JPH10322702A - Picture decoding method and device therefor - Google Patents

Picture decoding method and device therefor

Info

Publication number
JPH10322702A
JPH10322702A JP12735997A JP12735997A JPH10322702A JP H10322702 A JPH10322702 A JP H10322702A JP 12735997 A JP12735997 A JP 12735997A JP 12735997 A JP12735997 A JP 12735997A JP H10322702 A JPH10322702 A JP H10322702A
Authority
JP
Japan
Prior art keywords
quantization
image signal
coefficient
representative value
decoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12735997A
Other languages
Japanese (ja)
Inventor
Masayuki Takamura
誠之 高村
Yutaka Watanabe
裕 渡辺
Kazuto Kamikura
一人 上倉
Hiroshi Kodera
博 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12735997A priority Critical patent/JPH10322702A/en
Publication of JPH10322702A publication Critical patent/JPH10322702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove a block distortion contained in a picture signal and to improve the quality of a picture in the ratio of signal to noise. SOLUTION: A code is decoded from encoding data 102 in a code decoding part 103 and a quantization conversion part 104 calculates the quantization representative value and the quantization clipping range of a conversion coefficient. The quantization representative value is converted in an inverse orthogonal conversion part 105 and the decoding picture signal is obtained. The picture signal is restored in a maximum posteriori probability estimation part 106 and the conversion coefficient is obtained in an orthogonal conversion part 108 through a conversion judgment part 107. The conversion coefficient is compared with the quantization clipping range in a coefficient comparison part 109. When it is settled in the quantization clipping range, the conversion coefficient is returned to the inverse orthogonal conversion part 105 as it is. When it is not settled in the quantization range, the coefficient settled in the quantization range is obtained in a random number generator 110 and it is returned to the inverse orthogonal conversion part 105.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、小ブロックに基づ
く直交変換を用いた高能率符号化復号方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a high-efficiency coding / decoding method using orthogonal transform based on small blocks.

【0002】[0002]

【従来の技術】従来のブロック歪み除去方法は低域通過
型フィルタを画像信号に適用し、結果としてブロック歪
みの現れている小ブロック間の境界をぼかすことが主た
る作用であった。
2. Description of the Related Art The main function of a conventional block distortion removing method is to apply a low-pass filter to an image signal and to blur boundaries between small blocks in which block distortion appears as a result.

【0003】また、以下に述べる凸包への射影(POC
S)を用いた繰り返し方法も基本的に低域通過型フィル
タを使った方式しか提案されていない。
Further, the projection onto a convex hull described below (POC
As for the repetition method using S), basically only a method using a low-pass filter has been proposed.

【0004】ここでPOCS理論について簡単に説明す
る。画像信号をヒルベルト空間の要素ベクトル
[0004] Here, the POCS theory will be briefly described. Image signal of Hilbert space element vector

【0005】[0005]

【外1】 と考える。この空間におけるm個の凸閉包集合(各々、
自然画像信号が満たすべき要求に対応する集合)をCi
(i=1,2,…,m)、それへの射影をPi とする
と、任意の初期画像信号
[Outside 1] Think. M convex hull sets in this space (each
The set corresponding to the requirement that the natural image signal should satisfy) is C i
(I = 1, 2,..., M), and let P i be the projection on it, any initial image signal

【0006】[0006]

【外2】 から出発するベクトル列[Outside 2] Vector column starting from

【0007】[0007]

【外3】 [Outside 3]

【0008】[0008]

【数1】 (Equation 1) Is

【0009】[0009]

【数2】 に収束する。ここで、Iは単位行列、λi は0<λi
2を満たす実数である。明らかに画像信号
(Equation 2) Converges to Here, I is a unit matrix, and λ i is 0 <λ i <
It is a real number that satisfies 2. Obviously image signal

【0010】[0010]

【外4】 はCi に対応するm種類の要求を全て満たしたものであ
り、原画像に近い性質をもっている事が期待できる。
[Outside 4] Satisfies all the m types of requirements corresponding to C i , and can be expected to have properties close to those of the original image.

【0011】POCSの反復において、低域通過型フィ
ルタを繰り返し施すだけでは画像信号は次第にぼやけ、
原画像からかけ離れたものになってしまう可能性があ
る。これを避けるために、復号器が受信する量子化・符
号化された直交変換係数を、復元画像信号が原画像信号
から次第にかけ離れていってしまっていないかを監視す
るのに利用する。
In the repetition of the POCS, the image signal is gradually blurred only by repeatedly applying the low-pass filter,
There is a possibility that the image will be far from the original image. In order to avoid this, the quantized and coded orthogonal transform coefficients received by the decoder are used to monitor whether the restored image signal gradually departs from the original image signal.

