JPH10330003A - Non-contact transfer device of belt shape material - Google Patents

Non-contact transfer device of belt shape material

Info

Publication number
JPH10330003A
JPH10330003A JP14241597A JP14241597A JPH10330003A JP H10330003 A JPH10330003 A JP H10330003A JP 14241597 A JP14241597 A JP 14241597A JP 14241597 A JP14241597 A JP 14241597A JP H10330003 A JPH10330003 A JP H10330003A
Authority
JP
Japan
Prior art keywords
electrode
pressure receiving
receiving surface
measuring
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14241597A
Other languages
Japanese (ja)
Inventor
Hiroyuki Serio
浩之 芹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14241597A priority Critical patent/JPH10330003A/en
Publication of JPH10330003A publication Critical patent/JPH10330003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Advancing Webs (AREA)
  • Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the float up amount of a belt shape material simply without increasing machine parts by measuring an electrostatic capacity between an electrode consisting of the conductive body arranged on a pressure receiving surface and a belt shape material. SOLUTION: An air is blown out from a spouting hole provided on the pressure receiving surface 2 of a metal horizontal floater 1 separatingly each other in the advance direction of a steel belt S and the steel belt S is floatingly supported on the pressure receiving surface 2 and transfered by a non-contact state. An insulator 4 installed on the pressure receiving surface 2 by pasting and plural sheet metals 6 formed pilingly a conductive body as an electrode 5 are arranged in the width direction and advance direction of the steel belt S at a nearly equal interval by three pieces and three rows respectively. When the electrostatic capacity between the electrode 5 and the steel plate S is measured by a float up amount measurement device 7, as a mutual interference is generated when the whole electrodes 5 are measured simultaneously, the distribution of the float up amount of the steel belt S can be detected by switching the electrode 5 subjected by switches S1 -S9 and measuring the electrostatic capacity individually.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フロータの受圧面
に設けられた噴出孔から噴き出す気体により、導電性を
有する帯状材、例えば鋼帯などを浮上支持して非接触で
移送する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for floatingly supporting a conductive strip, for example, a steel strip, by a gas blown from a blowout hole provided on a pressure receiving surface of a floater, and transferring the strip in a non-contact manner.

【0002】[0002]

【従来の技術】この種の非接触移送装置において受圧面
からの鋼帯の浮上量を測定する方法としては、一般に、
鋼帯の受圧面から離間する側に配置された距離測定セン
サから鋼帯にレーザあるいは超音波を照射してその反射
により鋼帯と距離測定センサとの距離L1 を求め、既知
である受圧面と距離測定センサとの距離L2 から鋼帯と
距離測定センサとの距離L1 を減じることにより、浮上
量を測定するようにしたものが知られている。
2. Description of the Related Art In a non-contact transfer device of this kind, a method of measuring a floating amount of a steel strip from a pressure receiving surface generally includes:
Obtains distances L 1 between the steel strip and the distance measuring sensors by its reflection from the distance measuring sensor which is disposed on a side away from the pressure receiving surface of the steel strip is irradiated with a laser or ultrasonic waves to the steel strip, the pressure receiving surface is known distance by the distance L 2 between the measuring sensor reducing the distance L 1 between the steel strip and the distance measuring sensor, which was to measure the flying height is known to.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鋼帯の
受圧面から離間する側に距離測定センサを配置する方法
では、機械部品としての距離測定センサが場所をとるば
かりか、操業の最初に通板する際に受圧面と距離測定セ
ンサとに挟まれた空間に鋼帯を通さねばならないため、
作業性が悪く、しかも、鋼帯の進行方向や幅方向の浮上
量分布を測定するためには、複数(大量)の距離測定セ
ンサを配置する必要が生じてコスト高になるという不都
合がある。
However, in the method of disposing the distance measuring sensor on the side of the steel strip away from the pressure receiving surface, not only the distance measuring sensor as a mechanical component takes up space, but also the running plate is used at the beginning of the operation. The steel strip must pass through the space between the pressure receiving surface and the distance measurement sensor when
The workability is poor, and in order to measure the flying height distribution in the traveling direction and the width direction of the steel strip, it is necessary to arrange a plurality (a large amount) of distance measuring sensors, resulting in an increase in cost.

