JPH10321210A - Nonaqueous battery diaphragm - Google Patents

Nonaqueous battery diaphragm

Info

Publication number
JPH10321210A
JPH10321210A JP9128790A JP12879097A JPH10321210A JP H10321210 A JPH10321210 A JP H10321210A JP 9128790 A JP9128790 A JP 9128790A JP 12879097 A JP12879097 A JP 12879097A JP H10321210 A JPH10321210 A JP H10321210A
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
battery
atm
membrane
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128790A
Other languages
Japanese (ja)
Inventor
Shoichi Takamura
正一 高村
Yuzuru Ishibashi
譲 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9128790A priority Critical patent/JPH10321210A/en
Publication of JPH10321210A publication Critical patent/JPH10321210A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery diaphragm showing high battery performance even at a large current density by comprising a vinylidene fluoride resin-made porous film having pores communicating with both sides and a permeating quantity of propylene carbonate of a specified value or more. SOLUTION: When a vinylidene fluoride resin-made porous film having a high permeating quantity of electrolytic solvent as a nonaqueous battery diaphragm, the capacity is hardly reduced when the current density is high. Therefore, a one having a permeating quantity of propylene carbonate of 50 kg/hr/m<2> / atm or more under the application of a static pressure of l atom at 23 deg.C is used. Since an excessively large permeating quantity causes possibilities of increased leaking property or short-circuit by dendrite of arborescent metal, the permeating quantity is preferably 10000 kg/hr/m<2> /atm or less. The vinylidene fluoride resin porous film suitable therefor is preferably cross-linked. The excessive deformation in swelling by electrolyte can be prevented by the cross-linked structure, and high high-temperature stability can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ化ビニリデン
系樹脂からなる非水系電池用隔膜に関する。さらに詳し
くは、大きな電流密度でも高い電池性能を示すことを可
能とする非水系電池用隔膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery diaphragm made of a vinylidene fluoride resin. More specifically, the present invention relates to a non-aqueous battery-use membrane capable of exhibiting high battery performance even at a large current density.

【0002】[0002]

【従来の技術】最近、携帯電話やパソコン等の小型化、
軽量化のために高エネルギー密度の電池が要求され、こ
れに対応する電池として非水系のリチウムイオン電池が
開発されている。この電池の正極および負極の電極間に
は電解液に膨潤することのない、ポリオレフィン製多孔
質隔膜が配置されている。該ポリオレフィン製隔膜を用
いた場合には、電解液の漏出が起こりやすいため、電池
構造体全体を重厚な金属容器でパッケージして電解液の
漏出を防止している。
2. Description of the Related Art Recently, miniaturization of mobile phones, personal computers, and the like,
A battery with a high energy density is required for weight reduction, and a non-aqueous lithium-ion battery has been developed as a corresponding battery. A polyolefin porous diaphragm that does not swell in the electrolytic solution is disposed between the positive electrode and the negative electrode of this battery. When the polyolefin diaphragm is used, leakage of the electrolyte is likely to occur. Therefore, the entire battery structure is packaged in a heavy metal container to prevent leakage of the electrolyte.

【0003】一方、ポリオレフィン製隔膜の代わりに固
体電解質を用いた固体電池は、電解液の漏出がないため
電池の信頼性、安全性が向上するとともに、非金属製パ
ッケージの採用や電池の薄型化、軽量化が期待されてい
る。特にイオン伝導性高分子を用いた高分子固体電解質
は、加工柔軟性を有するため電池との積層構造体形成、
電極のイオン吸蔵放出による体積変化に追随した界面保
持ができるなど好ましい性質を有すると期待されてい
る。
On the other hand, a solid-state battery using a solid electrolyte instead of a polyolefin diaphragm improves the reliability and safety of the battery because there is no leakage of the electrolyte, and adopts a nonmetallic package and makes the battery thinner. , Light weight is expected. In particular, a solid polymer electrolyte using an ion conductive polymer has a processing flexibility to form a laminated structure with a battery,
It is expected that the electrode has favorable properties such as the ability to maintain an interface following a change in volume due to ion occlusion and release of the electrode.

【0004】このような高分子固体電解質の試みとして
は、Wrightによりポリエチレンオキサイドのアル
カリ金属塩複合体が、British Polymer
Journal、7巻、p319(1975年)に報
告されて以来、ポリエチレンオキサイド、ポリプロピレ
ンオキサイドなどのポリエーテル系材料をはじめ、ポリ
ホスファゼン、ポリシロキサンなどを骨格とした高分子
固体電解質材料が活発に研究されている。このような高
分子固体電解質は、通常は高分子中に電解質が均一固溶
した形態をとり、ドライ系高分子固体電解質として知ら
れているが、そのイオン伝導度は電解液に比較して著し
く低く、これを用いて構成した電池は充放電電流密度が
限定され、電池抵抗が高いなどの問題を有していた。
[0004] As an attempt of such a solid polymer electrolyte, an alkali metal salt complex of polyethylene oxide is disclosed by Wright as British Polymer.
Journal, Vol. 7, p. 319 (1975). Since then, polymer solid electrolyte materials based on polyphosphazene, polysiloxane, etc., as well as polyether-based materials such as polyethylene oxide and polypropylene oxide, have been actively studied. ing. Such a solid polymer electrolyte usually takes a form in which the electrolyte is uniformly dissolved in a polymer, and is known as a dry polymer solid electrolyte, but its ionic conductivity is remarkably higher than that of the electrolyte. However, the battery constituted by using such a battery has problems such as limited charge / discharge current density and high battery resistance.

【0005】そのため、より電解液に近い状態を形成さ
せることでイオン伝導度を向上させようとする試みとし
て、フッ化ビニリデン系樹脂を基材として用いることが
提案されている。米国特許第5418091号明細書に
は、この種の材料としてフッ化ビニリデン系樹脂を基材
として用い、該樹脂に電解液を含有させたゲル状電解質
体を隔膜部分に用いることが開示されている。この材料
は電気化学的に安定な上、従来のドライ系固体電解質を
はるかにしのぐイオン伝導度を有していたが、それでも
電解液に比べれば充分なものではなかった。そのうえ、
このようなゲル状電解質体では、大きな電流密度では高
い電池性能が得られないという欠点を有していた。
[0005] Therefore, in an attempt to improve the ionic conductivity by forming a state closer to the electrolyte, it has been proposed to use a vinylidene fluoride resin as a base material. U.S. Pat. No. 5,418,091 discloses that a vinylidene fluoride resin is used as a base material as a material of this type, and a gel electrolyte in which an electrolyte is contained in the resin is used for a diaphragm portion. . Although this material is electrochemically stable and has an ionic conductivity far exceeding that of a conventional dry solid electrolyte, it is still insufficient compared with an electrolytic solution. Besides,
Such a gel electrolyte has a disadvantage that high battery performance cannot be obtained at a large current density.

