JPH10322320A - Maximum ratio synthesis diversity receiver - Google Patents

Maximum ratio synthesis diversity receiver

Info

Publication number
JPH10322320A
JPH10322320A JP9143521A JP14352197A JPH10322320A JP H10322320 A JPH10322320 A JP H10322320A JP 9143521 A JP9143521 A JP 9143521A JP 14352197 A JP14352197 A JP 14352197A JP H10322320 A JPH10322320 A JP H10322320A
Authority
JP
Japan
Prior art keywords
cosine
data
sine
weighting coefficient
weighting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9143521A
Other languages
Japanese (ja)
Inventor
Naoki Uchida
直樹 内田
Naoki Matsubara
直樹 松原
Hideyuki Ando
英行 安藤
Nobumoto Kasahara
伸元 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9143521A priority Critical patent/JPH10322320A/en
Publication of JPH10322320A publication Critical patent/JPH10322320A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the maximum ratio synthesis diversity not using a memory. SOLUTION: The receiver is made up of an input means consisting of phase detection means 1, 2, delay means 3, 4 and adder means 5, 6 that calculates phase data from data received from pluralities of reception systems of different transmission lines and receives the data, cosine/sine approximation means 9, 10, 11, 12 that calculate cosine/sine data from the received phase data, weighting coefficient approximation means 7, 8 that calculate a weighting coefficient from reception level information obtained from the reception system and provide an output of the coefficient, multipliers 13-16 that use the weighting coefficient outputted by the weighting coefficient approximation means 7, 8 to apply the cosine/sine data calculated by the cosine/sine approximation means 9, 10, 11, 12, adders 17, 18 that synthesize the weighted cosine/sine data to produce synthesis data, and a decoding means 19 that decodes the synthesis data to provide an output of a decoding signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線通信機器にお
ける受信信号をデジタル値に変換して最大比合成を行う
最大比合成ダイバーシチ受信装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a maximum ratio combining diversity receiver for converting a received signal in a wireless communication device into a digital value and performing maximum ratio combining.

【0002】[0002]

【従来の技術】無線通信機においては、電波の反射や散
乱などによって、受信性能が激しく変動するフェーシン
グ現象によって、その受信性能が著しく劣化することは
知られている。
2. Description of the Related Art It is known that the receiving performance of a radio communication device is significantly deteriorated by the fading phenomenon in which the receiving performance fluctuates drastically due to reflection and scattering of radio waves.

【0003】そして、従来、このようなフェーシング現
象による受信レベルの低下を補う有効な手段として、複
数の受信系を用いて受信を行うようにして、各受信系信
号を受信レベルに対応した重み付けする最大比合成方式
が用いられている。
Conventionally, as an effective means for compensating for a decrease in reception level due to such a fading phenomenon, reception is performed using a plurality of reception systems, and each reception system signal is weighted according to the reception level. The maximum ratio combining method is used.

【0004】この最大比合成方式を実現させる装置とし
て、受信レベル或いは受信レベルデータの二乗と受信位
相の余弦(I成分)との積を出力するメモリと受信レベ
ルデータ、或いは受信レベルデータの二乗と受信位相の
正弦(Q成分)との積を出力するメモリを用い、これら
メモリと共に小規模のディジタル回線によって構成する
最大比合成ダイバーシチ受信装置が知られていた(例え
ば、特開平7−307724号公報)。
As an apparatus for realizing the maximum ratio combining method, a memory for outputting a product of the reception level or the square of the reception level data and the cosine (I component) of the reception phase and the reception level data or the square of the reception level data are used. A maximum ratio combining diversity receiver using a memory that outputs a product of the sine (Q component) of the reception phase and a small digital line is known together with these memories (for example, Japanese Patent Application Laid-Open No. 7-307724). ).