【0004】また、鋼帯と受圧面との接触は鋼帯を傷つ
けることになるため鋼帯の製造上大きな問題となるが、
距離測定センサでは鋼帯が受圧面に接触するしないの境
界を検知することが困難であり、したがって、接触によ
る鋼帯の疵発生の警報を出力することが困難である。
[0004] Further, the contact between the steel strip and the pressure receiving surface causes damage to the steel strip, which is a serious problem in the manufacture of the steel strip.
It is difficult for the distance measuring sensor to detect the boundary where the steel strip does not contact the pressure receiving surface, and therefore it is difficult to output an alarm for occurrence of a flaw in the steel strip due to the contact.

【0005】本発明はかかる不都合を解消するためにな
されたものであり、請求項1の発明の目的は、機械部品
を増設することなく、簡便に帯状材の浮上量を測定する
ことができる非接触移送装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such inconveniences, and an object of the present invention is to provide a non-volatile memory device capable of easily measuring the floating amount of a band-shaped material without adding mechanical parts. It is to provide a contact transfer device.

【0006】請求項2の発明の目的は、請求項1の発明
に加えて、帯状材の浮上量の分布を簡便且つ低コストで
測定することができる非接触移送装置を提供することに
ある。
A second object of the present invention is to provide a non-contact transfer device capable of simply and inexpensively measuring a distribution of a floating amount of a strip material, in addition to the first invention.

【0007】請求項3の発明の目的は、請求項1又は2
の発明に加えて、帯状材の受圧面への接触を簡単且つ確
実に検知することができる非接触移送装置を提供するこ
とにある。
[0007] The object of the invention of claim 3 is that of claim 1 or 2
Another object of the present invention is to provide a non-contact transfer device capable of easily and surely detecting the contact of a belt-shaped material with a pressure receiving surface.

【0008】[0008]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明者等が鋭意検討した結果、フロータの受圧
面に設けられた噴出孔から噴き出す気体により導電性を
有する帯状材を浮上支持して非接触で移送する装置にお
いては、帯状材と受圧面との間には気体(絶縁体)しか
存在しないことに着目し、受圧面と帯状材との間に一種
の蓄電器を構成してこの蓄電器の静電容量を測定するこ
とにより、受圧面と帯状材との距離、即ち、帯状材の浮
上量を得ることができることを知見した。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, have floated and supported a conductive strip-shaped material by gas ejected from an ejection hole provided in a pressure receiving surface of a floater. In non-contact transfer devices, paying attention to the fact that only gas (insulator) exists between the band and the pressure receiving surface, a kind of capacitor is constructed between the pressure receiving surface and the band. By measuring the capacitance of the battery, it has been found that the distance between the pressure-receiving surface and the strip, that is, the floating amount of the strip can be obtained.

【0009】請求項1に係る帯状材の非接触移送装置
は、かかる知見に基づいてなされたものであり、フロー
タの受圧面に設けられた噴出孔から噴き出す気体により
導電性を有する帯状材を浮上支持して非接触で移送する
装置において、前記受圧面に導電体を配置してこれを電
極とし、該電極と前記帯状材との間の静電容量を測定す
ることにより、前記帯状材の前記電極からの浮上量を測
定する浮上量測定手段を備えたことを特徴とする。
According to the first aspect of the present invention, there is provided a non-contact transfer device for a strip-shaped material, which floats a strip-shaped material having conductivity by a gas blown out from a blowing hole provided on a pressure receiving surface of a floater. In a device that supports and transports in a non-contact manner, a conductor is arranged on the pressure receiving surface and this is used as an electrode, and by measuring the capacitance between the electrode and the band, the band of the band is measured. It is characterized by having a flying height measuring means for measuring the flying height from the electrode.

【0010】フロータの受圧面に設けられた電極と帯状
材との間に電圧を印加した場合に、図4に示すような平
行板コンデンサを形成していると考えられる(フロータ
が湾曲していてもごく小さい部分を取り出せば平行な二
枚の板と見做せる。)。
When a voltage is applied between an electrode provided on the pressure receiving surface of the floater and the strip, it is considered that a parallel plate capacitor as shown in FIG. 4 is formed (the floater is curved. If you take out a very small part, it can be regarded as two parallel plates.)