【0006】さらに、特開平8−250127号公報で
は、フッ化ビニリデン系樹脂から成る多孔膜に電解液を
含浸させ、該電解液含浸多孔膜を隔膜部分に用いること
が開示されている。しかしながら、ここで開示された方
法においても、大きな電流密度では高い電池性能が得ら
れない欠点を有しており、急速な充放電が可能な優れた
電池性能を与える隔膜材料は、未だ知られていない。
Further, Japanese Patent Application Laid-Open No. 8-250127 discloses that a porous film made of a vinylidene fluoride resin is impregnated with an electrolytic solution, and the electrolytic solution-impregnated porous film is used for a diaphragm portion. However, even the method disclosed herein has a drawback that high battery performance cannot be obtained at a large current density, and a diaphragm material that provides excellent battery performance capable of rapid charge and discharge is still unknown. Absent.

【0007】[0007]

【発明が解決しようとする課題】本発明は、非金属製容
器でパッケージされた電池において、大きな電流密度で
も高い電池性能を示すことができる非水系電池用隔膜を
提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a non-aqueous battery diaphragm which can exhibit high battery performance even at a large current density in a battery packaged in a non-metal container.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記の従来
技術の問題点に鑑み、検討を重ね本発明に至った。本発
明とその好ましい態様は、以下のとおりである。 1)表裏に連通した孔を有し、23℃において1atm
の静圧をかけた時のプロピレンカーボネートの透液量が
50kg/hr/m2/atm以上であるフッ化ビニリ
デン系樹脂製多孔質膜からなることを特徴とする非水系
電池用隔膜。
Means for Solving the Problems In view of the above-mentioned problems of the prior art, the present inventors have conducted various studies and reached the present invention. The present invention and preferred embodiments thereof are as follows. 1) Has a communicating hole on the front and back, 1atm at 23 ° C
A membrane for non-aqueous batteries, comprising a porous membrane made of a vinylidene fluoride resin having a liquid permeability of propylene carbonate of 50 kg / hr / m 2 / atm or more when a static pressure is applied.

【0009】2)フッ化ビニリデン系樹脂製多孔質膜
が、架橋されている上記1記載の非水系電池用隔膜。 3)フッ化ビニリデン系樹脂製多孔質膜が、フッ化ビニ
リデン−ヘキサフロロプロピレン共重合体であって、ヘ
キサフルオロプロピレンの含有量が20wt%以下であ
る上記1記載の非水系電池用隔膜。
2) The non-aqueous battery membrane according to 1 above, wherein the porous membrane made of a vinylidene fluoride resin is crosslinked. 3) The nonaqueous battery membrane according to the above 1, wherein the vinylidene fluoride resin-based porous membrane is a vinylidene fluoride-hexafluoropropylene copolymer and the content of hexafluoropropylene is 20% by weight or less.

【0010】4)フッ化ビニリデン系樹脂製多孔質膜
が、フッ化ビニリデン−ヘキサフロロプロピレン共重合
体であって、ヘキサフルオロプロピレンの含有量が20
wt%以下である共重合体からなり、該共重合体が架橋
されている上記1記載の非水系電池用隔膜。 5)フッ化ビニリデン系樹脂製多孔質膜が、少なくとも
一方の表面層が他の部分より緻密であり、内部に巨大空
孔及び三次元網目構造を有している上記1記載の非水系
電池用隔膜。
4) The vinylidene fluoride resin-based porous membrane is a vinylidene fluoride-hexafluoropropylene copolymer having a hexafluoropropylene content of 20%.
2. The diaphragm for a non-aqueous battery according to the above item 1, wherein the diaphragm is made of a copolymer of not more than wt% and the copolymer is crosslinked. 5) The non-aqueous battery for a non-aqueous battery according to 1 above, wherein the porous membrane made of a vinylidene fluoride-based resin has at least one surface layer more dense than other portions and has huge pores and a three-dimensional network structure inside. diaphragm.

【0011】6)フッ化ビニリデン系樹脂製多孔質膜
が、少なくとも一方の表面層が他の部分より緻密であ
り、内部が三次元網目構造である上記1記載の非水系電
池用隔膜。 7)フッ化ビニリデン系樹脂製多孔質膜が、表面及び内
部とも三次元網目構造である上記1記載の非水系電池用
隔膜。
6) The nonaqueous battery-use membrane according to the above item 1, wherein the porous membrane made of a vinylidene fluoride resin has at least one surface layer which is denser than the other portions and the inside has a three-dimensional network structure. 7) The diaphragm for a non-aqueous battery according to 1 above, wherein the porous membrane made of a vinylidene fluoride resin has a three-dimensional network structure on both the surface and the inside.

【0012】8)フッ化ビニリデン系樹脂製多孔質膜
が、片側表面の平均孔径と他の表面の平均孔径の比が2
〜20である上記1記載の非水系電池用隔膜。 以下、本発明を詳細に説明する。一般に、電池では出力
の電流密度を大きくすると、内部抵抗や濃度過電圧等が
原因で容量が低下することがある。特に、内部抵抗の大
きな隔膜部を有する非水系電池においてはその傾向が著
しい。
8) When the ratio of the average pore diameter on one surface to the average pore diameter on the other surface is 2 in the vinylidene fluoride resin porous membrane.
20. The diaphragm for a non-aqueous battery according to 1 above, wherein Hereinafter, the present invention will be described in detail. In general, when the output current density of a battery is increased, the capacity may decrease due to internal resistance, concentration overvoltage, or the like. In particular, the tendency is remarkable in a non-aqueous battery having a diaphragm having a large internal resistance.

【0013】本発明の非水系電池用隔膜では、これを非
水系電池に用いたときに大きな電流密度でも容量が低下
しにくいことが特長である。例えば、充放電可能なリチ
ウムイオン二次電池において、1mA/cm2のような
低い電流密度と、3mA/cm2のような高い電流密度
とで放電容量に大きな差がないことを意味する。本発明
者らは、この特性を満足するための隔膜の要件を検討し
た結果、単に隔膜部のイオン伝導度を高めたり抵抗を低
くするだけでは満足しうる特性が得られず、電解液溶媒
の透液性が高い隔膜を用いることによってはじめて達成
できることを見いだした。
The feature of the membrane for a non-aqueous battery of the present invention is that when the membrane is used for a non-aqueous battery, the capacity is not easily reduced even at a large current density. For example, in a chargeable / dischargeable lithium ion secondary battery, it means that there is no large difference in discharge capacity between a low current density such as 1 mA / cm 2 and a high current density such as 3 mA / cm 2 . The present inventors have studied the requirements of the membrane to satisfy this property, and as a result, it was not possible to obtain satisfactory properties simply by increasing the ionic conductivity or reducing the resistance of the membrane, and the electrolyte solvent was not used. It has been found that this can be achieved only by using a membrane having high liquid permeability.