【0005】図5は、このような従来の最大比合成ダイ
バーシチ受信装置の一例を示したもので、2系統の受信
信号を合成するように構成している。この装置の場合、
位相検出手段3、4において、各入力端子1、2から入
力される受信信号の位相を検出し、検出した位相を遅延
手段5、6により、1シンボル時間遅延させ、加算手段
7、8によって受信信号の差を検出することで、1シン
ボル間の位相変化を検出する遅延検波を行っている。そ
して、加算手段7、8により出力された各位相データお
よび受信データ情報(RSSI)から第1記憶手段9、11
により受信レベルデータの二乗と受信位相データのI成
分との積を出力する。
FIG. 5 shows an example of such a conventional maximum ratio combining diversity receiver, which is configured to combine two systems of received signals. For this device,
The phase detectors 3 and 4 detect the phases of the received signals input from the input terminals 1 and 2, delay the detected phase by one symbol time by the delay units 5 and 6, and receive by the adding units 7 and 8. By detecting a signal difference, delay detection for detecting a phase change between one symbol is performed. Then, the first storage means 9, 11 are obtained from the respective phase data and the received data information (RSSI) output by the addition means 7, 8.
Outputs the product of the square of the reception level data and the I component of the reception phase data.

【0006】更に、第2記憶手段10、12により受信
レベルデータの二乗と受信位相データのQ成分との積を
出力する。これによって、位相データのI成分、Q成分
の算出および重み付けが行われ、加算器13、14でそ
れぞれ合成され、復号手段15で復号することによっ
て、最大比合成を実現していた。
Further, the second storage means 10 and 12 output the product of the square of the received level data and the Q component of the received phase data. As a result, the I component and the Q component of the phase data are calculated and weighted, and are combined by the adders 13 and 14, respectively, and decoded by the decoding unit 15, thereby achieving maximum ratio combining.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の最大比合成ダイバーシチ受信装置によれば、受
信信号の大きさに関する受信レベルデータと受信位相デ
ータが入力されるとともに受信データ或いは受信レベル
データの二乗と受信位相データの正弦との積を出力する
第1の記憶手段、或いは受信レベルデータと受信位相位
相データが入力されるとともに受信レベルデータ或いは
受信レベルデータの二乗と受信位相データの余弦との積
を出力する第2の記憶手段等メモリとしての記憶装置を
使用するために、1チップ化などを行う際に、どうして
もゲート数が増加して、この分コストアップの因となっ
ていた。
However, according to the conventional maximum ratio combining diversity receiver described above, the reception level data and the reception phase data relating to the magnitude of the reception signal are input, and the reception data or the reception level data is received. First storage means for outputting the product of the square and the sine of the received phase data, or the input of the received level data and the received phase phase data and the reception level data or the square of the received level data and the cosine of the received phase data In order to use a storage device as a memory, such as a second storage unit that outputs a product, the number of gates is inevitably increased when a single chip or the like is performed, which causes a cost increase.

【0008】本発明は、このような従来技術に対して、
コストアップの因となるメモリ等の記憶装置を使用せず
に、最大比合成を可能としたダイバーシチ受信装置を提
供することを目的としている。
[0008] The present invention is directed to such a conventional technique.
It is an object of the present invention to provide a diversity receiver capable of performing maximum ratio combining without using a storage device such as a memory which causes an increase in cost.

【0009】[0009]

【課題を解決するための手段】本発明は、上記目的を実
現するために、各位相データおよび受信レベル情報(RS
SI)から受信レベルデータの二乗と受信位相データの正
弦、余弦の積を導く場合に、その生成式を直線等の近似
式を用いて行うことで、シフトレジスタ、セレクタ、乗
算器等の一般的なハードロジックのみで構成するように
して、記憶手段を使用せずに最大比合成を実現してい
る。
According to the present invention, in order to achieve the above object, each phase data and reception level information (RS
When deriving the product of the square of the reception level data and the sine and cosine of the reception phase data from SI), the generation equation is performed using an approximate expression such as a straight line, so that general shift registers, selectors, and multipliers can be used. The maximum ratio combining is realized without using any storage means by using only a hard logic.

