JPH10322759A - Carrier wave channel shared cellular mobile communication system - Google Patents

Carrier wave channel shared cellular mobile communication system

Info

Publication number
JPH10322759A
JPH10322759A JP9125246A JP12524697A JPH10322759A JP H10322759 A JPH10322759 A JP H10322759A JP 9125246 A JP9125246 A JP 9125246A JP 12524697 A JP12524697 A JP 12524697A JP H10322759 A JPH10322759 A JP H10322759A
Authority
JP
Japan
Prior art keywords
carrier
frequency
cell
macro cell
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9125246A
Other languages
Japanese (ja)
Inventor
Hideya Suzuki
秀哉 鈴木
Yasuaki Kinoshita
康昭 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9125246A priority Critical patent/JPH10322759A/en
Publication of JPH10322759A publication Critical patent/JPH10322759A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To consider effect exerted to the frequency utilization efficiency of a frequency duplex re-utilization system and to decide the channel set of a macro cell and a micro cell by combining and using the frequency duplex re- utilization system and a usual system in the case that a signal channel number included in one carrier wave is equal to or more than a channel set number. SOLUTION: In the macro cell 1 of a transmission FS wave adjacent to the macro cell 2 (radius R1 ) of the transmission FA wave, the service area (radius R2 of micro cell 3) of the transmission Fa wave of the same carrier wave as the transmission FA wave and smaller transmission power is provided together. The micro cell 3 is realized by using the same transmission Fa wave as the transmission FA, wave of the macro cell 2 theoretically even inside the macro cell 1. Thus, the micro cell 3 is provided together inside the macro cell 1, the service of uniform call amount density is realized and total call amount density is substantially improved by the macro cell 1 and the micro cell 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、移動通信システ
ム、即ち搬送波周波数が異なるマイクロセルを移動機が
移動する度に信号チャネルを切り替えるセルラ移動通信
システムに係わる。更に詳しく言えば、周波数多元接続
(FDMA)方式を符号分割多元接続(CDMA)方式
や時分割多元接続(TDMA)方式と併用するセルラ移
動無線システムに係わり、特に、マイクロセル移動無線
システムを上記マクロセルシステムと併設し、かつ両シ
ステムが相互に搬送波周波数帯を共用し、単一の携帯機
で両システムの通信サービスを受けるに好適な移動無線
通信システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mobile communication system, that is, a cellular mobile communication system in which a signal channel is switched each time a mobile unit moves in a microcell having a different carrier frequency. More specifically, the present invention relates to a cellular mobile radio system using a frequency multiple access (FDMA) system in combination with a code division multiple access (CDMA) system and a time division multiple access (TDMA) system. The present invention relates to a mobile radio communication system which is provided in parallel with a system, shares a carrier frequency band with each other, and is suitable for receiving communication services of both systems with a single portable device.

【0002】[0002]

【従来の技術】広域移動電話システムは、従来、セルラ
公衆移動電話システムとして知られていて、既に世界的
に広く実用化されている。また、特公平7−46877
「移動無線通信システム」(以下、文献1という)に記
述の如く、広域移動電話システムのマクロセルに構内私
設無線電話システムのマイクロセルを重畳させ、両シス
テムで同一の周波数チャネル帯を共用し、単一の携帯機
で両システムの通信サービスを受けるに好適なシステム
も知られている。この方式は、木下他「広域コードレス
電話と市街地セルラ移動電話の周波数共用:周波数チャ
ネル2重再利用方式」電子通信情報学会論文誌B−I
I,Vol.J76−BII,No.6,pp.487
−495,1993年6月(以下、文献2という)に記
載の如く、学術的には「周波数2重再利用方式」と命名
され、慣用の異なる周波数帯を同一の携帯機に実装する
二重モード携帯機方式に比べて、周波数利用効率を高く
設計できる単一携帯機方式である。
2. Description of the Related Art A wide area mobile telephone system has heretofore been known as a cellular public mobile telephone system and has already been widely used worldwide. In addition, Japanese Patent Publication No. 7-46877
As described in "Mobile Radio Communication System" (hereinafter referred to as "Document 1"), a macro cell of a wide area mobile telephone system is superimposed with a micro cell of a private radio telephone system, and the two systems share the same frequency channel band. There is also known a system suitable for receiving communication services of both systems with one portable device. Kinoshita et al., "Frequency sharing between wide-area cordless telephone and urban cellular mobile telephone: frequency channel double reuse method", IEICE Transactions BI
I, Vol. J76-BII, No. 6, pp. 487
−495, June, 1993 (hereinafter referred to as Reference 2), which is scientifically named “frequency double reuse system”, in which common and different frequency bands are mounted on the same portable device. This is a single portable system that can be designed with higher frequency utilization efficiency than the mode portable system.