【0014】即ち、23℃で1atmの静圧をかけたと
きのプロピレンカーボネートの透液量が50kg/hr
/m2 /atm以上であることが要件である。50kg
/hr/m2 /atm未満では、高い電流密度での容量
が低下する。該透液量は、好ましくは75kg/hr/
2 /atm以上、さらに好ましくは100kg/hr
/m2 /atm以上である。
That is, when a static pressure of 1 atm is applied at 23 ° C., the liquid permeability of propylene carbonate is 50 kg / hr.
/ M 2 / atm is a requirement. 50 kg
If it is less than / hr / m 2 / atm, the capacity at a high current density decreases. The liquid permeation amount is preferably 75 kg / hr /
m 2 / atm or more, more preferably 100 kg / hr
/ M 2 / atm or more.

【0015】一方、高い電池性能を得る上では透液量に
上限はないが、透液量が大きすぎると漏液性が大きくな
ったり、デンドライトと呼ばれる樹枝状の金属の電析物
による短絡の恐れがあるので、10000kg/hr/
2 /atm以下が好ましく、5000kg/hr/m
2 /atm以下がさらに好ましく、2000kg/hr
/m2 /atm以下がさらに好ましい。
On the other hand, there is no upper limit to the amount of liquid permeation in order to obtain high battery performance. However, if the amount of liquid permeation is too large, liquid leakage will increase or short-circuiting due to dendritic dendritic metal deposits will occur. 10,000 kg / hr /
m 2 / atm or less, preferably 5000 kg / hr / m
2 / atm or less is more preferable, and 2000 kg / hr
/ M 2 / atm or less is more preferred.

【0016】ここで透液量の測定は次のような方法で行
われる。即ち、室温において予め隔膜をプロピレンカー
ボネート液中に浸して、該隔膜内部にプロピレンカーボ
ネートを含浸させ、その状態で23℃±1℃の温度環境
下で24時間保存する。次いで、該隔膜を直径25mm
に打ち抜いて有効面積3.5cm2のメンブランフィル
ターホルダーに組み込み、23±1℃に調整したプロピ
レンカーボネートを充たし、5分間1atmの静圧をか
けたときのプロピレンカーボネートの透過量を測定す
る。この値から1時間当たり且つ1m2当たりの透液量
を計算する。測定環境や用いるプロピレンカーボネート
及び器材の水分や純度は、測定値に影響を及ぼし、誤っ
た評価を与えることがある。従って、以上の透液量の測
定操作は、23±1℃に調整され、且つ、相対湿度5%
以下の環境下で行うことが好ましい。また、用いるプロ
ピレンカーボネートは、純度98wt%以上であり、好
ましくは含水量が1000ppm以下であるものを用い
る。
The amount of liquid permeation is measured by the following method. That is, the membrane is previously immersed in a propylene carbonate solution at room temperature to impregnate the inside of the membrane with propylene carbonate, and stored under a temperature environment of 23 ° C. ± 1 ° C. for 24 hours. Then, the diaphragm was 25 mm in diameter.
Into a membrane filter holder with an effective area of 3.5 cm 2 , filled with propylene carbonate adjusted to 23 ± 1 ° C., and measured the permeation amount of propylene carbonate when a static pressure of 1 atm was applied for 5 minutes. From this value, the amount of liquid permeated per hour and per m 2 is calculated. The measurement environment and the moisture and purity of the propylene carbonate and equipment used may affect the measured values and give erroneous evaluations. Therefore, the measurement operation of the liquid permeation amount is adjusted to 23 ± 1 ° C. and the relative humidity is set to 5%.
It is preferable to carry out under the following environment. The propylene carbonate used has a purity of 98 wt% or more, and preferably has a water content of 1000 ppm or less.

【0017】一般に、ウルトラフィルターやミクロフィ
ルターのような多孔質膜については、透水量によってそ
の膜に存在する孔の連通性が評価される。しかしなが
ら、フッ化ビニリデン系樹脂製多孔質膜においては、後
述の実施例3と比較例1との比較において明らかなよう
に、必ずしも透水量が高いものがプロピレンカーボネー
トの透液量が高いとはいえない。これは、多孔質膜のポ
リマー種や構造によって変化するものであると推測され
る。従って、上記の透液量は透水量とは直接的に対応し
ないものであり、全く異なる概念である。
Generally, for a porous membrane such as an ultrafilter or a microfilter, the continuity of pores existing in the membrane is evaluated based on the amount of water permeation. However, as apparent from the comparison between Example 3 and Comparative Example 1 described later, a porous membrane made of a vinylidene fluoride resin has a higher water permeability but a higher liquid permeability of propylene carbonate. Absent. This is presumed to change depending on the polymer type and structure of the porous membrane. Therefore, the above liquid permeation amount does not directly correspond to the water permeation amount, and is a completely different concept.

【0018】本発明において、フッ化ビニリデン系樹脂
製多孔質膜を形成するポリマー種としては、電気化学的
に安定なものが好ましい。このようなポリマー種として
具体的には、フッ化ビニリデンの単独重合体の他、フッ
化ビニリデン−ヘキサフルオロプロピレン共重合体、フ
ッ化ビニリデン−トリフルオロプロピレン共重合体、フ
ッ化ビニリデン−テトラフルオロエチレン共重合体、フ
ッ化ビニリデン−トリフルオロエチレン共重合体、フッ
化ビニリデン−フルオロエチレン共重合体、フッ化ビニ
リデン−プロピレン共重合体、フッ化ビニリデン−エチ
レン共重合体、フッ化ビニリデン−ヘキサフルオロアセ
トン共重合体、フッ化ビニリデン−パーフルオロビニル
エーテル共重合体、フッ化ビニリデン−エチレン−テト
ラフルオロエチレン共重合体、フッ化ビニリデン−テト
ラフルオロエチレン−ヘキサフルオロプロピレン共重合
体等を例示することができる。これら単独あるいはこれ
らの重合体の混合物を用いることもできる。また、電池
性能に悪影響を及ぼさない範囲であれば、フッ化ビニリ
デンを含まない他の重合体との混合物を用いることもで
きる。これらのポリマー種の中では、フッ化ビニリデン
−ヘキサフルオロプロピレン共重合体が、機械的強度が
良好であるので特に好ましい。
In the present invention, the polymer species forming the porous membrane made of a vinylidene fluoride resin is preferably an electrochemically stable polymer. Specific examples of such polymer species include homopolymers of vinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, and vinylidene fluoride-tetrafluoroethylene. Copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-hexafluoroacetone Examples thereof include a copolymer, a vinylidene fluoride-perfluorovinyl ether copolymer, a vinylidene fluoride-ethylene-tetrafluoroethylene copolymer, and a vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymer. These can be used alone or a mixture of these polymers can be used. In addition, as long as the battery performance is not adversely affected, a mixture with another polymer containing no vinylidene fluoride can be used. Among these polymer types, vinylidene fluoride-hexafluoropropylene copolymer is particularly preferred because of its good mechanical strength.