【0011】この時、電極の面積をS(m2 )、電極と
帯状材との間の気体の誘電率をε、同じく静電容量をC
(F)とした場合、電極と帯状材との距離t(m)、即
ち、帯状材の浮上量は次式で表される。
At this time, the area of the electrode is S (m 2 ), the dielectric constant of the gas between the electrode and the strip is ε, and the capacitance is C
In the case of (F), the distance t (m) between the electrode and the strip, that is, the floating amount of the strip is expressed by the following equation.

【0012】t=εS/C …(1) 静電容量Cは例えばブリッジ法などにより求めることが
でき、εは物性値、Sは既知であるので、(1)式から
tを求めることができる。
T = εS / C (1) The capacitance C can be obtained by, for example, the bridge method, ε is a physical property value, and S is known, so t can be obtained from the equation (1). .

【0013】請求項2に係る帯状材の非接触移送装置
は、請求項1において、絶縁材と導電体とを重ねて形成
されて前記フロータの受圧面に複数枚取り付けられたシ
ート材を備え、各シート材の導電体を前記電極として該
電極と前記帯状材との間の静電容量を測定することを特
徴とする。
According to a second aspect of the present invention, there is provided a non-contact transfer device for a belt-shaped material, comprising a plurality of sheet materials formed by laminating an insulating material and a conductor and attached to a pressure receiving surface of the floater. The present invention is characterized in that a capacitance between the electrode and the strip is measured using the conductor of each sheet material as the electrode.

【0014】請求項3に係る帯状材の非接触移送装置
は、請求項1又は2において、前記帯状材が前記電極に
接触した際の前記静電容量の測定値を検知して、警報を
出力する警報手段を備えたことを特徴とする。
According to a third aspect of the present invention, in the non-contact transfer device for a strip-shaped material, a measured value of the capacitance when the strip-shaped material comes into contact with the electrode is detected and an alarm is output. It is characterized by having an alarm means to perform.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態の一例
を図1〜図3を参照して説明する。図1は本発明の実施
の形態の一例である鋼帯の非接触移送装置を説明するた
めの説明的斜視図、図2は図1の部分的断面図、図3は
浮上量測定装置を説明するためのブロック図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory perspective view for explaining a non-contact transfer device of a steel strip which is an example of an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, and FIG. It is a block diagram for performing.

【0016】この非接触移送装置は金属製の水平フロー
タ1を備えたもので、該フロータ1の受圧面2には鋼帯
(導電性を有する帯状材)Sの幅方向に延びるスリット
状の空気噴出孔3が該鋼帯Sの進行方向に互いに離間し
て設けられている。フロータ1には空気供給管(図示せ
ず。)の一端が連結されており、該供給管の他端はポン
プ、ブロワ又はコンプレッサなどの空気供給装置(図示
せず。)に連結されている。空気供給装置から空気供給
管を経てフロータ1内のチャンバー(図示せず。)に空
気を供給することにより、噴出孔3から所定の圧力の空
気が噴き出し、これにより、鋼帯Sがフロータ1の受圧
面2に浮上支持されて非接触で移送されるようになって
いる。
This non-contact transfer device is provided with a horizontal floater 1 made of metal, and a slit-shaped air extending in the width direction of a steel strip (conductive strip material) S is provided on a pressure receiving surface 2 of the floater 1. The jet holes 3 are provided apart from each other in the traveling direction of the steel strip S. One end of an air supply pipe (not shown) is connected to the floater 1, and the other end of the supply pipe is connected to an air supply device (not shown) such as a pump, a blower, or a compressor. By supplying air from the air supply device to a chamber (not shown) in the floater 1 through the air supply pipe, air at a predetermined pressure is blown out from the blowout hole 3, whereby the steel strip S is formed in the floater 1. It is configured to float and be supported on the pressure receiving surface 2 and be transferred in a non-contact manner.