【0003】上記方式は、FDMA方式や狭帯域時TD
MA方式を前提としている。その理由は、ある地域に割
当てられた全周波数帯域に含まれる搬送波数が、異なる
搬送波を使用するセル数、即ち搬送波チャネルセット数
よりも十分に大きいと仮定している(所謂分割損が無視
しうる範囲)。即ち、上記方式は、割当てられた全周波
数帯域に含まれる搬送波数とチャネルセット数の比が1
0以上になる場合を想定し、周波数利用効率が高くなる
ようにマイクロセルシステムの搬送波周波数の配置を定
めている。
[0003] The above-mentioned system is an FDMA system or a TD for a narrow band.
It is based on the MA method. The reason is that it is assumed that the number of carriers included in the entire frequency band allocated to a certain area is sufficiently larger than the number of cells using different carriers, that is, the number of carrier channel sets (ignoring so-called division loss. Range). That is, in the above method, the ratio of the number of carrier waves and the number of channel sets included in the all allocated frequency bands is 1
Assuming the case where the frequency becomes 0 or more, the arrangement of the carrier frequencies of the microcell system is determined so that the frequency use efficiency is increased.

【0004】しかし、CDMA方式や広帯域TDMA方
式では、1搬送波に含まれる信号チャネル数が大きくな
り(7から約35)、全搬送波数とチャネルセット数の
比が10以下になり「周波数2重再利用方式」の周波数
利用効率に与える影響が無視しえなくなる。
However, in the CDMA system and the wideband TDMA system, the number of signal channels included in one carrier increases (from 7 to about 35), and the ratio of the number of all carriers to the number of channel sets becomes 10 or less, and the frequency double retransmission is performed. The effect of the "use method" on the frequency use efficiency cannot be ignored.

【0005】[0005]

【発明が解決しようとする課題】CDMAや広帯域TD
MA方式の場合には、上記のような要因が「周波数2重
再利用方式」の周波数利用効率に与える影響を考慮し
て、マクロセルとマイクロセルのチャネルセットを決定
する必要がある。
SUMMARY OF THE INVENTION CDMA and wideband TD
In the case of the MA method, it is necessary to determine the channel set of the macro cell and the micro cell in consideration of the influence of the above factors on the frequency use efficiency of the “frequency double reuse method”.

【0006】具体的には、1搬送波に含まれる信号チャ
ネル数がチャネルセット数と同等以上になる場合に如何
に使用して「周波数2重再利用方式」を実現し、かつ、
その周波数利用効率を高めるかが課題となる。
[0006] Specifically, when the number of signal channels included in one carrier is equal to or greater than the number of channel sets, how to use the "frequency double reuse system" is realized, and
The issue is how to improve the frequency use efficiency.