【0012】すなわち、復元中の画像に直交変換を施し
た係数が対応する量子化区間に収まっていない場合、収
まるように係数を修正(クリッピング)する。従来は復
元中の画像に直交変換を施した係数を、区間の境界のう
ち近い方へ修正した。この操作により、復元処理を反復
しても処理画像が原画像から無制限に離れていくことは
なくなる。こうした手法の一つにZakhorの手法がある
(A.Zakhor: "Iterativeprocedures for reduction of
blocking effects in transform image coding", IEEE
Trans. CSVT., vol.2, No.1, pp.91-95, Mar. 1992
)。
That is, when the coefficient obtained by performing the orthogonal transformation on the image under restoration is not included in the corresponding quantization section, the coefficient is corrected (clipping) so as to be included. Conventionally, coefficients obtained by performing orthogonal transformation on an image being restored are corrected to the closer one of the boundaries of the section. By this operation, even if the restoration process is repeated, the processed image does not leave the original image without limit. One of these methods is Zakhor's method (A. Zakhor: "Iterativeprocedures for reduction of
blocking effects in transform image coding ", IEEE
Trans. CSVT., Vol.2, No.1, pp.91-95, Mar. 1992
).

【0013】また、このクリッピング区間を狭めること
により復元画像の信号対雑音比を向上させる、Kim らの
方法が提案されている(D.S.Kim et al.: "Projection
ontothe narrow quantization constraint set for pos
tprocessing of scalar quantized images" SPIE Vol.2
727, pp.1473-1483, 1996)。
Further, Kim et al. Has proposed a method of improving the signal-to-noise ratio of a restored image by narrowing the clipping section (DSKim et al .: "Projection").
ontothe narrow quantization constraint set for pos
tprocessing of scalar quantized images "SPIE Vol.2
727, pp. 1473-1483, 1996).

【0014】[0014]

【発明が解決しようとする課題】低域通過型フィルタを
そのまま画像信号に適用した場合、ブロック歪みを除去
すると同時に、本来ボケてはいけない、画像の詳細部分
やブロック境界近傍のエッジ信号までがぼかされてしま
うという好ましくない特性があった。
When a low-pass filter is applied to an image signal as it is, block distortion is removed, and at the same time, a detailed portion of an image and an edge signal near a block boundary which should not be blurred are reduced. There was an undesired characteristic of being obscured.

【0015】また、テクスチャ解析を行って局所適応的
に処理を切り替える方法にすると処理が複雑化するとい
う問題もあった。
In addition, there is a problem that the processing becomes complicated when the method of performing the texture analysis and locally switching the processing is performed.

【0016】また、直交変換係数を単純に量子化区間で
クリッピングするZakhorの方法では、統計的に原画像と
復元画像の自乗誤差の期待値を最小にはできない。Kim
らの方式のようにクリッピング区間を狭めるのも最適な
処理とは言えない。
Further, according to Zakhor's method of simply clipping the orthogonal transform coefficients in the quantization interval, the expected value of the square error between the original image and the restored image cannot be statistically minimized. Kim
Narrowing the clipping section as in these methods is not optimal processing.

【0017】本発明の目的は、ブロック歪みを除き、さ
らに復元画像よりも信号対雑音比の面で画質を向上させ
る画像復号方法および装置を提供することにある。
An object of the present invention is to provide an image decoding method and apparatus which eliminates block distortion and further improves image quality in terms of a signal-to-noise ratio compared with a restored image.

【0018】[0018]

【課題を解決するための手段】本発明の画像復号方法
は、画像信号を小ブロックに分割して、小ブロック毎に
直交変換を行って得られた直交変換係数を定められた量
子化ステップ幅で量子化して量子化代表値を得、該量子
化代表値に割り当てられて記録された符号を解読して量
子化代表値を再生し、再生された量子化代表値を逆直交
変換して復号画像信号を得る画像復号方法において、得
られた画像信号に対して、最大事後確率推定法による画
像信号の復元を行い、それに続いてその復元画像信号に
直交変換を行って再び直交変換係数を得て、前記量子化
代表値に対応する符号から直交変換係数の範囲を特定
し、得られた直交変換係数をその区間に収めるよう係数
を修正することを、画像に応じた適切な回数だけ繰り返
す。
According to an image decoding method of the present invention, an image signal is divided into small blocks, and an orthogonal transform coefficient obtained by performing an orthogonal transform for each small block is defined as a quantization step width. To obtain a quantized representative value, decode the code assigned to the quantized representative value and record it to reproduce the quantized representative value, and inversely transform the reproduced quantized representative value to decode In an image decoding method for obtaining an image signal, the obtained image signal is restored with an image signal by a maximum a posteriori probability estimation method, and then the orthogonal image is orthogonally transformed to obtain an orthogonal transformation coefficient again. Then, the range of the orthogonal transform coefficient is specified from the code corresponding to the quantized representative value, and the coefficient is corrected so that the obtained orthogonal transform coefficient falls within the section, by an appropriate number of times according to the image.