【0017】受圧面2には、絶縁材4と電極5としての
導電体とを積層して形成された複数枚(ここでは9枚)
のシート材6が貼着によって取り付けられている。シー
ト材6は鋼帯Sの幅方向に略等間隔で三枚、鋼帯Sの進
行方向に略等間隔で三列配置されている。このように絶
縁材4と電極5とを積層した複数のシート材6を受圧面
2に取り付けることにより、各電極5が受圧面2と絶縁
されるとともに、各電極5が相互に絶縁される。各シー
ト材6の電極5はスイッチS1 〜S9 を介して浮上量測
定装置7に個別に接続されており、また、鋼帯Sは該鋼
帯Sに接触する搬送用ロール8を介して浮上量測定装置
7に接続されている。
On the pressure receiving surface 2, a plurality of sheets (here, nine sheets) formed by laminating an insulating material 4 and a conductor as the electrode 5 are formed.
Sheet material 6 is attached by sticking. The three sheet materials 6 are arranged at substantially equal intervals in the width direction of the steel strip S, and are arranged in three rows at substantially equal intervals in the traveling direction of the steel strip S. By attaching a plurality of sheet materials 6 in which the insulating material 4 and the electrodes 5 are laminated to the pressure receiving surface 2 in this way, each electrode 5 is insulated from the pressure receiving surface 2 and each electrode 5 is mutually insulated. The electrodes 5 of each sheet material 6 are individually connected to a flying height measuring device 7 via switches S 1 to S 9 , and the steel strip S is connected via a transport roll 8 that contacts the steel strip S. It is connected to the flying height measuring device 7.

【0018】浮上量測定装置7は、電極5と鋼帯Sとの
間に電圧を印加した場合に、電極5と鋼帯Sとの間の静
電容量C(F)をブリッジ法により測定する静電容量測
定手段9と、該静電容量測定手段9によって測定された
静電容量C(F)、既知である電極5の面積S及び物性
値である電極5〜鋼帯S間の空気の誘電率εから上記
(1)式を用いて電極5と鋼帯Sとの距離、即ち、鋼帯
Sの浮上量tを演算する浮上量演算手段10と、該浮上
量tを表示する表示部11と、静電容量測定手段9によ
って測定された静電容量C(F)がしきい値を越えた場
合に警報信号を出力して警報ランプ12を点灯させる警
報手段13とを備える。
The flying height measuring device 7 measures a capacitance C (F) between the electrode 5 and the steel strip S by a bridge method when a voltage is applied between the electrode 5 and the steel strip S. The capacitance measuring means 9, the capacitance C (F) measured by the capacitance measuring means 9, the known area S of the electrode 5 and the physical property value of the air between the electrode 5 and the steel strip S A flying height calculating means 10 for calculating the distance between the electrode 5 and the steel strip S from the dielectric constant ε using the above equation (1), that is, a flying height t of the steel strip S, and a display unit for displaying the flying height t And alarm means 13 for outputting an alarm signal to turn on an alarm lamp 12 when the capacitance C (F) measured by the capacitance measuring means 9 exceeds a threshold value.

【0019】静電容量測定手段9による電極5と鋼帯S
との間の静電容量C(F)の測定では、全部の電極5に
ついて同時に測定すると、隣の電極5との相互干渉が生
じるため、スイッチS1 〜S9 により対象となる電極5
を切り換えて個別に測定する。そして、各電極5に対す
る静電容量C(F)を測定することにより、鋼帯Sの浮
上量tの分布(=鋼帯の傾き)を得ることができる。
The electrode 5 and the steel strip S by the capacitance measuring means 9
The capacitance measurement of C (F) between and at the same time measured for all of the electrodes 5, since the mutual interference between the neighboring electrodes 5 occurs, the electrode 5 to be by the switch S 1 to S 9
Switch and measure separately. Then, by measuring the capacitance C (F) for each electrode 5, the distribution of the flying height t of the steel strip S (= the inclination of the steel strip) can be obtained.

【0020】また、静電容量C(F)を求めるのにブリ
ッジ法を用いた場合、鋼帯Sと電極5との接触(導通)
は測定回路の端子間が短絡されたことになり、したがっ
て、静電容量測定値は非常に大きな値となって明らかな
出力の違いが得られる。このため、しきい値を設けて測
定値がしきい値を越えた場合に警報手段13が鋼帯Sと
電極5とが接触したものと判断して警報信号を出力す
る。
When the bridge method is used to determine the capacitance C (F), contact (conduction) between the steel strip S and the electrode 5 is performed.
Means that the terminals of the measurement circuit are short-circuited, and therefore, the capacitance measurement value becomes a very large value, and a clear output difference is obtained. Therefore, when a threshold value is provided and the measured value exceeds the threshold value, the alarm means 13 determines that the steel strip S and the electrode 5 are in contact with each other and outputs an alarm signal.