【0010】[0010]

【発明の実施の形態】請求項1に記載された本発明によ
る最大比合成ダイバーシチ受信装置は、無線通信機器に
おける伝送線路の異なる複数の受信系からそれぞれ受信
した受信データから受信位相データを算出して入力する
入力手段と、この入力手段に入力された位相データから
余弦を算出する余弦変換手段と、前記入力手段に入力さ
れた位相データから正弦を算出する正弦変換手段と、前
記受信系から得られた受信レベル情報から重み付け係数
を算出して出力する重み付け係数変換手段と、上記余弦
変換手段及び正弦変換手段が算出した余弦又は正弦を、
重み付け係数変換手段が出力した重み付け係数を用いて
重み付けする重み付け手段と、この重み付け手段により
重み付けられた余弦又は正弦をそれぞれ合成して合成デ
ータを生成する合成手段と、この合成手段によって生成
された合成データを復号化して復号信号を出力する復号
手段とを有して構成したものである。
A maximum ratio combining diversity receiving apparatus according to the present invention calculates reception phase data from reception data received from a plurality of reception systems having different transmission lines in a radio communication device. Input means, a cosine conversion means for calculating a cosine from the phase data input to the input means, a sine conversion means for calculating a sine from the phase data input to the input means, and a signal obtained from the receiving system. Weighting coefficient conversion means for calculating and outputting a weighting coefficient from the received reception level information, and the cosine or sine calculated by the cosine conversion means and the sine conversion means,
Weighting means for weighting using the weighting coefficients output by the weighting coefficient conversion means, synthesizing means for synthesizing cosine or sine weighted by the weighting means to generate synthesized data, and synthesizing means generated by the synthesizing means Decoding means for decoding data and outputting a decoded signal.

【0011】この結果、本発明による最大比合成ダイバ
ーシチ受信装置は、各受信信号を検波した後、I成分、
Q成分を算出するために、余弦変換手段及び正弦変換手
段を用いて、余弦、正弦変換させる。この時、余弦及び
正弦を直線などで近似した余弦、正弦変換を行ってい
る。また、受信レベル情報(RSSI)から重み付け係数変
換手段を用いて重み付け係数変換をする際、こちらも直
線等の近似した重み付け係数で変換する。これらの近似
した直線等の変換であれば、この重み付け係数変換手段
は、加算器や乗算器等の簡単なハードロジックを用いる
ことができる。
As a result, the maximum ratio combining diversity receiver according to the present invention detects each received signal,
In order to calculate the Q component, cosine and sine conversion are performed using cosine conversion means and sine conversion means. At this time, cosine and sine conversion in which the cosine and sine are approximated by a straight line or the like is performed. Further, when weighting coefficient conversion is performed from the reception level information (RSSI) by using weighting coefficient conversion means, the weighting coefficient conversion is also performed using approximate weighting coefficients such as straight lines. For conversion of these approximated straight lines or the like, the weighting coefficient conversion means can use simple hardware logic such as an adder and a multiplier.

【0012】そして、次に、この重み付け手段が、余弦
変換手段及び正弦変換手段が算出した余弦又は正弦を、
重み付け係数変換手段が出力した重み付け係数を用いて
重み付けする。この重み付け手段は乗算器で構成でき
る。
Next, the weighting means calculates the cosine or sine calculated by the cosine conversion means and the sine conversion means,
Weighting is performed using the weighting coefficient output from the weighting coefficient conversion means. This weighting means can be constituted by a multiplier.

【0013】次に、この重み付け手段により重み付けら
れた余弦又は正弦を、合成手段がそれぞれ合成して合成
データを生成する。この合成手段は、加算器で構成でき
る。
Next, the combining means combines the cosine or sine weighted by the weighting means to generate combined data. This combining means can be constituted by an adder.