【0007】[0007]

【課題を解決するための手段】本発明では、上記のよう
に1搬送波に含まれる信号チャネル数がチャネルセット
数と同等以上になる場合に、「周波数2重再利用方式」
と慣用方式を混用して周波数利用効率を高める。即ち、
搬送波を慣用方式で従来の「周波数2重再利用方式」と
混用する手段によって、この「周波数2重再利用方式」
が単なる慣用方式よりも周波数利用効率が高くなる利点
を利用する。
According to the present invention, when the number of signal channels included in one carrier is equal to or greater than the number of channel sets as described above, the "frequency double reuse system" is used.
And the conventional system to improve the frequency use efficiency. That is,
By means of mixing the carrier with the conventional "frequency double reuse system" in a conventional manner, this "frequency double reuse system"
Take advantage of the fact that the frequency use efficiency is higher than that of a mere conventional system.

【0008】[0008]

【発明の実施の形態】以下、本発明を実施例によって説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0009】図2は、「周波数2重再利用方式」の原理
図を示す。搬送波FAのマクロセル2(半径R1)に隣接
する搬送波FBのマクロセル1において、搬送波FAと同
一の搬送波で送信電力がより小さい基地局搬送波Fa
サービスエリア(マイクロセル3の半径R2)を概念的
に示している。基地局の送信電力をP,受信点までの距
離をRとした時、受信信号強度Sは次式(数1)で近似
的に与えられる。
FIG. 2 shows the principle of the "frequency double reuse system". In the macro cell 1 carrier F B adjacent to the macrocell 2 (radius R 1) of the carrier F A, the radius R of the carrier F A and the same carrier wave by transmission power is smaller than the base station carrier F a service area of (microcell 3 2 ) is conceptually shown. When the transmission power of the base station is P and the distance to the receiving point is R, the received signal strength S is approximately given by the following equation (Equation 1).

【0010】[0010]

【数1】 (Equation 1)

【0011】(数1)中のαは、UHF帯の市街地伝搬
ではα=3.5、典型的なビル内伝搬ではα=4.5で
近似できることが知られている(文献2)。この図は、
マクロセル1内でも原理的にマクロセル2の搬送波FA
と同一の搬送波Faを使用してマイクロセル3を実現で
きることを示している。その理由は、(数1)のように
送信アンテナ(基地局)近傍では信号強度が干渉妨害I
よりも強い領域が存在するからである。
It is known that α in (Equation 1) can be approximated by α = 3.5 in UHF band urban area propagation and α = 4.5 in typical in-building propagation (Reference 2). This figure is
In principle, the carrier F A of the macro cell 2 also in the macro cell 1
Show that it is possible realize a micro cell 3 using the same carrier F a and. The reason is that the signal strength near the transmitting antenna (base station) as shown in (Equation 1) causes the interference I
This is because a stronger region exists.

【0012】以下、理論解析に常用の6角セルモデルを
用いて説明する。同一の搬送波を使用する斜交座標軸上
のシフトパラメータを(i,j)とすると、同一搬送波
を用いないチャネルセット数=クラスサイズCは次式
(数2)で与えられる。
Hereinafter, a description will be given using a conventional hexagonal cell model for the theoretical analysis. Assuming that a shift parameter on the oblique coordinate axis using the same carrier is (i, j), the number of channel sets not using the same carrier = class size C is given by the following equation (Equation 2).

【0013】[0013]

【数2】 (Equation 2)

【0014】通常のセルラ方式では、このクラスタ内で
同一搬送波の周波数は再利用されない。しかし、文献2
の記述の如く、「周波数2重再利用方式」では、このク
ラスタ内のマイクロセルで同一の搬送波周波数を微少電
力で再利用する。
In the ordinary cellular system, the frequency of the same carrier is not reused in this cluster. However, Reference 2
As described above, in the "frequency double reuse system", the same carrier frequency is reused by the micro cells in this cluster with a small amount of power.