【0021】このようにこの実施の形態では、フロータ
1の受圧面2に配置した電極5と鋼帯Sとの間の静電容
量C(F)を測定することにより、鋼帯Sの浮上量tを
測定するようにしているため、従来のように機械部品と
しての距離測定センサを増設することなく、簡便に鋼帯
Sの浮上量を測定することができる。
As described above, in this embodiment, the flying height of the steel strip S is measured by measuring the capacitance C (F) between the electrode 5 disposed on the pressure receiving surface 2 of the floater 1 and the steel strip S. Since t is measured, the flying height of the steel strip S can be easily measured without adding a distance measuring sensor as a mechanical component as in the related art.

【0022】また、受圧面2に複数の電極5を配置して
各電極5と鋼帯Sとの間の静電容量C(F)を測定する
ことにより、鋼帯Sの浮上量の分布を測定することがで
きるので、従来のように複数の距離測定センサを鋼帯S
の受圧面2から離間する側に配置する必要がなくなり、
この結果、鋼帯Sの浮上量分布を簡便且つ低コストで測
定することができる。
Further, by disposing a plurality of electrodes 5 on the pressure receiving surface 2 and measuring the capacitance C (F) between each electrode 5 and the steel strip S, the distribution of the flying height of the steel strip S can be determined. Since the distance can be measured, a plurality of distance measurement sensors
Need not be located on the side away from the pressure receiving surface 2
As a result, the flying height distribution of the steel strip S can be measured simply and at low cost.

【0023】更に、鋼帯Sと電極5との接触(導通)時
には静電容量測定値が非常に大きな値となって明らかな
出力の違いが得られるため、鋼帯Sの電極5への接触を
簡単且つ確実に検知することができる。
Furthermore, when the steel strip S is brought into contact with the electrode 5 (conduction), the capacitance measurement value becomes very large and a clear difference in output is obtained. Can be easily and reliably detected.

【0024】なお、上記実施の形態では、受圧面2に複
数枚の電極5を配置して鋼帯Sの浮上量の分布を測定す
る場合を例に採ったが、浮上量の分布が必要でなくおお
よその浮上量が知りたい場合には、フロータ1(通常、
金属製=導電体)自体を電極と見做して、更に簡便に浮
上量を測定することができる。
In the above embodiment, the case where the distribution of the flying height of the steel strip S is measured by disposing a plurality of electrodes 5 on the pressure receiving surface 2 is taken as an example. If you want to know the approximate flying height without using the floater 1,
The floating amount can be more easily measured by regarding the metal (conductor) itself as an electrode.

【0025】また、上記実施の形態では、静電容量測定
手段9による電極5と鋼帯Sとの間の静電容量C(F)
の測定をブリッジ法を用いて行った場合を例に採った
が、これに限定されず、例えばQメータ等を用いて静電
容量C(F)の測定を行うようにしてもよい。
In the above embodiment, the capacitance C (F) between the electrode 5 and the steel strip S by the capacitance measuring means 9 is used.
Is measured using the bridge method as an example, but the present invention is not limited to this. For example, the capacitance C (F) may be measured using a Q meter or the like.

【0026】更に、上記実施の形態では、噴出孔3をス
リット状としているが、これに限定されず、パンチング
メタル等で受圧面2を形成して多数の円形の噴出孔を配
設してもよく、あるいは円形に代えて矩形の噴出孔とし
てもよい。
Further, in the above-described embodiment, the ejection holes 3 are formed in a slit shape. However, the present invention is not limited to this. For example, the pressure receiving surface 2 may be formed of a punching metal or the like and a large number of circular ejection holes may be provided. Alternatively, a rectangular ejection hole may be used instead of the circular shape.

【0027】更に、上記実施の形態では、気体としてコ
スト上の観点から空気を採用しているが、これに限定さ
れず、鋼帯Sを浮上支持できる限りにおいて、例えば窒
素等の他の気体を用いてもよい。
Further, in the above-described embodiment, air is employed as a gas from the viewpoint of cost. However, the present invention is not limited to this, and other gases such as nitrogen may be used as long as the steel strip S can be floated and supported. May be used.