【0019】上記の共重合体、あるいは混合物の場合に
おいては、フッ化ビニリデン成分を50wt%以上含有
することが好ましく、75重量%以上含有することが特
に好ましい。フッ化ビニリデン成分が50wt%未満で
は、隔膜部分のイオン伝導性が低下する場合があり、ま
た、電子線架橋を行う場合には、75wt%未満では架
橋し難くなる。さらに、フッ化ビニリデン−ヘキサフル
オロプロピレン共重合体の場合では、ヘキサフロロプロ
ピレン含有量が20wt%以下であることが好ましい。
20wt%を越える範囲では、機械的強度が必ずしも十
分ではない。
In the case of the above copolymer or mixture, the vinylidene fluoride component is preferably contained in an amount of 50% by weight or more, particularly preferably 75% by weight or more. If the vinylidene fluoride component is less than 50% by weight, the ion conductivity of the diaphragm may decrease, and if the electron beam crosslinking is performed, it is difficult to crosslink at less than 75% by weight. Furthermore, in the case of a vinylidene fluoride-hexafluoropropylene copolymer, the hexafluoropropylene content is preferably 20% by weight or less.
If it exceeds 20 wt%, the mechanical strength is not always sufficient.

【0020】これらのフッ化ビニリデン系樹脂製多孔質
膜は架橋されていることが好ましい。一般にフッ化ビニ
リデン系樹脂は、リチウムイオン二次電池で用いられる
有機電解液によって膨潤するが、特に高温においてその
度合いが著しい。架橋構造を有することで、電解液に浸
漬した場合の膨潤時の過大な変形を防ぐことができ、高
い高温安定性が得られる。この架橋構造は、重合時、多
孔質薄膜の形成前、形成後のどの段階でも導入すること
ができる。
These vinylidene fluoride resin porous membranes are preferably crosslinked. Generally, a vinylidene fluoride resin swells with an organic electrolyte used in a lithium ion secondary battery, but its degree is particularly remarkable at high temperatures. By having a crosslinked structure, excessive deformation at the time of swelling when immersed in an electrolytic solution can be prevented, and high high-temperature stability can be obtained. This crosslinked structure can be introduced at any stage during polymerization, before or after formation of the porous thin film.

【0021】架橋の方法としては、重合時に多官能のモ
ノマーを用いる方法、重合後に電子線、γ線、X線、紫
外線等の輻射エネルギーを照射する方法、また、重合後
にラジカル開始剤を含有させて熱や輻射エネルギー照射
により反応させる方法等を用いることができる。重合後
に架橋構造を導入する場合、新たに単官能または/およ
び多官能のモノマー成分を共存させておくこともでき
る。これらの方法の中でも、夾雑物や未反応官能基が残
存しにくいので、重合後に電子線、γ線、X線、紫外線
等の輻射エネルギーを照射する方法が好ましい。
Examples of the crosslinking method include a method of using a polyfunctional monomer during polymerization, a method of irradiating radiant energy such as an electron beam, a γ-ray, an X-ray, and an ultraviolet ray after polymerization, and a method of adding a radical initiator after polymerization. For example, a method of reacting by irradiation of heat or radiation energy can be used. When a crosslinked structure is introduced after the polymerization, a monofunctional or / and polyfunctional monomer component may be newly allowed to coexist. Among these methods, a method in which radiation energy such as an electron beam, γ-ray, X-ray, or ultraviolet ray is irradiated after polymerization is preferable since impurities and unreacted functional groups hardly remain.

【0022】なかでも、隔膜の膜厚が100μm以下の
場合には、電子線照射による架橋が経済的であり、特に
好ましい。電子線照射により架橋を行う場合には、照射
量は5〜100Mradの範囲であることが好ましく、
さらに好ましくは8〜50Mradの範囲である。5M
rad未満では架橋の効果が必ずしも十分でなく、10
0Mradを超えるとポリマーの崩壊が顕著になる傾向
が生じる。
In particular, when the thickness of the diaphragm is 100 μm or less, crosslinking by electron beam irradiation is economical and particularly preferable. When performing crosslinking by electron beam irradiation, the irradiation amount is preferably in the range of 5 to 100 Mrad,
More preferably, it is in the range of 8 to 50 Mrad. 5M
If it is less than rad, the effect of crosslinking is not always sufficient, and 10
If it exceeds 0 Mrad, there is a tendency that the disintegration of the polymer becomes remarkable.

【0023】この架橋構造形成の確認は、未架橋ポリマ
ーが可溶な溶剤への溶解性により確認することができ
る。即ち、架橋構造を有する重合体は可溶性溶剤に溶解
しない成分を有し、均一溶解しないことから架橋構造形
成を判別することができる。本発明において、フッ化ビ
ニリデン系樹脂製多孔質膜としては、連通孔を有する多
孔質材料が用いられるが、これは電解液を含浸したとき
のイオン伝導度が高いこと、電解液の含浸性が高いこと
による。該多孔質膜の空隙率は10〜95%の範囲にあ
ることが好ましく、さらに好ましくは20〜90%、さ
らに好ましくは40〜85%である。10%未満では電
解液を含浸したときのイオン伝導度が充分には高くな
く、また、95%を超えると充分な強度が得られにく
い。
The formation of the crosslinked structure can be confirmed by the solubility in a solvent in which the uncrosslinked polymer is soluble. That is, since the polymer having a crosslinked structure has a component that is insoluble in a soluble solvent and does not dissolve uniformly, formation of a crosslinked structure can be determined. In the present invention, as the porous membrane made of vinylidene fluoride resin, a porous material having communication holes is used, which has a high ionic conductivity when impregnated with the electrolytic solution, and has a high impregnation property of the electrolytic solution. By high. The porosity of the porous membrane is preferably in the range of 10 to 95%, more preferably 20 to 90%, and still more preferably 40 to 85%. If it is less than 10%, the ionic conductivity when impregnated with the electrolytic solution is not sufficiently high, and if it exceeds 95%, it is difficult to obtain sufficient strength.