【0015】図3は、図2のセルエッジにおける信号強
度対干渉比S/IのクラスタサイズCへの依存性を示し
ている。マクロセルシステムとマイクロセルシステムは
無限平面上で均一に重畳し、全てのセルが(等しい通信
品質で)使用中の場合を想定し、文献2の(5)式で計
算している。ここで、β=J/Iは両システムの自己干
渉Iと相互干渉Jの比である。β=1の場合が興味深
く、慣用の周波数割当(相互に異なる周波数帯に割当
る)方式に比べてS/Iが3dB劣化する。
FIG. 3 shows the dependence of the signal strength / interference ratio S / I on the cluster size C at the cell edge in FIG. The macro cell system and the micro cell system are superimposed uniformly on an infinite plane, and the calculation is performed by the formula (5) of Reference 2 on the assumption that all cells are in use (with equal communication quality). Here, β = J / I is the ratio of self-interference I and mutual interference J of both systems. The case where β = 1 is interesting, and the S / I is degraded by 3 dB as compared with the conventional frequency allocation (allocation to different frequency bands) system.

【0016】片方のシステムが導入初期で基地局数が少
ないと一般にβは小さいが、導入終期にはβは大きくな
る。従来法(文献2)では、図3に示したように、クラ
スタ数を増加して、S/I(即ち通信品質)一定に保っ
た。しかし、CDMAや広帯域TDMA方式のようにク
ラスタCが小さくなると(C≦4)、もはや従来法では
S/Iを一定に保てない(図3)。特に、CDMA方式
ではC=1の場合でも実用性が検討されていて、その場
合に「周波数2重再利用方式」が適用可能か再検討を要
する。
If one of the systems has a small number of base stations at the beginning of introduction, β is generally small, but β becomes large at the end of introduction. In the conventional method (Reference 2), as shown in FIG. 3, the number of clusters is increased to keep S / I (that is, communication quality) constant. However, when the cluster C is small (C ≦ 4) as in the CDMA or the wideband TDMA system, the S / I can no longer be kept constant by the conventional method (FIG. 3). In particular, in the CDMA system, practicality is studied even when C = 1, and in that case, it is necessary to reconsider whether the “frequency double reuse system” can be applied.

【0017】また、表1にCDMA方式や広帯域TDM
A方式の仕様例を示す。
Table 1 shows the CDMA system and the broadband TDM.
The specification example of the A method is shown.

【0018】[0018]

【表1】 [Table 1]

【0019】表1のAMPSは米国FDMA方式の仕様
であり、GSMは欧州の広帯域TDMA方式の仕様であ
る。また、表1のCDMAはPN符号による直接拡散方
式の例を示したものである。割当周波数帯域幅Wが10
MHzと30MHzで、半分が送信用、残りが受信用の
帯域幅に使用されている。CDMA方式や広帯域TDM
A方式になると、1搬送波に含まれる電話チャネル数が
クラスタ数Cと同等以上になることを示す。
AMPS in Table 1 is a specification of the US FDMA system, and GSM is a specification of the European wideband TDMA system. CDMA in Table 1 shows an example of a direct spreading method using a PN code. The allocated frequency bandwidth W is 10
At 30 MHz and 30 MHz, half are used for transmission and the rest are used for reception. CDMA system and wideband TDM
The A method indicates that the number of telephone channels included in one carrier is equal to or greater than the number C of clusters.

【0020】本発明は、上記のような場合でも「周波数
2重再利用方式」が有効な(周波数利用効率を高く保
つ)方法を示す。
The present invention shows a method in which the "frequency double reuse method" is effective (the frequency use efficiency is kept high) even in the above case.