【0028】更に、上記実施の形態では、水平フロータ
1を備えた非接触移送装置に本発明を適用した場合を例
に採ったが、これに限定されず、円筒状のフロータ又は
その他の形状のフロータを備えた非接触移送装置にも本
発明を適用できるのは勿論である。
Further, in the above-described embodiment, the case where the present invention is applied to the non-contact transfer device provided with the horizontal floater 1 is taken as an example. However, the present invention is not limited to this, and the present invention is not limited to this. Needless to say, the present invention can be applied to a non-contact transfer device having a floater.

【0029】[0029]

【発明の効果】上記の説明から明らかなように、請求項
1の発明によれば、フロータの受圧面に配置した電極と
帯状材との間の静電容量を測定することにより、帯状材
の浮上量を測定するようにしているため、従来のように
機械部品としての距離測定センサを増設することなく、
簡便に帯状材の浮上量を測定することができるという効
果が得られる。
As is apparent from the above description, according to the first aspect of the present invention, by measuring the capacitance between the electrode disposed on the pressure receiving surface of the floater and the band, the band of the band is measured. Because the flying height is measured, without adding a distance measuring sensor as a mechanical part as in the past,
The effect that the floating amount of the strip can be easily measured can be obtained.

【0030】請求項2の発明では、請求項1の発明に加
えて、受圧面に複数の電極を配置して各電極と帯状材と
の間の静電容量を測定することにより、帯状材の浮上量
の分布を測定することができるので、従来のように複数
の距離測定センサを帯状材の受圧面から離間する側に配
置する必要がなくなり、この結果、帯状材の浮上量分布
を簡便且つ低コストで測定することができるという効果
が得られる。
According to a second aspect of the present invention, in addition to the first aspect, a plurality of electrodes are arranged on the pressure receiving surface and the capacitance between each electrode and the strip is measured to thereby reduce the capacity of the strip. Since the distribution of the flying height can be measured, it is not necessary to arrange a plurality of distance measuring sensors on the side away from the pressure-receiving surface of the strip as in the related art. The effect that measurement can be performed at low cost is obtained.

【0031】請求項3の発明では、請求項1又は2の発
明に加えて、帯状材と電極との接触時に静電容量測定値
が非常に大きな値となって明らかな出力の違いが得られ
るため、帯状材の電極への接触を簡単且つ確実に検知す
ることができるという効果が得られる。
According to the third aspect of the present invention, in addition to the first or second aspect of the present invention, the capacitance measured value becomes very large at the time of contact between the strip and the electrode, and a clear difference in output is obtained. Therefore, the effect that the contact of the strip with the electrode can be easily and reliably detected is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例である鋼帯の非接触
移送装置を説明するための説明的斜視図である。
FIG. 1 is an explanatory perspective view for explaining a non-contact transfer device for a steel strip as an example of an embodiment of the present invention.

【図2】図1の部分的断面図である。FIG. 2 is a partial cross-sectional view of FIG.

【図3】浮上量測定装置を説明するためのブロック図で
ある。
FIG. 3 is a block diagram for explaining a flying height measuring device.

【図4】本発明の原理を説明するための説明的斜視図で
ある。
FIG. 4 is an explanatory perspective view for explaining the principle of the present invention.

【符号の説明】[Explanation of symbols]

1…フロータ 2…受圧面 3…噴出孔 4…絶縁材 5…電極 6…シート材 7…浮上量測定装置 9…静電容量測定手段 13…警報手段 S…鋼帯(導電性を有する帯状材) DESCRIPTION OF SYMBOLS 1 ... Floater 2 ... Pressure receiving surface 3 ... Ejection hole 4 ... Insulating material 5 ... Electrode 6 ... Sheet material 7 ... Floating amount measuring device 9 ... Capacitance measuring means 13 ... Alarming means S ... Steel strip (conductive strip-shaped material) )