【0024】該多孔質膜の膜厚は、一般的には1〜50
0μm程度のものが用いられ、好ましくは10〜300
μm、さらに好ましくは20〜100μmがよい。1μ
m未満では強度が必ずしも十分とはいえず、電極間でシ
ョートしやすくなり、500μmを越える膜厚では膜全
体の実効電気抵抗が高くなりすぎるうえ、電池に用いた
ときの体積当たりのエネルギー密度が低くなる傾向があ
る。
The thickness of the porous film is generally 1 to 50.
About 0 μm is used, preferably 10 to 300
μm, more preferably 20 to 100 μm. 1μ
If the thickness is less than m, the strength is not necessarily sufficient, and short-circuiting between the electrodes is liable to occur. If the thickness exceeds 500 μm, the effective electric resistance of the entire film becomes too high, and the energy density per volume when used in a battery is reduced. Tends to be lower.

【0025】本発明において、フッ化ビニリデン系樹脂
製多孔質膜は、表裏に連通した孔を有していて、前述の
ような特定のプロピレンカーボネートの透液性を有する
ことが必要であるが、その構造は特に限定されるもので
はない。例えば、(1)少なくとも一方の表面に内部よ
りも緻密な層を有し、内部に巨大空孔及び三次元網目構
造を有している膜、(2)少なくとも一方の表面に内部
よりも緻密な層を有し、内部が三次元網目構造である
膜、(3)表面及び内部とも三次元網目構造である膜、
(4)片側表面に緻密な層を有し、該表面層の下部に巨
大空孔からなる層とから構成される2層構造である膜、
(5)少なくとも両表面に緻密な層を有し、内部に巨大
空孔からなる層から構成される3層若しくは5層構造の
膜等が挙げられる。ここで巨大空孔とは、その最大長径
が膜厚の10%以上長さである空孔をいう。これらの構
造の中でも、(1)、(2)及び(3)の膜が、機械的
強度が良好であるので特に好ましい。
In the present invention, the porous membrane made of vinylidene fluoride resin has pores communicating with each other on the front and back, and it is necessary that the specific propylene carbonate has the liquid permeability as described above. The structure is not particularly limited. For example, (1) a film having a denser layer than the inside on at least one surface and having a huge hole and a three-dimensional network structure inside, and (2) a film having a denser than the inside on at least one surface. (3) a film having a three-dimensional network structure on both the surface and the inside,
(4) a film having a two-layer structure comprising a dense layer on one surface and a layer comprising huge holes below the surface layer;
(5) A film having a three-layer or five-layer structure having a dense layer on at least both surfaces and having a layer composed of huge holes inside is exemplified. Here, the huge pore refers to a pore whose maximum major axis is 10% or more of the film thickness. Among these structures, the films (1), (2) and (3) are particularly preferable because of their good mechanical strength.

【0026】該多孔質膜の表面孔径は、使用する電池に
おける電極の性状により適正な範囲が異なるので一概に
は限定できないが、電極を構成している活物質等の粒子
径よりも十分小さいことが内部短絡を防止する上で望ま
しい。一方、電解液の含浸を容易にする為には孔径を大
きくした方が有利である。従って、片側表面の平均孔径
と他の表面の平均孔径とが異なり、大きい方の平均孔径
(ΦL)と小さい方の平均孔径(ΦS)の比(ΦL/Φ
S)が1以上であることが好ましく、特に、その比が2
〜20の範囲であることが好ましい。この範囲外の場合
には透液量が小さくなったり、ΦLが大きくなりすぎて
内部短絡を起こしやすくなる。このような孔径比(ΦL
/ΦS)が2〜20である膜の中でも、片側表面側から
他の表面側に向かって開口孔径が次第に大きくなる傾斜
構造をとる膜が、電解液の含浸が容易であると同時に内
部短絡を起し難く、また、上記の透液量が大きいので、
特に好ましい。
The surface pore size of the porous membrane cannot be unequivocally limited because the appropriate range varies depending on the properties of the electrode in the battery to be used, but it must be sufficiently smaller than the particle size of the active material or the like constituting the electrode. Is desirable for preventing an internal short circuit. On the other hand, in order to facilitate the impregnation with the electrolytic solution, it is advantageous to increase the pore size. Therefore, the average pore diameter on one surface is different from the average pore diameter on the other surface, and the ratio (ΦL / Φ) of the larger average pore diameter (ΦL) and the smaller average pore diameter (ΦS) is different.
S) is preferably 1 or more, in particular, when the ratio is 2
It is preferably in the range of 20 to 20. Outside this range, the amount of liquid permeation becomes small, or ΦL becomes too large, so that an internal short circuit is likely to occur. Such a hole diameter ratio (ΦL
Among the films having a ratio of (/ ΦS) of 2 to 20, a film having a slope structure in which the opening hole diameter gradually increases from one surface side to the other surface side is easy to impregnate the electrolyte solution and at the same time, causes an internal short circuit. It is hard to cause and because the above liquid permeation amount is large,
Particularly preferred.

【0027】このようなフッ化ビニリデン系樹脂製多孔
質膜の製造法は特に限定されるものではなく、公知の溶
融法や湿式法による方法が適用できる。例えば、特開平
3−215535号公報に記載の方法や、特公昭61−
38207号公報に記載の方法、特開昭54−1638
2号公報に記載の方法、特開昭58−91732号公報
記載の方法、特開昭63−296940号公報に記載の
方法等を利用することができる。
The method for producing such a porous membrane made of vinylidene fluoride resin is not particularly limited, and a known melting method or wet method can be applied. For example, the method described in JP-A-3-215535 and the method disclosed in
No. 38207, JP-A-54-1638.
The method described in JP-A-58-91732, the method described in JP-A-63-296940, and the like can be used.