【0021】図4は、C(i,j)=C(1,1)=3の
6角セルモデルを示す。マクロセルには、搬送波周波数
A,FB,FCの3波を使用する。マイクロセルには白
い部分以外に小電力で搬送波Faを用いる。搬送波FA
用いるマイクロセルでも周辺部(半径R1の1/2、面
積で75%)は、搬送波Faを用いている。マイクロセ
ル半径R2を到るところ一様に保つため、搬送波FAのマ
イクロセル内では、搬送波周波数FB,FCのマイクロセ
ル内送信電力P21よりも送信電力P22を若干高く設定す
る。浅田,木下他「CDMA移動通信方式の基礎検討
I」電子情報通信学会,第2種研究会資料,MMIN9
6−02,pp.7−14,平成8年4月20日(以
下、文献3という)には、上記送信電力P21,P22
の試算例が示されている。
FIG. 4 shows a hexagonal cell model where C (i, j) = C (1,1) = 3. For the macro cell, three waves of carrier frequencies F A , F B , and F C are used. For the microcells, the carrier wave Fa is used with low power except for the white portion. Even in the microcell using the carrier F A , the periphery (部 of the radius R 1 and 75% in area) uses the carrier Fa. To maintain uniform throughout a micro cell radius R 2, in the micro-cells of the carrier F A, slightly higher setting the transmission power P 22 than the carrier frequency F B, F C microcells in the transmission power P 21 . Asada, Kinoshita et al. "Basic Study on CDMA Mobile Communication System I" IEICE, 2nd meeting, MMIN9
6-02, pp. 7-14, on April 20, 1996 (hereinafter referred to as Reference 3), the transmission powers P21, P22
Is shown.

【0022】白い部分では、搬送波周波数Fb,Fcを使
用する。もはやここでは搬送波数=2となり、マイクロ
セルのクラスタC2=3を実現できず、同一通信品質で
サービスできないマイクロセルがクラスタ内に発生す
る。単純なFDMAや狭帯域TDMAを前提とする従来
法(文献2)では、搬送波数がクラスタ数Cに比べて十
分大きいので、隣接する搬送波FD,FE,FF,FG,・
・からFd,Fe,Fg,・・を供給できた。しかし、C
DMAや広帯域TDMAで所謂分割損が問題になるセル
ラ方式では、上記の問題が顕著になる。
In the white part, the carrier frequencies Fb and Fc are used. In this case, the number of carriers is now 2 and the cluster C2 of microcells cannot be realized, and microcells that cannot be serviced with the same communication quality are generated in the cluster. In simple FDMA and narrowband TDMA conventional method that assumes (Document 2), since the number of carrier waves is sufficiently larger than the number of clusters C, adjacent carrier F D, F E, F F , F G, ·
Could supply F d , F e , F g ,. But C
In a cellular system in which a so-called division loss becomes a problem in DMA or wideband TDMA, the above problem becomes prominent.

【0023】本発明は、FA,FB,FDに隣接する搬送
波FDを小電力Fdでマクロセルの白い部分に利用しマイ
クロセルのクラスタを完成させ、マクロセル内に一様な
マイクロセルのサービスを提供する。図1の実施例1
は、この実施例の搬送波配列を慣用法と比較して示して
いる。部分的に見れば、Fdの使用は「周波数2重再利
用方式」に慣用法を混用している。
The invention, F A, F B, using a carrier F D adjacent to F D in the white part of the macro cell in low power F d to complete the cluster microcell, uniform microcell within the macrocell Provide services. Example 1 of FIG.
Shows the carrier arrangement of this embodiment in comparison with the conventional method. If you look in part, the use of the F d is mix conventional methods in the "frequency double reuse scheme".

【0024】しかし、この「混用周波数2重再利用方
式」は、通信容量の等しい慣用法に比べて周波数利用効
率が向上していることが明白である(B=Ba,M=Ma
とする)。
However, it is clear that the frequency reuse efficiency of the "mixed frequency double reuse system" is improved as compared with the conventional method having the same communication capacity (B = Ba , M = Ma).
And).

【0025】図5は、C(i,j)=(1,0)=1の
セルモデルを示す。全ての隣接マクロセルが搬送波FA
を使用している。マクロセルの周辺部(面積で75%)
に小電力の搬送波Faのマイクロセル(半径R2)を、更
により中心への周辺部(半径R1の1/4、面積で25
−6.25=18.75%)に搬送波Faのマイクロセル
(若干送信電力を増大して等しい半径R2にする)を用
いている。しかし、白い部分にはもはや従来の「周波数
2重再利用方式」は使用できない。
FIG. 5 shows a cell model where C (i, j) = (1,0) = 1. All adjacent macro cells have carrier F A
You are using Peripheral part of macro cell (75% in area)
The microcell (radius R 2 ) of the carrier F a of low power is further added to the peripheral part ( / of the radius R 1 , 25
To -6.25 = 18.75%) are used microcell carrier F a (increase slightly transmit power to equal the radius R 2 in). However, the conventional "frequency double reuse system" can no longer be used for white portions.