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フロータの受圧面に設けられた噴出孔か
ら噴き出す気体により導電性を有する帯状材を浮上支持
して非接触で移送する装置において、前記受圧面に導電
体を配置してこれを電極とし、該電極と前記帯状材との
間の静電容量を測定することにより、前記帯状材の前記
電極からの浮上量を測定する浮上量測定手段を備えたこ
とを特徴とする帯状材の非接触移送装置。
An apparatus for floatingly supporting and transferring a conductive strip material by a gas blown out from a blowout hole provided on a pressure receiving surface of a floater and transferring the conductive material in a non-contact manner. An electrode, by measuring a capacitance between the electrode and the band-shaped material, comprising a floating amount measuring means for measuring a floating amount of the band-shaped material from the electrode; Non-contact transfer device.
【請求項2】 絶縁材と導電体とを重ねて形成されて前
記フロータの受圧面に複数枚取り付けられたシート材を
備え、各シート材の前記導電体を前記電極として該電極
と前記帯状材との間の静電容量を測定することを特徴と
する請求項1記載の帯状材の非接触移送装置。
2. A sheet material comprising an insulating material and an electric conductor which are formed on top of each other and attached to a plurality of pressure receiving surfaces of the floater, wherein the electric conductor of each sheet material is used as the electrode, and the electrode and the band-shaped material are used. The non-contact transfer device for a strip-shaped material according to claim 1, wherein a capacitance between the non-contact transfer member and the belt is measured.
【請求項3】 前記帯状材が前記電極に接触した際の前
記静電容量の測定値を検知して、警報を出力する警報手
段を備えたことを特徴とする請求項1又は2記載の帯状
材の非接触移送装置。
3. The belt-shaped member according to claim 1, further comprising an alarm unit that detects a measured value of the capacitance when the band-shaped material contacts the electrode and outputs an alarm. Non-contact transfer device for materials.
JP14241597A 1997-05-30 1997-05-30 Non-contact transfer device of belt shape material Pending JPH10330003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14241597A JPH10330003A (en) 1997-05-30 1997-05-30 Non-contact transfer device of belt shape material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14241597A JPH10330003A (en) 1997-05-30 1997-05-30 Non-contact transfer device of belt shape material

Publications (1)

Publication Number Publication Date
JPH10330003A true JPH10330003A (en) 1998-12-15

Family

ID=15314808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14241597A Pending JPH10330003A (en) 1997-05-30 1997-05-30 Non-contact transfer device of belt shape material

Country Status (1)

Country Link
JP (1) JPH10330003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240283A (en) * 2000-01-27 2001-09-04 Heidelberger Druckmas Ag Matter to be printed conveying system for printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240283A (en) * 2000-01-27 2001-09-04 Heidelberger Druckmas Ag Matter to be printed conveying system for printer

Similar Documents

Publication Publication Date Title
US7679376B2 (en) Capacitive sensor for sensing tactile and proximity, and a sensing system using the same
US8013598B2 (en) Object detecting device for detecting object using electromagnetic induction
ES2745494T3 (en) One plate heat exchanger and one plate heat exchanger
JP4739478B2 (en) Pressure and force profile detector
KR930701753A (en) Apparatus and method for measuring dielectric and structural properties of materials
CA2041231A1 (en) Dynamic monitoring without mobile or permittivity contact, using a capacitive sensor
CN102680191A (en) Leakage detection device for power cells
TWI804769B (en) Battery swell detection
JP2005024518A5 (en)
JPH10330003A (en) Non-contact transfer device of belt shape material
JP2010135292A (en) Vibration sensing switch
KR100794945B1 (en) Liquid surface level sensor
CA2495319C (en) Apparatus for eliminating static electrical charges from a web of dielectric sheet material
EP0191547B1 (en) Sensorcable
US20230144848A1 (en) Power device for continuously detecting entry and exit positions
US3597756A (en) Belt fault detection device
CN112736306A (en) Battery management chip and battery management system
JP5605577B2 (en) Capacitive touch sensor
US3385106A (en) Method and means for detecting sag in a sheet
CN110672285A (en) Liquid leakage detection device
JP2005043172A (en) Flaw detection device and sensor retraction method
JP2814087B2 (en) Paper thickness abnormality detection device
KR102589746B1 (en) Pressure sensor which is assured independancy of electric current in respective conducting layer
KR102344636B1 (en) Capacitive leak detecting apparatus
JP2010114012A (en) Detecting device of burr of battery electrode plate