.5 mm, and the resonance frequency was about 10.8 GHz. The strip portion 11 uses a liquid phase epitaxial growth film, and the ground portion 1
2 is a film thickness of 1 μm prepared by a pulsed laser deposition method.
Y 1 Ba 2 Cu 3 Ox film was used. In order to oxidize the liquid phase epitaxially grown Y 1 Ba 2 Cu 3 Ox film, the film was formed in an oxygen atmosphere at 500 ° C. for 50 hours at 400 ° C.
Heat treatment was performed for 60 hours. The no-load Q of these resonators
FIG. 8 shows the temperature change of the (Qo) value. In FIG. 8, the square is
Data of a film manufactured in a low oxygen atmosphere and a low temperature are shown, and triangles show data of a film manufactured in a high oxygen atmosphere and a high temperature. The resonator using the film manufactured in a low oxygen atmosphere and low temperature showed a value of Qo = 3500 at 77K and a value of Qo = 11000 at 60K. On the other hand, a resonator using a film produced in a high oxygen atmosphere and at a high temperature has Qo = 14000 at 77K and Qo at 40K.
= 23000. Since the Qo value of the microstrip resonator is proportional to the reciprocal of the surface resistance of the film, it can be seen that the surface resistance in the microwave region was reduced by using the film manufactured in a high oxygen atmosphere and at a high temperature. The following items can be considered as reasons why the characteristics have been improved by changing the film forming conditions.

【0035】(1)アズ・グローン状態においては、高
酸素雰囲気中で作製した試料ではある程度酸素が膜中に
導入されているが(X線回折法より求めたC軸長11.
80オングストローム)、低酸素雰囲気中で作製した試
料では膜中の酸素がかなり欠乏した状態(X線回折法よ
り求めたC軸長11.83〜11.85オングストロー
ム)であるため、後の酸素雰囲気中低温熱処理において
も低酸素雰囲気中で作製した試料においては酸素が膜中
に十分には導入されず、一部に半導体相あるいは60K
で超電導に転移する相が残ってしまい、表面抵抗の増加
につながった。
(1) In the as-grown state, oxygen is introduced into the film to some extent in a sample prepared in a high oxygen atmosphere (C-axis length determined by X-ray diffraction method).
80 angstrom), the sample prepared in a low oxygen atmosphere is in a state in which oxygen in the film is considerably deficient (C-axis length 11.83 to 11.85 angstrom determined by X-ray diffraction method). In a sample prepared in a low-oxygen atmosphere even in the low-temperature heat treatment, oxygen is not sufficiently introduced into the film, and a part of the semiconductor phase or 60K
As a result, a phase that transitions to superconductivity remains, leading to an increase in surface resistance.

【0036】(2)実施例3,4で示したように高酸素
雰囲気、高温で作製した膜は、X線回折ロッキング・カ
ーブの半値幅が狭くかつRBSでのχmin値が小さい
ことから、結晶性及びエピタキシャル性が良好になって
いることが確認されていることより、その結晶性が良く
なったことにより膜の表面抵抗が減少した。
(2) As shown in Examples 3 and 4, the films prepared in a high oxygen atmosphere and at a high temperature have a small half-width of the X-ray diffraction rocking curve and a small Δmin value in RBS. It was confirmed that the crystallinity was improved, and the surface resistance of the film was reduced.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば、速い成膜速度で、簡単な基板構造上に、結晶
性、エピタキシャル性がすぐれ、高い臨界電流密度を示
す薄膜が作製可能であり、高臨界電流超電導リード、超
電導配線、超電導線材の開発が可能になり、工業的価値
は大きい。
As is apparent from the above description, according to the present invention, a thin film having excellent crystallinity and epitaxial properties and a high critical current density can be formed on a simple substrate structure at a high film forming rate. It is possible, and development of high critical current superconducting lead, superconducting wiring, and superconducting wire becomes possible, and the industrial value is great.