【0019】本発明の他の画像復号方法は、画像信号を
小ブロックに分割して、小ブロック毎に直交変換を行っ
て得られた直交変換係数を定められた量子化ステップ幅
で量子化して量子化代表値を得、該量子化代表値に割り
当てられて記録された符号を解読する符号解読段階と、
前記符号解読段階の解読結果から量子化代表値と量子化
クリッピング範囲を算定する量子化変換段階と、前記量
子化代表値を逆直交変換し、復号画像信号を得る逆直交
変換段階と、前記復号画像に対して最大事後確定推定法
による画像信号の復元を行う最大事後確定推定段階と、
前記復元画像信号を直交変換し、変換係数を得る直交変
換段階と、前記変換係数を前記量子化クリッピング範囲
と比較し、前記量子化クリッピング範囲に収まっていれ
ば前記変換係数を前記逆直交変換段階に戻す係数比較段
階と、前記係数比較段階において、前記変換係数が前記
量子化クリッピング範囲に収まっていないとき、前記量
子化クリッピング範囲に収まる変換係数を得て、前記逆
直交変換段階に戻す段階と、以上の処理を予め決められ
た回数を繰り返したか、原画像信号の最大事後確率推定
値の減少が止ったか、増加傾向にあると判断すると、復
元画像信号を出力する収束判定段階を有する。
According to another image decoding method of the present invention, an image signal is divided into small blocks, and orthogonal transformation coefficients obtained by performing orthogonal transformation for each small block are quantized by a predetermined quantization step width. A decoding step of obtaining a quantized representative value and decoding a code assigned and recorded to the quantized representative value;
A quantization transformation step of calculating a quantization representative value and a quantization clipping range from the decoding result of the code decoding step; an inverse orthogonal transformation of the quantization representative value to obtain a decoded image signal; and A maximum a posteriori estimation step of restoring the image signal by the maximum a posteriori estimation method for the image;
Orthogonal transformation of the restored image signal, an orthogonal transformation step of obtaining a transformation coefficient, comparing the transformation coefficient with the quantization clipping range, and performing the inverse orthogonal transformation step if the transformation coefficient is within the quantization clipping range. A coefficient comparison step of returning to the above, and in the coefficient comparison step, when the transformation coefficient does not fall within the quantization clipping range, obtain a transformation coefficient that falls within the quantization clipping range, and return to the inverse orthogonal transformation step. When it is determined that the above processing is repeated a predetermined number of times, or that the estimated maximum posterior probability of the original image signal has stopped decreasing or that it is increasing, a convergence determining step of outputting a restored image signal is provided.

【0020】本発明の画像復号装置は、画像信号を小ブ
ロックに分割して、小ブロック毎に直交変換を行って得
られた直交変換係数を定められた量子化ステップ幅で量
子化して量子化代表値を得、該量子化代表値に割り当て
られて記録された符号を解読する符号解読手段と、前記
符号解読手段の解読結果から量子化代表値と量子化クリ
ッピング範囲を算定する量子化変換手段と、前記量子化
代表値を逆直交変換し、復号画像信号を得る逆直交変換
手段と、前記復号画像に対して最大事後確定推定法によ
る画像信号の復元を行う最大事後確定推定手段と、前記
復元画像信号を直交変換し、変換係数を得る直交変換手
段と、前記変換係数を前記量子化クリッピング範囲と比
較し、前記量子化クリッピング範囲に収まっていれば前
記変換係数を前記逆直交変換段階に戻す係数比較手段
と、前記係数比較手段において、前記変換係数が前記量
子化クリッピング範囲に収まっていないとき、前記量子
化クリッピング範囲に収まる変換係数を得て、前記逆直
交変換手段に戻す手段と、以上の処理を予め決められた
回数を繰り返したか、原画像信号の最大事後確率推定値
の減少が止ったか、増加傾向にあると判断すると、復元
画像信号を出力する収束判定手段を有する。
The image decoding apparatus according to the present invention divides an image signal into small blocks, and quantizes the orthogonal transform coefficients obtained by performing orthogonal transform for each small block with a predetermined quantization step width. Code decoding means for obtaining a representative value and decoding a code assigned to the quantized representative value and recorded; and a quantization conversion means for calculating a quantized representative value and a quantization clipping range from the decoding result of the code decoding means. Inverse orthogonal transform of the quantized representative value to obtain a decoded image signal; an inverse posterior transform estimating unit for restoring an image signal to the decoded image by a maximal posterior definite estimation method; Orthogonal transformation of the restored image signal, orthogonal transformation means for obtaining a transformation coefficient, comparing the transformation coefficient with the quantization clipping range, and if the transformation coefficient is within the quantization clipping range, the transformation coefficient is Coefficient comparison means for returning to the orthogonal transformation step, and in the coefficient comparison means, when the transformation coefficient does not fall within the quantization clipping range, obtain a transformation coefficient that falls within the quantization clipping range, and the inverse orthogonal transformation means Returning means and a convergence determining means for outputting a restored image signal when it is determined that the above processing is repeated a predetermined number of times, or that the maximum posterior probability estimation value of the original image signal has stopped decreasing, or that it is increasing. Have.