【0014】そして、この合成手段によって合成された
合成データを、復号手段により復号化している。
The combined data combined by the combining means is decoded by the decoding means.

【0015】以下、本発明の実施の形態について、図面
を参照しながら説明する。なお、説明の便宜上、無線通
信機器における伝送線路が2系統の場合を例としている
が、これに限定されるものでなく、m系統(mは整数)
であっても構わない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience of explanation, a case is described in which the wireless communication device has two transmission lines as an example, but the present invention is not limited to this, and m transmission lines (m is an integer)
It does not matter.

【0016】図1において、1、2は位相検出手段、
3、4は遅延手段、5、6は加算手段、7、8は重み付
け係数変換手段としての重み付け係数近似手段、9、1
0は余弦変換手段としての余弦近似手段、11、12は
正弦変換手段としての正弦近似手段、13、14、1
5、16は乗算器、17、18は加算器、19は復号手
段である。
In FIG. 1, reference numerals 1 and 2 denote phase detecting means,
3, 4 are delay means, 5, 6 are addition means, 7, 8 are weighting coefficient approximation means as weighting coefficient conversion means, 9, 1
0 is cosine approximation means as cosine conversion means, 11 and 12 are sine approximation means as sine conversion means, 13, 14, 1
5 and 16 are multipliers, 17 and 18 are adders, and 19 is decoding means.

【0017】各受信系の位相検出手段1、2により、受
信信号の位相を検出し、検出した位相を遅延手段3、4
により、1シンボル遅延させる。そして、次に加算手段
5、6で、検出した位相の差を検出することで、1シン
ボル間の位相変化量θを検出する遅延検波を行ってい
る。
The phase of the received signal is detected by the phase detection means 1 and 2 of each reception system, and the detected phase is delayed by the delay means 3 and 4.
Thereby delaying one symbol. Then, the adding means 5 and 6 detect the difference between the detected phases, thereby performing the delay detection for detecting the phase change amount θ between one symbol.

【0018】そして、検出された位相変化量θから、I
成分、Q成分を余弦近似手段9、10、正弦近似手段1
1、12で算出し、受信レベル情報(RSSI)から重み付
け係数近似手段7、8で重み付け係数に変換する。
Then, from the detected phase change θ, I
Component and Q component, cosine approximation means 9 and 10, sine approximation means 1
Calculated in steps 1 and 12 and converted from reception level information (RSSI) into weighting coefficients by weighting coefficient approximation means 7 and 8.

【0019】この変換方法として、例えば、I成分は、
COS値を直線で近似した図2、Q成分は、SIN値で
近似した図3、そして、受信レベル情報(RSSI)から二
乗の重み付け係数を得るために、{10
(RSSI[dBu])/20 2 を直線で近似した図4で変換す
る。
As this conversion method, for example, the I component
FIG. 2 in which the COS value is approximated by a straight line, FIG. 3 in which the COS value is approximated by a SIN value, and {10} in order to obtain a square weighting coefficient from the reception level information (RSSI)
(RSSI [dBu]) / 202 is converted as shown in FIG.

【0020】まず、I成分、Q成分の算出は、図2及び
図3に示すように、直線近似を行う際、傾きを、2
n (nは整数)にすることで、生成式は、2n ×θ+A
(Aは整数)となり、シフトレジスタ及び加算器の容易
なロジック回路で構成できる。
First, as shown in FIGS. 2 and 3, when the I component and the Q component are calculated, the slope is set to 2
n (n is an integer), the generation equation is 2 n × θ + A
(A is an integer), and can be configured with a logic circuit that is easy to use as a shift register and an adder.