【0038】また、本発明によれば、液相エピタキシャ
ル法により結晶性、エピタキシャル性がすぐれ、低い表
面抵抗値を示す膜が作製可能であり、高性能超電導配
線、超電導マイクロ波受動素子の開発が可能になり、工
業的価値は大きい。
Further, according to the present invention, a film having excellent crystallinity and epitaxial property and a low surface resistance can be produced by a liquid phase epitaxial method, and the development of a high-performance superconducting wiring and a superconducting microwave passive element has been developed. It is possible and industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液相エピタキシャル成長法の概略図で
ある。
FIG. 1 is a schematic view of a liquid phase epitaxial growth method of the present invention.

【図2】従来の液相エピタキシャル成長法の概略図であ
る。
FIG. 2 is a schematic view of a conventional liquid phase epitaxial growth method.

【図3】本発明の2つの実施例により作製した薄膜の実
体の顕微鏡写真であり、(a)は実施例1のもの、
(b)は実施例2のものを、それぞれ示す。
FIGS. 3A and 3B are photomicrographs of a thin film entity produced according to two examples of the present invention, wherein FIG.
(B) shows that of Example 2.

【図4】本発明により作製した酸化物超電導膜の、基板
上での位置と超電導臨界温度との関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a position on a substrate and a superconducting critical temperature of an oxide superconducting film produced according to the present invention.

【図5】本発明の実施例3において、液相エピタキシャ
ル成長法により作製したY1 Ba2 Cu3 Ox膜のθ−
2θX線回折ピーク(005)のロッキング・カーブの
半値幅の膜厚依存性を示すグラフである。
FIG. 5 shows the relationship between θ− of the Y 1 Ba 2 Cu 3 Ox film produced by the liquid phase epitaxial growth method in Example 3 of the present invention.
It is a graph which shows the film thickness dependence of the half value width of the rocking curve of a 2 (theta) X-ray diffraction peak (005).

【図6】本発明の実施例4において、液相エピタキシャ
ル成長法により作製した膜のラザフォード後方散乱法で
評価したスペクトルを示すグラフであり、(a)は低酸
素雰囲気及び低温の状態のもの、(b)は高酸素雰囲気
及び高温の状態のものを、それぞれ示す。
FIG. 6 is a graph showing a spectrum of a film manufactured by a liquid phase epitaxial growth method in Example 4 of the present invention, which is evaluated by Rutherford backscattering method. b) shows a high oxygen atmosphere and a high temperature state, respectively.

【図7】本発明の実施例5における液相エピタキシャル
成長膜のマイクロ波表面抵抗値を測定するためのマイク
ロ・ストリップ共振器の概略図である。
FIG. 7 is a schematic diagram of a microstrip resonator for measuring a microwave surface resistance value of a liquid phase epitaxial growth film in Example 5 of the present invention.

【図8】本発明の実施例5における共振周波数10.8
GHzのマイクロ・ストリップ共振器の無負荷Q値の温
度変化を示すグラフである。
FIG. 8 shows a resonance frequency of 10.8 in Embodiment 5 of the present invention.
6 is a graph showing a temperature change of an unloaded Q value of a GHz microstrip resonator.

【符号の説明】[Explanation of symbols]