【0028】溶融法は、重合体を可塑剤や無機粉体等と
共に溶融後、平膜状に成形し、その後に可塑剤や無機粉
体等を抽出除去するものである。また湿式法は、重合体
を界面活性剤や添加剤等と共に溶媒に溶解しておき、こ
の溶液を薄膜状で非溶媒中に浸漬することで凝固させ、
溶媒や界面活性剤や添加剤等は洗浄除去するものであ
る。後者の場合、非溶媒中に直接平膜状に押し出して浸
漬することにより、膜の両面に緻密な層を有する膜が製
造でき、また、ガラスのような基板上に流延したものを
基板ごと非溶媒中に浸漬することによって、片面に緻密
な層を有するものが製造できる。さらに、原液組成や非
溶媒液組成やそれらの温度などの条件を適宜選択するこ
とによって、緻密な層を全く有さないものを製造するこ
ともできる。
In the melting method, a polymer is melted together with a plasticizer, an inorganic powder and the like, formed into a flat film, and thereafter the plasticizer, the inorganic powder and the like are extracted and removed. In the wet method, the polymer is dissolved in a solvent together with a surfactant and additives, and the solution is coagulated by immersing the solution in a thin film in a non-solvent.
Solvents, surfactants, additives and the like are to be removed by washing. In the latter case, a film having a dense layer on both sides of the film can be manufactured by directly extruding and immersing in a non-solvent in the form of a flat film. By immersing in a non-solvent, one having a dense layer on one side can be manufactured. Further, by appropriately selecting conditions such as the composition of the stock solution, the composition of the non-solvent solution, and the temperature thereof, a product having no dense layer can be produced.

【0029】[0029]

【発明の実施の形態】以下、実施例によって本発明をさ
らに詳細に説明する。なお、必要により以下の前処理を
行ったサンプルを用いて、下記のように測定を行った。 〔前処理〕隔膜約20cm2を50mlのエタノール
(特級試薬)中に浸漬して洗浄する操作を3回行った。
その後、60℃で真空乾燥を4時間行った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail by way of examples. In addition, the measurement was performed as follows using the sample which performed the following pre-processing as needed. [Pretreatment] An operation of immersing about 20 cm 2 of the diaphragm in 50 ml of ethanol (special grade reagent) for washing was performed three times.
Thereafter, vacuum drying was performed at 60 ° C. for 4 hours.

【0030】(1)プロピレンカーボネート透液量(以
下、PC透液量という)の測定 十分乾燥処理を施したガラス製サンプル瓶にプロピレン
カーボネートを分取し、予め前処理を施した隔膜をその
中に浸してプロピレンカーボネートを室温において含浸
させ、該サンプル瓶を密栓した状態で23℃±1℃の温
度環境下で24時間保存した。次いで、該隔膜を直径2
5mmに打ち抜いて有効面積3.5cm 2 のメンブラン
フィルターホルダーに組み込み、23±1℃に調整した
プロピレンカーボネートを充たし、5分間1atmの静
水圧をかけたときのプロピレンカーボネートの透過液重
量を測定した。この値から1時間当たり且つ1m2 当た
りの透液量(kg/m2 /hr/atm)を計算した。
(1) Permeate amount of propylene carbonate
(Referred to below as the amount of liquid permeated by PC) Measurement of propylene in a glass sample bottle that has been sufficiently dried
The carbonate was separated and the pre-treated membrane was removed.
Impregnated with propylene carbonate at room temperature
With the sample bottle sealed and a temperature of 23 ° C ± 1 ° C.
Stored for 24 hours in an environment. The septum is then moved to diameter 2
Punched into 5mm, effective area 3.5cm TwoMembrane
Installed in filter holder and adjusted to 23 ± 1 ° C
Fill with propylene carbonate and leave at 1 atm for 5 minutes
Permeate weight of propylene carbonate when water pressure is applied
The amount was measured. From this value per hour and 1mTwoHit
Liquid permeation amount (kg / mTwo/ Hr / atm) was calculated.

【0031】上記の測定に関わる操作は、相対湿度5%
以下のドライエアー環境下で行った。また、プロピレン
カーボネートは、特級試薬(東京化成社製)であり、開
封直後のものを用いた。 (2)透水量の測定 隔膜サンプル約20cm2を50mlのエタノール(特
級試薬)中に浸漬して洗浄する操作を3回行った。次い
で、該隔膜を直径25mmに打ち抜いた後、超純水中に
浸漬して純水に置換した。続いて、該隔膜を有効面積
3.5cm2 のメンブランフィルターホルダーに組み込
んで超純水を充たし、5分間1atmの静圧をかけたと
きの透過液重量を測定した。この時の超純水の温度を測
定し、その温度での純水の真密度と粘度から、25℃に
おける1時間当たり且つ1m2当たりの透水量(リット
ル/m2/hr/atm、25℃)を計算した。
The operation relating to the above measurement is performed at a relative humidity of 5%.
The test was performed under the following dry air environment. Propylene carbonate was a special grade reagent (manufactured by Tokyo Chemical Industry Co., Ltd.) and used immediately after opening. (2) Measurement of Water Permeation An operation of immersing about 20 cm 2 of the diaphragm sample in 50 ml of ethanol (special grade reagent) and washing was performed three times. Next, the diaphragm was punched out to a diameter of 25 mm, and was immersed in ultrapure water to replace with pure water. Subsequently, the membrane was incorporated into a membrane filter holder having an effective area of 3.5 cm 2 , filled with ultrapure water, and the weight of the permeated liquid was measured when a static pressure of 1 atm was applied for 5 minutes. At this time, the temperature of the ultrapure water was measured, and from the true density and the viscosity of the pure water at that temperature, the amount of water per hour and per m 2 at 25 ° C. (liter / m 2 / hr / atm, 25 ° C.) ) Was calculated.

【0032】(3)厚みの測定 隔膜サンプルを表面が平滑なガラス板(厚み1mm)2
枚で挟み、その厚みをデジタルマイクロメーターで測定
した。上記ガラス板2枚の厚みを別途測定し、前記測定
値からガラス板分の値を差し引いて求めた。 (4)空隙率の測定 隔膜サンプルをエタノール(特級試薬)に浸漬して親水
化処理を行ったのち、室温で2時間以上純水に浸漬して
空隙内を完全に純水で置換した。次いで、膜表面の水を
拭き取った後、空隙に純水を含む隔膜の重量(A)を測
定した。続いて、該隔膜サンプルを真空中で60℃で4
時間以上乾燥して、空隙内の水を除去し、ポリマー部の
みの重量(B)を測定した。これらの重量と膜の構成ポ
リマー及び水の真比重(dp、dw)とから、次式によ
って計算で求めた。
(3) Measurement of thickness A diaphragm sample was placed on a glass plate (1 mm thick) having a smooth surface.
The thickness was measured with a digital micrometer. The thickness of the two glass plates was separately measured, and the thickness was obtained by subtracting the value of the glass plate from the measured value. (4) Measurement of Porosity The membrane sample was immersed in ethanol (special grade reagent) to perform a hydrophilization treatment, and then immersed in pure water at room temperature for 2 hours or more to completely replace the voids with pure water. Next, after the water on the membrane surface was wiped off, the weight (A) of the membrane containing pure water in the voids was measured. Subsequently, the membrane sample was placed in a vacuum at 60 ° C. for 4 hours.
After drying for more than an hour, water in the voids was removed, and the weight (B) of only the polymer portion was measured. From these weights and the true specific gravity (dp, dw) of the constituent polymer of the membrane and water, it was calculated by the following equation.