【0021】次に、重み付け係数は、図4に示すよう
に、受信レベル情報の二乗{10(RSSI[dBu])/20 2
を直線近似した式(2n ×RSSI+B(Bは整数))も同
様に一般的なロジック回路で構成することが可能であ
る。
Next, as shown in FIG. 4, the weighting coefficient is the square of the received level information {10 (RSSI [dBu]) / 20 } 2
Equation (2 n × RSSI + B (B is an integer)) obtained by linearly approximating can be similarly configured by a general logic circuit.

【0022】そして、それぞれ近似変換されたI成分、
Q成分と重み付け係数とを、重み付け手段としての乗算
器13、14、15、16で乗算し、合成手段としての
加算器17、18で、I成分、Q成分をそれぞれ合成す
る。
Then, the I component, which is approximately converted,
The Q component and the weighting coefficient are multiplied by multipliers 13, 14, 15, and 16 as weighting means, and I components and Q components are respectively synthesized by adders 17 and 18 as synthesis means.

【0023】このように合成されたI成分、Q成分は復
号手段19で復号し、最大比合成を行う。
The I component and the Q component combined in this way are decoded by the decoding means 19 and maximum ratio combination is performed.

【0024】なお、各ブロックのハードロジック構成の
ところは、等価なソフトウエアで構成しても構わない。
また、上記の説明では、説明を簡単にするために、傾き
が、2nの直線近似を用いたが、他のどんな近似であっ
ても構わない。
The hardware configuration of each block may be constituted by equivalent software.
Further, in the above description, for simplicity, a linear approximation having a slope of 2 n is used, but any other approximation may be used.

【0025】[0025]

【発明の効果】以上のように本発明によれば、メモリ等
の記憶装置を有する最大比合成ダイバーシチ受信装置と
ほぼ同等の性能を、ハードロジックのみで容易に構成で
き、メモリ等記憶装置を使用しないために、コストも安
価に提供できる。
As described above, according to the present invention, a performance almost equal to that of the maximum ratio combining diversity receiver having a storage device such as a memory can be easily constituted only by hardware logic, and the storage device such as a memory can be used. Because it does not, the cost can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における最大比合成ダイバ
ーシチ受信装置の構成図
FIG. 1 is a configuration diagram of a maximum ratio combining diversity receiving apparatus according to an embodiment of the present invention.

【図2】余弦近似手段による位相量θとI成分との関係
を示す線図
FIG. 2 is a diagram showing a relationship between a phase amount θ and an I component by cosine approximation means;

【図3】正弦近似手段による位相量θとQ成分との関係
を示す線図
FIG. 3 is a diagram showing a relationship between a phase amount θ and a Q component by sine approximation means;

【図4】重み付け係数近似手段における受信レベル(RS
SI)と重み付け係数との関係を示す線図
FIG. 4 shows the reception level (RS
Diagram showing the relationship between SI) and weighting factors

【図5】従来における最大比合成ダイバーシチ受信装置
の構成図
FIG. 5 is a configuration diagram of a conventional maximum ratio combining diversity receiver.

【符号の説明】[Explanation of symbols]