【0021】本発明は、最大事後確率推定による画像復
元と、直交変換係数の量子化範囲の監視による画像復元
を反復して行うことにより、画像信号に含まれるブロッ
ク歪み等を効率的に取り除き、同時に信号対雑音比の面
から見た画像品質を改善するものである。
According to the present invention, by repeatedly performing image restoration by estimating the maximum a posteriori probability and image restoration by monitoring the quantization range of the orthogonal transform coefficient, block distortion and the like included in the image signal can be efficiently removed. At the same time, the image quality is improved in terms of the signal-to-noise ratio.

【0022】繰り返し処理において、除くことが好まし
くないようなエッジ部分についてはなるべく残し、ブロ
ック歪みは除去するような画像信号処理が望ましい。ま
た、その際、画像局所分類を行い各局所に適応的な処理
を行うことは処理が複雑になり処理時間が増大してしま
うため、画像全体を統一的に処理できることが望まれ
る。
In the repetitive processing, it is desirable to perform image signal processing in which edge portions that are not desirable to be removed are left as much as possible and block distortion is removed. Also, at this time, performing image local classification and performing adaptive processing for each region complicates the processing and increases the processing time. Therefore, it is desired that the entire image can be uniformly processed.

【0023】また、直交変換係数のクリッピングも実際
の画像信号の変換分布に鑑み、従来の方法よりさらに自
乗誤差を減らす意味で最適なクリッピングを行う。
In addition, the clipping of the orthogonal transform coefficient is performed in view of the conversion distribution of the actual image signal, so that the optimum clipping is performed in order to further reduce the square error compared to the conventional method.

【0024】本発明では、POCSにおける反復画像射
影として、最大事後確率推定と改良型量子化区間制限の
二つを用いている。
In the present invention, as the iterative image projection in the POCS, two methods are used, the maximum posterior probability estimation and the improved quantization interval restriction.

【0025】まず、最大事後確率推定について説明す
る。この方法は、雑音が重畳された信号を、確率が最も
高くなる方向へ射影する復元手法であり、画像信号に適
用した場合、低域通過型フィルタとは異なり、画像モデ
ルのパラメータを適切に設定することによりエッジを適
当な量だけ残すことが可能である。
First, the estimation of the maximum posterior probability will be described. This method is a restoration method that projects the signal with noise superimposed in the direction with the highest probability.When applied to an image signal, unlike a low-pass filter, the parameters of the image model are set appropriately. By doing so, it is possible to leave an appropriate amount of edges.

【0026】原画像信号をThe original image signal is

【0027】[0027]

【外5】 復元画像信号を[Outside 5] Restore the restored image signal

【0028】[0028]

【外6】 とする。[Outside 6] And

【0029】[0029]

【外7】 の最大事後確率推定[Outside 7] The maximum posterior probability of

【0030】[0030]

【外8】 は対数尤度関数[Outside 8] Is the log likelihood function

【0031】[0031]

【外9】 を用い[Outside 9] Using

【0032】[0032]

【数3】 となる。ベイズ則によりこれを変形し、(Equation 3) Becomes This is transformed by Bayes law,

【0033】[0033]

【外10】 は最大化に無関係なので除くと[Outside 10] Is irrelevant to maximization

【0034】[0034]

【数4】 を得る。ここで、画像信号(Equation 4) Get. Where the image signal

【0035】[0035]

【外11】 が等方的一般化ガウスマルコフ確率場であると仮定する
と、
[Outside 11] Assuming that is an isotropic generalized Gauss-Markov random field,

【0036】[0036]

【外12】 [Outside 12] Is

【0037】[0037]

【数5】 となる。ただし、α,bs,r は定数、Cは画素近傍の集
合、sは任意の着目画素、rはその近傍画素である。
(Equation 5) Becomes Here, α, b s, r are constants, C is a set of pixel neighborhoods, s is any pixel of interest, and r is its neighboring pixels.