【0033】空隙率(%)=((A−B)/dw)/
(B/dp+(A−B)/dw)×100 なお、水の真比重(dw)は1.0とした。 (5)断面構造及び表面平均孔径 断面構造は、隔膜サンプルを液体窒素を用いて凍結させ
たのちに割断し、その断面をSEM(日立製作所製SE
M;S−800型)を用いて観察した。
Porosity (%) = ((AB) / dw) /
(B / dp + (AB) / dw) × 100 The true specific gravity (dw) of water was 1.0. (5) Cross-sectional Structure and Surface Average Pore Diameter The cross-sectional structure was obtained by freezing a diaphragm sample using liquid nitrogen, cutting it, and then cross-sectioning the cross-section with an SEM (SE manufactured by Hitachi, Ltd.).
M; S-800).

【0034】表面平均孔径は、上記と同様にSEMを用
いて膜表面を観察し、0.05μm以上の大きさの孔径
について面積基準の平均値を計算した。 (6)イオン伝導度 隔膜サンプルを室温で電解液(エチレンカーボネート/
プロピレンカーボネート/γ−ブチロラクトンの1:
1:2混合溶媒にLiBF4を1.5mol/リットル
の濃度で溶かした溶液)中に浸漬して、電解液を含浸し
た。この電解液含浸隔膜をステンレス製電極で挟み込む
ことで電気化学セルを構成した。通常の交流インピーダ
ンス法に基づいて、この電極間に交流を印可して抵抗成
分を測定し、コールコールプロットの実数インピーダン
ス切片からイオン伝導度を計算した。
The surface average pore diameter was determined by observing the membrane surface using an SEM in the same manner as described above, and calculating the area-based average value for pore diameters having a size of 0.05 μm or more. (6) Ion conductivity At room temperature, the membrane sample was subjected to an electrolytic solution (ethylene carbonate /
Propylene carbonate / γ-butyrolactone 1:
(A solution in which LiBF 4 was dissolved in a 1: 2 mixed solvent at a concentration of 1.5 mol / liter) to impregnate the electrolyte. An electrochemical cell was constructed by sandwiching the electrolyte impregnated diaphragm between stainless steel electrodes. Based on the normal AC impedance method, an AC was applied between the electrodes to measure the resistance component, and the ionic conductivity was calculated from the real impedance intercept of the Cole-Cole plot.

【0035】なお、インピーダンスの測定は、EG&G
社、389型インピーダンスメーターを用い、周波数1
kHzで行った。電解液の含浸と測定操作は、露点−6
0℃以下のドライ環境下で行った。 (7)電池性能(電流密度依存性) 次のような電極を用いた2次電池を構成し、その充放電
特性から評価した。
Incidentally, the measurement of the impedance was performed by EG & G
Company, using a 389 type impedance meter, frequency 1
It was performed at kHz. The impregnation of the electrolyte and the measurement operation are performed at a dew point of
The test was performed in a dry environment of 0 ° C. or less. (7) Battery Performance (Current Density Dependency) A secondary battery using the following electrodes was constructed and evaluated from its charge / discharge characteristics.

【0036】まず、平均粒径10μmのLiCoO2
末とカーボンブラックを、ポリフッ化ビニリデン(呉羽
化学工業製、KF#1100)のN−メチルピロリドン
溶液(5重量%)に混合分散してスラリーを作製した。
なお、スラリー中の固形分重量組成は、LiCoO
2(89%)、カーボンブラック(8%)、ポリマー
(3%)とした。このスラリーをアルミ箔上にドクター
ブレード法で塗布、乾燥した後、プレスして膜厚110
μmの正極シートを作製した。
First, a slurry is prepared by mixing and dispersing LiCoO 2 powder having an average particle size of 10 μm and carbon black in an N-methylpyrrolidone solution (5% by weight) of polyvinylidene fluoride (KF # 1100, manufactured by Kureha Chemical Industry Co., Ltd.). did.
The solid content weight composition in the slurry was LiCoO
2 (89%), carbon black (8%) and polymer (3%). This slurry was applied to an aluminum foil by a doctor blade method, dried, and then pressed to a thickness of 110 mm.
A μm positive electrode sheet was prepared.

【0037】次に、平均粒径10μmのニードルコーク
ス粉末をカルボキシメチルセルロース溶液とスチレンブ
タジエンラテックス(旭化成工業製、L1571)分散
液混合体に分散してスラリーを作製した。尚、スラリー
中の固形分重量組成は、ニードルコークス/カルボキシ
メチルセルロース/スチレンブタジエン=100/0.
8/2とした。該スラリーを金属銅シートにドクターブ
レード法で塗布、乾燥した後、プレスして膜厚120μ
mの負極シートを作製した。
Next, a needle coke powder having an average particle diameter of 10 μm was dispersed in a carboxymethyl cellulose solution and a styrene-butadiene latex (L1571 manufactured by Asahi Kasei Kogyo Co., Ltd.) mixture to prepare a slurry. The weight composition of the solid content in the slurry was as follows: needle coke / carboxymethyl cellulose / styrene butadiene = 100/0.
8/2. The slurry was applied to a metal copper sheet by a doctor blade method, dried, and then pressed to a thickness of 120 μm.
m of the negative electrode sheet was produced.

【0038】イオン伝導度の測定の場合と同様にして、
電解液を含浸した隔膜(電解液含浸隔膜)を調製した。
正極シート、負極シートはそれぞれ2cm角に切断し、
電解液含浸隔膜は2.3cm角に切断した。2枚の電極
シートが該電解液含浸隔膜を挟んで対向した状態に積層
した。このとき、正負極シートの対向しない部分ができ
ないようにした。さらに、該正極及び負極の外側からガ
ラス板で挟んで密着させて電池を形成した。次いで、該
電池の正極、負極にステンレス端子を取り付け、ガラス
製容器内に封入した。上記の電池の組立操作は、露点−
60℃以下のドライ環境下で行った。
As in the case of the measurement of ionic conductivity,
A diaphragm impregnated with an electrolyte (electrolyte-impregnated diaphragm) was prepared.
The positive electrode sheet and the negative electrode sheet are each cut into 2 cm square,
The electrolyte impregnated diaphragm was cut into 2.3 cm squares. Two electrode sheets were laminated so as to face each other with the electrolytic solution-impregnated diaphragm interposed therebetween. At this time, the non-opposing portions of the positive and negative electrode sheets were not formed. Further, a battery was formed by sandwiching and adhering a glass plate from the outside of the positive electrode and the negative electrode. Next, stainless terminals were attached to the positive electrode and the negative electrode of the battery, and sealed in a glass container. The above battery assembly operation is performed with the dew point-
The test was performed in a dry environment of 60 ° C. or less.