1 融液 2 種結晶(基板) 3 Y1 Ba2 Cu3 Ox膜 4 回転軸 5 残留した融液 11 ストリップ部 12 グラウンド部 13 基板1 melt 2 seed crystal (substrate) 3 Y 1 Ba 2 Cu 3 Ox film 4 rotating shaft 5 remaining melt 11 strip portion 12 ground portion 13 substrate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/24 ZAA H01L 39/24 ZAAB (72)発明者 森下 忠隆 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 榎本 陽一 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code FI H01L 39/24 ZAA H01L 39/24 ZABB (72) Inventor Tadataka Morishita 1-14-3 Shinonome, Koto-ku, Tokyo Kokusai Superconductivity Inside the Superconductivity Engineering Research Center, Industrial Technology Research Center (72) Inventor Yoichi Enomoto 1-14-3 Shinonome, Koto-ku, Tokyo Inside the Superconductivity Engineering Research Center, International Superconducting Technology Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 123型結晶構造を有するReBa2
3 Ox(ReはYまたはNdなどのランタノイドのう
ちの一種、Xは酸素量である。)膜を融液より生成する
液相エピタキシャル成長法において、成膜後前記融液よ
り前記膜を引き離す際、基板面を前記融液面に対し1度
乃至44度傾斜させることを特徴とする酸化物超電導膜
の製造方法。
1. ReBa 2 C having a 123-type crystal structure
In a liquid phase epitaxial growth method in which a u 3 Ox (Re is one of lanthanoids such as Y or Nd and X is an oxygen amount) film is formed from a melt, when the film is separated from the melt after film formation, Wherein the substrate surface is inclined by 1 to 44 degrees with respect to the melt surface.
【請求項2】 123型結晶構造を有するReBa2
3 Ox膜を融液より生成する液相エピタキシャル成長
法において、前記融液より前記膜を引き離した後、基板
を300rpm乃至3000rpmの高速で5秒乃至5
分回転させることを特徴とする請求項1記載の酸化物超
電導膜の製造方法。
2. ReBa 2 C having a 123-type crystal structure
In a liquid phase epitaxial growth method in which a u 3 Ox film is formed from a melt, the substrate is separated from the melt at a high speed of 300 to 3000 rpm for 5 seconds to 5 seconds.
2. The method for producing an oxide superconducting film according to claim 1, wherein the film is rotated by a minute.
【請求項3】 成膜雰囲気は酸素2at.%、窒素98
at.%、成膜温度は900〜970℃であることを特
徴とする請求項1記載の酸化物超電導膜の製造方法。
3. The film formation atmosphere is oxygen at 2 at. %, Nitrogen 98
at. The method for producing an oxide superconducting film according to claim 1, wherein the film forming temperature is 900 to 970C.
【請求項4】 前記融液は10wt.%Y1 Ba2 Cu
3 Ox、90wt.%Ba3 Cu7 10であることを特
徴とする請求項1記載の酸化物超電導膜の製造方法。
4. The method according to claim 1, wherein the melt contains 10 wt. % Y 1 Ba 2 Cu
3 Ox, 90 wt. 2. The method for producing an oxide superconducting film according to claim 1, wherein the composition is% Ba 3 Cu 7 O 10 .
【請求項5】 前記基板はMgO(100)であること
を特徴とする請求項1記載の酸化物超電導膜の製造方
法。
5. The method according to claim 1, wherein the substrate is made of MgO (100).
【請求項6】 前記基板を前記融液より引き上げる速度
は1mm乃至10mm/minであることを特徴とする
請求項1記載の酸化物超電導膜の製造方法。
6. The method for manufacturing an oxide superconducting film according to claim 1, wherein a speed at which the substrate is pulled up from the melt is 1 mm to 10 mm / min.
【請求項7】 123型結晶構造を有するReBa2
3 Ox膜を融液より生成する液相エピタキシャル成長
法において、成膜及び基板冷却時の雰囲気が酸素2a
t.%以上であることを特徴とする酸化物超電導膜の製
造方法。
7. ReBa 2 C having a 123-type crystal structure
In a liquid phase epitaxial growth method in which a u 3 Ox film is formed from a melt, the atmosphere during film formation and substrate cooling is oxygen 2a.
t. % Of the oxide superconducting film.
【請求項8】 123型結晶構造を有するReBa2
3 Ox膜を融液より生成する液相エピタキシャル成長
法において、成膜温度と、1気圧の空気中でのReBa
2 Cu3 Oxの分解温度との差が30℃以下であること
を特徴とする酸化物超電導膜の製造方法。
8. ReBa 2 C having a 123-type crystal structure
In a liquid phase epitaxial growth method in which a u 3 Ox film is formed from a melt, the film forming temperature and ReBa in air at 1 atm.
2. A method for producing an oxide superconducting film, wherein the difference from the decomposition temperature of 2 Cu 3 Ox is 30 ° C. or less.
JP10098192A 1997-03-31 1998-03-27 Production of oxide superconducting film Pending JPH10330193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10098192A JPH10330193A (en) 1997-03-31 1998-03-27 Production of oxide superconducting film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9448097 1997-03-31
JP9-94480 1997-03-31
JP10098192A JPH10330193A (en) 1997-03-31 1998-03-27 Production of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH10330193A true JPH10330193A (en) 1998-12-15