【0026】本発明は、この白い部分に慣用法を使用す
る。即ち、「周波数2重再利用方式」と慣用法を混用す
る。図1の実施例2は、上記セルモデルに本発明の周波
数配列法を慣用法と比較して示している。この「混用周
波数2重再利用方式」は、単なる慣用法に比べて明らか
に周波数利用効率が向上している。マクロセルの75%
でマイクロセルシステムは搬送波Fa,Fb(搬送波数=
2)を使用できるからである。
The present invention uses conventional methods for this white area. That is, the “frequency double reuse method” and the conventional method are mixed. Embodiment 2 of FIG. 1 shows the frequency array method of the present invention in the above cell model in comparison with a conventional method. This "mixed frequency double reuse system" has clearly improved frequency use efficiency as compared with a mere conventional method. 75% of macro cells
And the microcell system uses carrier waves F a and F b (the number of carrier waves =
This is because 2) can be used.

【0027】見方を替えれば、所謂分割損が問題になる
サービスエリアの場合、本発明が有効になる。即ち、あ
る地域に割当てられた搬送波数をクラスタ数Cで割り算
して端数が出る(整数にならない)時に、一様な通話呼
量を保てないエリアが発生する。通常は、電話呼量の多
いマクロセルにこれを割当てる。本発明では、このよう
なマクロセル内にマイクロセルシステムを併設し、この
搬送波と本発明を用いて、一様呼量密度のサービスを実
現させ、両システムによって総呼量密度を飛躍的に向上
させる。
In other words, the present invention is effective in a service area where so-called division loss is a problem. In other words, when the number of carriers allocated to a certain area is divided by the number of clusters C to obtain a fraction (not an integer), an area where a uniform call traffic cannot be maintained occurs. Normally, this is assigned to a macro cell with a large telephone call volume. In the present invention, a microcell system is provided in such a macrocell, and a service of uniform call density is realized by using the carrier and the present invention, and the total call density is dramatically improved by both systems. .

【0028】前述のように、CDMA方式や広帯域TD
MA方式では、マイクロセルシステムの導入終期にクラ
スタサイズを増して、通信品質を導入初期(=未導入
期)と等しく設定できない。
As described above, the CDMA system and the broadband TD
In the MA system, it is not possible to increase the cluster size at the end of the introduction of the microcell system and set the communication quality equal to the initial stage (= non-introduction period).

【0029】即ち、マイクロセルシステムの併設を前提
としたマクロシステムの設計を行う必要がある。この場
合の周波数利用効率ηrを慣用法に比較して次式(数
3)に示す。
That is, it is necessary to design a macro system on the premise that a micro cell system is provided. The frequency use efficiency ηr in this case is shown in the following equation (Equation 3) in comparison with the conventional method.

【0030】[0030]

【数3】 (Equation 3)

【0031】ここで、Wは搬送波帯域幅、Mは1搬送波
に含まれる信号チャネル数、Cはクラスタサイズ、Ce
はマイクロセルに追加した搬送波数(図1の実施例では
1)であり、添え字aは比較する慣用法システムのもの
を示す。(数3)のηrが1以上になることは図1から
明らかである。あとは導入終期でも通信品質が導入初期
よりも劣化しないように、両システムを設計する必要が
ある。例えば、マクロセルの基地局電力を増加してセル
半径R1をR1aと等しく保つ等である。
Here, W is the carrier bandwidth, M is the number of signal channels contained in one carrier, C is the cluster size, Ce
Is the number of carriers added to the microcell (1 in the embodiment of FIG. 1), and the suffix a indicates that of the conventional system to be compared. It is apparent from FIG. 1 that ηr of (Equation 3) becomes 1 or more. After that, it is necessary to design both systems so that the communication quality does not deteriorate even at the end of the introduction compared to the initial stage. For example, the cell radius R 1 increases the base station power of the macro cell and so kept equal to R 1 a.