【0038】式(7)において、p,qは確率場のパラ
メータであり、ともに1以上のときこの式の目的関数は
凸となる。p,qは小さい程画像のエッジ信号をよく保
存し、大きいほどエッジを抑制する。また、αが小さい
と、画素値は開始画像から大きく離れない範囲で探索さ
れる。本発明では量子化区間制限も利用し、画像が無制
限に原画像から離れていかないよう監視されているの
で、これは任意に大きくしてもよい。また、ブロック歪
みを除去するためにはエッジ部分のペナルティをある程
度大きくする必要がある。そのためp,qは本発明では
ともに2とする。こうするとエッジは適度に抑制され、
また式(7)の勾配は
In the equation (7), p and q are parameters of the random field. When both are 1 or more, the objective function of the equation becomes convex. As p and q are smaller, the edge signal of the image is better preserved, and as p and q are larger, the edge is suppressed. If α is small, the pixel value is searched in a range that does not greatly depart from the start image. Since the present invention also uses the quantization interval restriction and monitors that the image does not leave the original image without any restriction, this may be arbitrarily large. Further, in order to remove block distortion, it is necessary to increase the penalty of the edge part to some extent. Therefore, both p and q are set to 2 in the present invention. This will moderate the edges,
Also, the slope of equation (7) is

【0039】[0039]

【数6】 と単純な形になり、演算の高速化にも貢献する。(Equation 6) , Which contributes to faster computation.

【0040】次に、本発明の改良型量子化区間制限方法
について説明する。実際の復元中画像信号の直交変換係
数と真の直交変換係数とを観察してみると、量子化区間
に収まっていない係数でも区間中にほぼ偏りなく乱雑に
分布している。そこで本発明では従来の直交変換係数の
単純クリッピングの代りに、区間から外れた変換係数は
乱数発生器により区間内へ戻す。その場合の乱数は単純
な一様分布でも十分良い結果が得られる。
Next, an improved quantization section limiting method according to the present invention will be described. When observing the orthogonal transform coefficients and the true orthogonal transform coefficients of the image signal during the actual restoration, even coefficients that are not included in the quantization section are randomly distributed in the section almost without bias. Therefore, in the present invention, instead of the conventional simple clipping of the orthogonal transform coefficients, the transform coefficients outside the section are returned into the section by a random number generator. In this case, a sufficiently good result can be obtained even with a simple uniform distribution.

【0041】[0041]

【発明の実施の形態】次に、本発明の実施の形態につい
て図面を参照して説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0042】本実施形態の画像復号器は受信端子101
と符号解読部103と量子化変換部104と逆直交変換
部105と最大事後確率推定部106と収束判定部10
7と直交変換部108と係数比較部109と乱数発生器
110と出力端子112で構成されている。
The image decoder of the present embodiment has a receiving terminal 101
, Decoding unit 103, quantization transformation unit 104, inverse orthogonal transformation unit 105, maximum posterior probability estimation unit 106, and convergence determination unit 10.
7, an orthogonal transformation unit 108, a coefficient comparison unit 109, a random number generator 110, and an output terminal 112.