Family

ID=26435757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10098192A Pending JPH10330193A (en) 1997-03-31 1998-03-27 Production of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH10330193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100618606B1 (en) 2004-06-02 2006-09-08 한국전기연구원 Manufacturing method for metal oxide article
US7161297B2 (en) * 2000-05-11 2007-01-09 Matsushita Electric Industrial Co., Ltd. Electron emission thin-film, plasma display panel comprising it and method of manufacturing them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161297B2 (en) * 2000-05-11 2007-01-09 Matsushita Electric Industrial Co., Ltd. Electron emission thin-film, plasma display panel comprising it and method of manufacturing them
US7911142B2 (en) 2000-05-11 2011-03-22 Panasonic Corporation Electron emission thin-film, plasma display panel and methods for manufacturing
KR100618606B1 (en) 2004-06-02 2006-09-08 한국전기연구원 Manufacturing method for metal oxide article

Similar Documents

Publication Publication Date Title
JP5057784B2 (en) Oxide film with nanodot flux and pinning center
JP3330969B2 (en) High Tc microbridge superconductor device using SNS junction between stepped edges
JP3854551B2 (en) Oxide superconducting wire
US7431868B2 (en) Method of manufacturing a metal substrate for an oxide superconducting wire
JP2007188756A (en) Rare earth based tape shape oxide superconductor
US5508255A (en) Epitaxial thallium high temperature superconducting films formed via a nucleation layer
JPH10330193A (en) Production of oxide superconducting film
Lauder et al. Thin‐Film High‐Temperature Superconductors for Advanced Communications and Electronics
JP5415824B2 (en) Method for manufacturing a substrate with altered shape for coated conductor and coated conductor using said substrate
US7025826B2 (en) Methods for surface-biaxially-texturing amorphous films
US6008162A (en) Production method of oxide superconductive film
Liu et al. Electromagnetic Properties of $(\hbox {Gd},\hbox {Y})\hbox {Ba} _ {2}\hbox {Cu} _ {3}\hbox {O} _ {\rm x} $ Superconducting Tapes With High Levels of Zr Addition
KR100338250B1 (en) Method for improving the surface smoothness of YBa2Cu3O7-δhigh-temperature superconductor films grown on CeO2-buffered r-cut sapphire substrates
KR100721901B1 (en) Superconducting article and its manufacturing method
Xu et al. Deposition of epitaxial YBCO thin film on single domain YBCO substrate for the development of RF components
Wen et al. Direct deposition of c-axis textured MBCO thick film on unoriented metallic substrate for the development of long superconducting tapes
JP2004303846A (en) Buffer layer for oxide superconductive thin film
Simon 0Substrates for HTS Films
Kim et al. Deposition of CeO/sub 2/buffer layers for YBCO coated conductors on biaxially textured Ni substrates by MOCVD technique
Zhang et al. SmBa 2 Cu 3 O 7− δ superconducting layer prepared on NiO buffer layer through fluorine-free chemical method
JP2819743B2 (en) Preparation method of high temperature superconducting thin film
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
JP3230329B2 (en) Method for cleaning surface of substrate for superconducting device
JP2000264788A (en) Oxide superconductive film, electric device using same and their production
Ishibashi et al. Improvement of Surface Morphology of Bi2Sr2CaCu2Ox Thin Films by using Nano-structured SrTiO3 Thin Films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050420