【0032】本発明は、文献1に示されている如くセク
タセル方式でも同様に成立することは、実施例に示すま
でもなく明らかである。
It is apparent that the present invention can be similarly applied to the sector cell system as shown in Document 1 without being shown in the embodiments.

【0033】[0033]

【発明の効果】従来の「周波数2重再利用方式」を拡張
した本発明の「従来方式と慣用法の混用方式」は、単な
る慣用方式よりも周波数利用効率が高い。また、本発明
は、CDMA方式や広帯域TDMA方式のように、一搬
送波に含まれる信号チャネル数が大きく、且つシステム
のクラスタサイズが小さくなる場合に、特に有効であ
る。
According to the present invention, which is an extension of the conventional "frequency double reuse method", the "mixing method of the conventional method and the conventional method" has higher frequency utilization efficiency than the simple conventional method. Further, the present invention is particularly effective when the number of signal channels included in one carrier is large and the cluster size of the system is small, as in the case of the CDMA system and the wideband TDMA system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1及び2の搬送波配置を単なる
慣用法と比較して示した図。
FIG. 1 is a diagram showing a carrier arrangement according to embodiments 1 and 2 of the present invention in comparison with a mere conventional method.

【図2】マクロセルとマイクロセルにおける電波強度と
セル半径の関係を示した図。
FIG. 2 is a diagram showing a relationship between a radio field intensity and a cell radius in a macro cell and a micro cell.

【図3】マクロセルとマイクロセルの両システムを併設
したシステムの信号強度対干渉妨害を導入状況βに応じ
て示した図。
FIG. 3 is a diagram showing signal strength versus interference in a system in which both a macro cell system and a micro cell system are provided in accordance with an introduction situation β.

【図4】マクロセルシステムの搬送波の配置を示した6
角セルモデルでC=3を示した図。
FIG. 4 shows the arrangement of carriers in the macro cell system.
The figure which showed C = 3 in a square cell model.

【図5】マクロセルシステムの搬送波の配置を示した6
角セルモデルでC=1を示した図。
FIG. 5 shows the arrangement of carriers in the macrocell system.
The figure which showed C = 1 in the square cell model.

【符号の説明】[Explanation of symbols]

1,2,4…マクロセル、3…マイクロセル、P21,P
22…送信電力、R1,R2…半径。
1, 2, 4 ... macrocell, 3 ... micro cell, P 21, P
22 ... transmission power, R 1, R 2 ... radius.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】同一搬送波を繰り返し再利用するセルラ移
動通信システムにおいて、搬送波当りの通信チャネル数
が複数であり、上記セルラ移動通信システムのサービス
エリア内に異なるセル半径のセルラ移動通信システムが
併設され、両移動通信システムが本質的に同一の搬送波
周波数帯を共用するシステムであって、異なる搬送波を
使用するセル数即ち搬送波チャネルセット数よりも少な
くとも一搬送波を余分に半径の小さい方のセルラ移動通
信システムのチャネルセットに使用することを特徴とす
るセルラ移動通信方式。
In a cellular mobile communication system that repeatedly reuses the same carrier, a plurality of communication channels per carrier are provided, and a cellular mobile communication system having a different cell radius is provided in a service area of the cellular mobile communication system. A mobile communication system in which both mobile communication systems share essentially the same carrier frequency band, wherein at least one extra carrier is smaller in radius than the number of cells using different carriers, that is, the number of carrier channel sets. A cellular mobile communication system for use in a system channel set.
JP9125246A 1997-05-15 1997-05-15 Carrier wave channel shared cellular mobile communication system Pending JPH10322759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9125246A JPH10322759A (en) 1997-05-15 1997-05-15 Carrier wave channel shared cellular mobile communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9125246A JPH10322759A (en) 1997-05-15 1997-05-15 Carrier wave channel shared cellular mobile communication system