【0043】受信端子101にて受信された符号化デー
タ102から、符号解読部103にて符号が解読された
後、量子化変換部104で変換係数の量子化代表値およ
び量子化クリッピング範囲の算定を行う。量子化代表値
は逆直交変換部105で変換され、ここでブロック歪み
等の雑音が重畳している復号画像信号を得る。この復号
画像信号を最大事後確率推定部106で復元し、収束判
定部107を経てから直交変換部108にて再度直交変
換を施し、変換係数を得る。この変換係数を係数比較部
109で、量子化変換部104からの量子化クリッピン
グ範囲と比較する。変換係数が量子化クリッピング範囲
に収まっていればその変換係数はそのまま逆直交変換部
105へ戻される。もし量子化範囲に収まっていなけれ
ば、乱数発生器110で量子化範囲に収まる係数を得
て、それを逆直交変換部105へ戻す。量子化クリッピ
ング範囲が例えば8.5〜11.5であれば、0〜1の
一様乱数rを使って(8.5+3r)を出力する。これ
は8.5〜11.5の一様乱数になる。
After the code is decoded by the code decoder 103 from the coded data 102 received at the receiving terminal 101, the quantization converter 104 calculates the quantization representative value of the transform coefficient and the quantization clipping range. I do. The quantized representative value is transformed by the inverse orthogonal transform unit 105, and a decoded image signal on which noise such as block distortion is superimposed is obtained. The decoded image signal is restored by the maximum a posteriori probability estimating unit 106, passes through the convergence determining unit 107, and is again subjected to orthogonal transform by the orthogonal transform unit 108, thereby obtaining a transform coefficient. This conversion coefficient is compared by the coefficient comparison unit 109 with the quantization clipping range from the quantization conversion unit 104. If the transform coefficient falls within the quantization clipping range, the transform coefficient is directly returned to the inverse orthogonal transform unit 105. If not, the random number generator 110 obtains a coefficient that falls within the quantization range, and returns it to the inverse orthogonal transform unit 105. If the quantization clipping range is, for example, 8.5 to 11.5, (8.5 + 3r) is output using a uniform random number r of 0 to 1. This results in a uniform random number between 8.5 and 11.5.

【0044】この処理を繰り返していく中で、収束判定
部107において、反復回数が予め決められた回数を超
えるか、式(7)の値の減少が止まったか、あるいは増
加傾向にあると判断された場合には終了し、復元画像信
号111が最終的に出力端子112に出力される。式
(7)は、画像が等方的一般化ガウスマルコフ確率場で
あるという仮定の下で、いわゆる画像の自然さを測る尺
度であり、これが小さい程自然であると言えるからであ
る。
While repeating this process, the convergence determination unit 107 determines that the number of iterations exceeds a predetermined number, that the value of the equation (7) has stopped decreasing, or that it is increasing. If so, the process ends, and the restored image signal 111 is finally output to the output terminal 112. Equation (7) is a measure for measuring the so-called naturalness of an image under the assumption that the image is an isotropic generalized Gauss-Markov random field, and the smaller this is, the more natural the image is.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
最大事後確率推定による画像復元と、直交変換係数の量
子化範囲の監視による画像復元を反復して行うことによ
り、画像信号に含まれるブロック歪み等を効率的に取り
除き、同時に信号対雑音比の面から見た画像品質を改善
し、最終的に復号側では単なる逆直交変換による復号画
像よりも原画像に近い高品質な画像を得ることが可能と
なる。
As described above, according to the present invention,
By repeatedly performing image restoration by estimating the maximum posterior probability and image restoration by monitoring the quantization range of the orthogonal transform coefficient, block distortion and the like included in the image signal are efficiently removed, and at the same time, the signal-to-noise ratio is reduced. Finally, the decoding side can obtain a high-quality image closer to the original image than a decoded image obtained by simple inverse orthogonal transform on the decoding side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の画像復号装置のブロック
図である。
FIG. 1 is a block diagram of an image decoding device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