1、2 位相検出手段 3、4 遅延手段 5、6 加算手段 7、8 重み付け係数近似手段(重み付け係数手
段) 9、10 余弦近似手段(余弦変換手段) 11、12 正弦近似手段(正弦変換手段) 13,14,15,16 乗算器(重み付け手段) 17、18 加算器(合成手段) 19 復号手段
1, 2 phase detection means 3, 4 delay means 5, 6 addition means 7, 8 weighting coefficient approximation means (weighting coefficient means) 9, 10 cosine approximation means (cosine conversion means) 11, 12 sine approximation means (sine conversion means) 13,14,15,16 Multipliers (weighting means) 17, 18 Adders (synthesis means) 19 Decoding means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 笠原 伸元 神奈川県横浜市港北区綱島東四丁目3番1 号 松下通信工業株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nobumoto Kasahara 4-3-1 Tsunashima Higashi, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Matsushita Communication Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無線通信機器における伝送線路の異なる
複数の受信系からそれぞれ受信した受信データから受信
位相データを算出して入力する入力手段と、 この入力手段に入力された受信位相データから余弦を算
出する余弦変換手段と、 前記入力手段に入力された受信位相データから正弦を算
出する正弦変換手段と、 前記受信系から得られた受信レベル情報から重み付け係
数を算出して出力する重み付け係数手段と、 上記余弦変換手段及び正弦変換手段が算出した余弦又は
正弦を、重み付け係数変換手段が出力した重み付け係数
を用いて重み付けする重み付け手段と、 この重み付け手段により重み付けられた余弦又は正弦を
それぞれ合成して合成データを生成する合成手段と、 この合成・生成手段によって生成された合成データを復
号化して復号信号を出力する復号手段と、 を有して構成したことを特徴とする最大比合成ダイバー
シチ受信装置。
1. An input means for calculating and inputting received phase data from received data respectively received from a plurality of receiving systems having different transmission lines in a wireless communication device, and calculating a cosine from the received phase data input to the input means. Cosine conversion means for calculating, sine conversion means for calculating a sine from reception phase data input to the input means, and weighting coefficient means for calculating and outputting a weighting coefficient from reception level information obtained from the reception system. Weighting means for weighting the cosine or sine calculated by the cosine conversion means and sine conversion means using the weighting factor output by the weighting coefficient conversion means; and combining the cosine or sine weighted by the weighting means. Combining means for generating combined data; decoding the combined data generated by the combining / generating means; And decoding means for outputting a decoded signal.
JP9143521A 1997-05-16 1997-05-16 Maximum ratio synthesis diversity receiver Pending JPH10322320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9143521A JPH10322320A (en) 1997-05-16 1997-05-16 Maximum ratio synthesis diversity receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9143521A JPH10322320A (en) 1997-05-16 1997-05-16 Maximum ratio synthesis diversity receiver

Publications (1)

Publication Number Publication Date
JPH10322320A true JPH10322320A (en) 1998-12-04

Family

ID=15340680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9143521A Pending JPH10322320A (en) 1997-05-16 1997-05-16 Maximum ratio synthesis diversity receiver

Country Status (1)

Country Link
JP (1) JPH10322320A (en)

Similar Documents

Publication Publication Date Title
US5761252A (en) Diversity reception device
AU631338B2 (en) Cross-polarization interference canceller
JP2000516421A (en) Symbol matched filter with low silicon and power requirements
JPH08213933A (en) Frequency offset correction device
JPH1028108A (en) Synthetic diversity receiving system
JP2009300284A (en) Arrival electric wave direction measuring device, arrival electric wave direction measuring method, and arrival electric wave direction measuring program
JP4865764B2 (en) Receiver and method thereof
US8798125B2 (en) Phase tracking in communications systems
US5835488A (en) Pseudo random noise sequence code generator and CDMA radio communication terminal
JP3502645B2 (en) Apparatus for processing transmitted signals
JP3462477B2 (en) Correlation detection device and correlation detection method
JPH10322320A (en) Maximum ratio synthesis diversity receiver
JPH10126138A (en) Adaptive array receiver
JP2002204183A (en) Rake synthesizing circuit
EP1315313B1 (en) Vectorial combiner for diversity reception in RF transceivers
US5579343A (en) Soft decision circuit
US20100166121A1 (en) Methods and apparatus for receiver having fast walsh transform
JP2000022613A (en) Maximum ratio synthetic diversity receiver
JP3554226B2 (en) Receiver
JP2006050317A (en) Array-antenna receiving device
US6697418B1 (en) Spread spectrum communication device and communication system
JPH10233756A (en) Maximum ratio synthesis circuit for multi-path signal
US6400757B1 (en) Symbol-matched filter having a low silicon and power management
JPS63260245A (en) Digital signal transmission method
JP3215788B2 (en) Tone disabler device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106