Publications (1)

Publication Number Publication Date
JPH10322759A true JPH10322759A (en) 1998-12-04

Family

ID=14905394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9125246A Pending JPH10322759A (en) 1997-05-15 1997-05-15 Carrier wave channel shared cellular mobile communication system

Country Status (1)

Country Link
JP (1) JPH10322759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU732356B2 (en) * 1998-08-13 2001-04-26 Samsung Electronics Co., Ltd. Method for sharing channels between base station sectors and frequency assignments in CDMA cellular systems
JP2005318359A (en) * 2004-04-30 2005-11-10 Nec Corp Mobile communication service system and method therefor
WO2006011505A1 (en) * 2004-07-28 2006-02-02 Nec Corporation Wireless transmission system
WO2007097076A1 (en) * 2006-02-27 2007-08-30 Nec Corporation Mobile communication system, base station, and inter-cell interference reduction method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU732356B2 (en) * 1998-08-13 2001-04-26 Samsung Electronics Co., Ltd. Method for sharing channels between base station sectors and frequency assignments in CDMA cellular systems
JP2005318359A (en) * 2004-04-30 2005-11-10 Nec Corp Mobile communication service system and method therefor
JP4595379B2 (en) * 2004-04-30 2010-12-08 日本電気株式会社 Mobile communication service system and method
WO2006011505A1 (en) * 2004-07-28 2006-02-02 Nec Corporation Wireless transmission system
US8111653B2 (en) 2004-07-28 2012-02-07 Nec Corporation Wireless transmission system having reduced interference
US8923242B2 (en) 2004-07-28 2014-12-30 Nec Corporation Wireless transmission system having reduced interference
US9596062B2 (en) 2004-07-28 2017-03-14 Nec Corporation Base station and mobile station
WO2007097076A1 (en) * 2006-02-27 2007-08-30 Nec Corporation Mobile communication system, base station, and inter-cell interference reduction method

Similar Documents

Publication Publication Date Title
JP3483557B2 (en) Communication management technology for wireless telephone systems including microcells
JP3234602B2 (en) Cellular system
US8180355B2 (en) Base station device and cell forming method
US8380123B2 (en) Arrangement method of the distributed repeater and system thereof
JPS62136930A (en) Mobile radiotelephony system
JP4454642B2 (en) Communication method
JP2009033717A (en) Resource allocation method and communication apparatus
PL171348B1 (en) Method of and system for supplying radio energy to cells in a mobile cellular communication system
US8054790B2 (en) Frequency mapping for a wireless communication system
CN105264990A (en) Method for allocating resource for device for wireless communication and base station for same
Povey et al. A review of time division duplex-CDMA techniques
JP2000082991A (en) Cellular radio communication system repeating data on output side of radio base station and its data repeating device
WO2022021130A1 (en) Method for selecting initial bandwidth part (bwp), terminal device and network device
CN1309876A (en) Multi-cell TDMA radio communication through limited subsets of time slots
JPH10322759A (en) Carrier wave channel shared cellular mobile communication system
JP2005523593A (en) Base station for communication system
JP3267858B2 (en) Mobile communication network
Yaser Impact of Macrocell Size on the Implementation of LTE Femto Integrated with GSM Network
CN115189748B (en) Beam management and receiving method and device
JP2917908B2 (en) Mobile radio communication system
JPH1042352A (en) Radio system
JPH08265839A (en) Mobile radio communication system
Saha Licensed Millimeter-Wave Spectrum Allocation and Reuse in Indoor Environments
WO2023097693A1 (en) Wireless communication methods, terminal device and network device
JP2917907B2 (en) Mobile radio communication system