101 受信端子 102 受信された符号化データ 103 符号解読部 104 量子化変換部 105 逆直交変換部 106 最大事後確率推定部 107 収束判定部 108 直交変換部 109 係数比較部 110 乱数発生器 111 最終的な復元画像信号 112 出力端子 DESCRIPTION OF SYMBOLS 101 Receiving terminal 102 Received encoded data 103 Decoding unit 104 Quantization transformation unit 105 Inverse orthogonal transformation unit 106 Maximum posterior probability estimation unit 107 Convergence judgment unit 108 Orthogonal transformation unit 109 Coefficient comparison unit 110 Random number generator 111 Final Restored image signal 112 output terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小寺 博 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Kodera Nippon Telegraph and Telephone Corporation, 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 画像信号を小ブロックに分割して、小ブ
ロック毎に直交変換を行って得られた直交変換係数を定
められた量子化ステップ幅で量子化して量子化代表値を
得、該量子化代表値に割り当てられて記録された符号を
解読して量子化代表値を再生し、再生された量子化代表
値を逆直交変換して復号画像信号を得る画像復号方法に
おいて、 得られた画像信号に対して、最大事後確率推定法による
画像信号の復元を行い、それに続いてその復元画像信号
に直交変換を行って再び直交変換係数を得て、前記量子
化代表値に対応する符号から直交変換係数の範囲を特定
し、得られた直交変換係数をその区間に収めるよう係数
を修正することを、画像に応じた適切な回数だけ繰り返
すことを特徴とする画像復号方法。
An image signal is divided into small blocks, and orthogonal transformation coefficients obtained by performing orthogonal transformation for each small block are quantized with a predetermined quantization step width to obtain a quantized representative value. An image decoding method for decoding a code assigned to a quantized representative value to reproduce a quantized representative value, and performing an inverse orthogonal transform on the reproduced quantized representative value to obtain a decoded image signal. For the image signal, perform restoration of the image signal by the maximum posterior probability estimation method, and then perform orthogonal transformation on the restored image signal to obtain an orthogonal transformation coefficient again, from the code corresponding to the quantized representative value. An image decoding method characterized in that a range of orthogonal transform coefficients is specified, and the coefficients are corrected so that the obtained orthogonal transform coefficients fall within the section, an appropriate number of times according to the image.
【請求項2】 画像信号を小ブロックに分割して、小ブ
ロック毎に直交変換を行って得られた直交変換係数を定
められた量子化ステップ幅で量子化して量子化代表値を
得、該量子化代表値に割り当てられて記録された符号を
解読する符号解読段階と、 前記符号解読段階の解読結果から量子化代表値と量子化
クリッピング範囲を算定する量子化変換段階と、 前記量子化代表値を逆直交変換し、復号画像信号を得る
逆直交変換段階と、 前記復号画像に対して最大事後確定推定法による画像信
号の復元を行う最大事後確定推定段階と、 前記復元画像信号を直交変換し、変換係数を得る直交変
換段階と、 前記変換係数を前記量子化クリッピング範囲と比較し、
前記量子化クリッピング範囲に収まっていれば前記変換
係数を前記逆直交変換段階に戻す係数比較段階と、 前記係数比較段階において、前記変換係数が前記量子化
クリッピング範囲に収まっていないとき、前記量子化ク
リッピング範囲に収まる変換係数を得て、前記逆直交変
換段階に戻す段階と、 以上の処理を予め決められた回数を繰り返したか、原画
像信号の最大事後確率推定値の減少が止ったか、増加傾
向にあると判断すると、復元画像信号を出力する収束判
定段階を有する画像復号方法。
2. An image signal is divided into small blocks, and an orthogonal transform coefficient obtained by performing orthogonal transform for each small block is quantized with a predetermined quantization step width to obtain a quantized representative value. A code decoding step of decoding a code assigned and recorded to the quantization representative value; a quantization conversion step of calculating a quantization representative value and a quantization clipping range from a decoding result of the code decoding step; Inverse orthogonal transformation of the values to obtain a decoded image signal; a maximum a posteriori estimation step of restoring an image signal to the decoded image by a maximum a posteriori estimation method; and an orthogonal transformation of the restored image signal. And an orthogonal transformation step of obtaining transformation coefficients, comparing the transformation coefficients with the quantization clipping range,
A coefficient comparing step of returning the transform coefficients to the inverse orthogonal transform step if the transform coefficients fall within the quantization clipping range; and, in the coefficient comparing step, when the transform coefficients do not fall within the quantization clipping range, the quantization is performed. Obtaining a transform coefficient that falls within the clipping range, returning to the inverse orthogonal transform step, and repeating the above processing a predetermined number of times, or stopping the decrease of the maximum posterior probability estimate of the original image signal, or increasing the And a convergence determining step of outputting a restored image signal when the image decoding method is determined.
【請求項3】 画像信号を小ブロックに分割して、小ブ
ロック毎に直交変換を行って得られた直交変換係数を定
められた量子化ステップ幅で量子化して量子化代表値を
得、該量子化代表値に割り当てられて記録された符号を
解読する符号解読手段と、 前記符号解読手段の解読結果から量子化代表値と量子化
クリッピング範囲を算定する量子化変換手段と、 前記量子化代表値を逆直交変換し、復号画像信号を得る
逆直交変換手段と、 前記復号画像に対して最大事後確定推定法による画像信
号の復元を行う最大事後確定推定手段と、 前記復元画像信号を直交変換し、変換係数を得る直交変
換手段と、 前記変換係数を前記量子化クリッピング範囲と比較し、
前記量子化クリッピング範囲に収まっていれば前記変換
係数を前記逆直交変換段階に戻す係数比較手段と、 前記係数比較手段において、前記変換係数が前記量子化
クリッピング範囲に収まっていないとき、前記量子化ク
リッピング範囲に収まる変換係数を得て、前記逆直交変
換手段に戻す手段と、 以上の処理を予め決められた回数を繰り返したか、原画
像信号の最大事後確率推定値の減少が止ったか、増加傾
向にあると判断すると、復元画像信号を出力する収束判
定手段を有する画像復号装置。
3. An image signal is divided into small blocks, and an orthogonal transformation coefficient obtained by performing orthogonal transformation for each small block is quantized with a predetermined quantization step width to obtain a quantization representative value. Code decoding means for decoding a code assigned and recorded to the quantization representative value; quantization conversion means for calculating a quantization representative value and a quantization clipping range from the decoding result of the code decoding means; Inverse orthogonal transformation means for inversely transforming a value to obtain a decoded image signal; maximum posterior definite estimation means for restoring an image signal to the decoded image by a maximum posterior definite estimation method; and orthogonal transformation of the restored image signal And orthogonal transform means for obtaining transform coefficients, comparing the transform coefficients with the quantization clipping range,
Coefficient comparing means for returning the transform coefficient to the inverse orthogonal transform step if the transform coefficient is within the quantization clipping range, wherein, when the transform coefficient is not within the quantization clipping range, the quantization Means for obtaining a transform coefficient that falls within the clipping range and returning to the inverse orthogonal transform means; repeating the above-described processing a predetermined number of times, stopping the decrease in the maximum posterior probability estimate of the original image signal, or increasing the An image decoding device having convergence determining means for outputting a restored image signal when the image decoding device determines that the image signal is in the first position.
JP12735997A 1997-05-16 1997-05-16 Picture decoding method and device therefor Pending JPH10322702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12735997A JPH10322702A (en) 1997-05-16 1997-05-16 Picture decoding method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12735997A JPH10322702A (en) 1997-05-16 1997-05-16 Picture decoding method and device therefor

Publications (1)

Publication Number Publication Date
JPH10322702A true JPH10322702A (en) 1998-12-04

Family

ID=14958007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12735997A Pending JPH10322702A (en) 1997-05-16 1997-05-16 Picture decoding method and device therefor

Country Status (1)

Country Link
JP (1) JPH10322702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022428A (en) * 2006-07-14 2008-01-31 Fuji Xerox Co Ltd Decoding apparatus, decoding method and program
JP2008134710A (en) * 2006-11-27 2008-06-12 Univ Of Electro-Communications Optical information reader and optical information reading method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022428A (en) * 2006-07-14 2008-01-31 Fuji Xerox Co Ltd Decoding apparatus, decoding method and program
JP4730552B2 (en) * 2006-07-14 2011-07-20 富士ゼロックス株式会社 Decoding device and program thereof
US8005307B2 (en) 2006-07-14 2011-08-23 Fuji Xerox Co., Ltd. Decoding apparatus, decoding method, computer readable medium storing program thereof, and computer data signal
JP2008134710A (en) * 2006-11-27 2008-06-12 Univ Of Electro-Communications Optical information reader and optical information reading method

Similar Documents

Publication Publication Date Title
Konstantinides et al. Noise estimation and filtering using block-based singular value decomposition
JP3933691B2 (en) Hybrid waveform and model-based encoding and decoding of image signals
EP1937002B1 (en) Method and device for estimating the image quality of compressed images and/or video sequences
Luo et al. Artifact reduction in low bit rate DCT-based image compression
JP4920599B2 (en) Nonlinear In-Loop Denoising Filter for Quantization Noise Reduction in Hybrid Video Compression
EP2207358A1 (en) Video decoding method and video encoding method
US20050281479A1 (en) Method of and apparatus for estimating noise of input image based on motion compensation, method of eliminating noise of input image and encoding video using the method for estimating noise of input image, and recording media having recorded thereon program for implementing those methods
JPH09130804A (en) Method and apparatus for coding video signal through accumulative error processing
Nosratinia Denoising JPEG images by re-application of JPEG
US20040228406A1 (en) Advanced DCT-based video encoding method and apparatus
JP2000232651A (en) Method for removing distortion in decoded electronic image from image expression subtected to block transformation and encoding
US6643410B1 (en) Method of determining the extent of blocking artifacts in a digital image
KR100319557B1 (en) Methode Of Removing Block Boundary Noise Components In Block-Coded Images
Nakajima et al. A pel adaptive reduction of coding artifacts for MPEG video signals
JP2009153226A (en) Decoding method
CN107295353B (en) Video coding reference block filtering method
JPH10322702A (en) Picture decoding method and device therefor
Oh et al. Film grain noise modeling in advanced video coding
EP1570678B1 (en) Method of measuring blocking artefacts
Ford Application of inhomogeneous diffusion to image and video coding
Minami et al. An inverse halftoning algorithm based on super-resolution image reconstruction
JPH10164578A (en) Image encoder and encoder
Veeraswamy et al. An image compression scheme using AC predictions
Long et al. Adaptive Deblocking of Images with DCT Compression.
JP3175906B2 (en) Image encoding / decoding method