【0039】該電池について充放電機(北斗電工製、1
01SM6)を用い、充放電を繰り返し行った。充電は
定電流充電後4.2V定電位充電で行い、放電はカット
オフ電圧2.7V定電流放電で行った。まず、1mA/
cm2の電流密度で10回充放電を繰り返し、続いて3
mA/cm2の電流密度で充放電を10回繰り返した。
このときの10回目(1mA/cm2 )の放電容量に対
する20回目(3mA/cm2)の放電容量の比を求め
た。 電池性能(%)=(20回目の放電容量)/(10回目
の放電容量)×100
The battery was charged / discharged (Hokuto Denko, 1
01SM6), and charging and discharging were repeatedly performed. Charging was performed at 4.2V constant potential charging after constant current charging, and discharging was performed at 2.7V constant current discharging with a cutoff voltage of 2.7V. First, 1mA /
Charge and discharge were repeated 10 times at a current density of 2 cm 2 ,
Charge / discharge was repeated 10 times at a current density of mA / cm 2 .
At this time, the ratio of the discharge capacity at the 20th (3 mA / cm 2 ) to the discharge capacity at the 10th (1 mA / cm 2 ) was obtained. Battery performance (%) = (20th discharge capacity) / (10th discharge capacity) × 100

【0040】[0040]

【実施例1】フッ化ビニリデン−ヘキサフルオロプロピ
レン共重合体(エルフ アトケム製、Kynar280
1:ヘキサフルオロプロピレン12wt%含有品)17
重量部、ポリビニルピロリドン(BASF製、K−3
0)15重量部、N−メチルピロリドン(東京化成社製
特級試薬)68重量部からなる溶液を調製し、50℃で
ガラス板上にキャストした。直ちに30℃の62wt%
N−メチルピロリドン水溶液中に浸漬して凝固させ、
水、エタノールで洗浄後乾燥した。次いで、該多孔質膜
に電子線照射(照射量30Mrad)し、架橋した多孔
質膜を作成した。
Example 1 Vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Elf Atochem, Kynar 280)
1: product containing 12% by weight of hexafluoropropylene) 17
Parts by weight, polyvinylpyrrolidone (manufactured by BASF, K-3
0) A solution consisting of 15 parts by weight and 68 parts by weight of N-methylpyrrolidone (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared and cast on a glass plate at 50 ° C. Immediately 62 ℃ at 30 ℃
Immersed in an aqueous solution of N-methylpyrrolidone for coagulation,
After washing with water and ethanol, it was dried. Next, the porous film was irradiated with an electron beam (irradiation amount: 30 Mrad) to prepare a crosslinked porous film.

【0041】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部は三次
元網目構造をとっていた。両表面の平均孔径はそれぞれ
0.1μm、1.7μmであり、その比が17であっ
た。該多孔質膜は、膜厚65μm、空隙率75%であ
り、透水量が2300(リットル/m2 /hr/at
m、25℃)、PC透液量が80(kg/m2/hr/
atm)であった。 該多孔質膜を室温で電解液中に浸
漬したところ、数秒以内に含浸し、完全に透明になっ
た。この電解液含浸隔膜のイオン伝導度は1.3mS/
cmであり、その電池性能は93%であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had relatively dense layers, and the inside had a three-dimensional network structure. The average pore diameter on both surfaces was 0.1 μm and 1.7 μm, respectively, and the ratio was 17. The porous membrane has a thickness of 65 μm, a porosity of 75%, and a water permeability of 2300 (liter / m 2 / hr / at.
m, 25 ° C.) and the PC liquid permeation amount is 80 (kg / m 2 / hr /
atm). When the porous membrane was immersed in an electrolytic solution at room temperature, the porous membrane was impregnated within several seconds and became completely transparent. The ionic conductivity of this electrolyte impregnated membrane was 1.3 mS /
cm, and its battery performance was 93%.

【0042】[0042]

【実施例2】ポリマーをフッ化ビニリデン−ヘキサフル
オロプロピレン共重合体(エルフアトケム製、Kyna
r2850:ヘキサフルオロプロピレン3wt%含有
品)とし、凝固液を82wt%N−メチルピロリドン水
溶液中に変えた他は、実施例1と同様にして多孔質膜を
得た。次いで、該多孔質膜に電子線照射(照射量10M
rad)し、架橋した多孔質膜を作成した。
Example 2 The polymer was vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Elphatochem, Kyna
r2850: a product containing 3% by weight of hexafluoropropylene), and a porous membrane was obtained in the same manner as in Example 1 except that the coagulating solution was changed to an 82% by weight aqueous solution of N-methylpyrrolidone. Next, the porous film is irradiated with an electron beam (irradiation amount 10 M).
rad) to form a crosslinked porous membrane.

【0043】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部は三次
元網目構造をとっていた。両表面の平均孔径は、それぞ
れ0.9μm、4.8μmであり、その比が5.3であ
った。該多孔質膜は、膜厚45μm、空隙率77%であ
り、透水量が2070(リットル/m2 /hr/at
m、25℃)、PC透液量が180(kg/m2/hr
/atm)であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had relatively dense layers, and the inside had a three-dimensional network structure. The average pore diameter on both surfaces was 0.9 μm and 4.8 μm, respectively, and the ratio was 5.3. The porous membrane had a thickness of 45 μm, a porosity of 77%, and a water permeability of 2070 (liter / m 2 / hr / at.
m, 25 ° C.), PC liquid permeation amount 180 (kg / m 2 / hr)
/ Atm).

【0044】該多孔質膜を室温で電解液中に浸漬したと
ころ、数秒以内に含浸し、完全に透明になった。この電
解液含浸隔膜のイオン伝導度は1.2mS/cmであ
り、その電池性能は95%であった。
When the porous membrane was immersed in an electrolytic solution at room temperature, it was impregnated within several seconds and became completely transparent. The ionic conductivity of the electrolyte-impregnated membrane was 1.2 mS / cm, and the battery performance was 95%.

【0045】[0045]

【実施例3】フッ化ビニリデン重合体(呉羽化学製、K
F#1000:ホモポリマー)17.2重量部、ポリエ
チレングリコール#200(和光純薬工業製)11.5
重量部、ポリオキシエチレン(20)ソルビタンモノオ
レート(和光純薬工業製、試薬)0.8重量部、ジメチ
ルアセトアミド(東京化成社製特級試薬)70.5重量
部からなる溶液を調製し、60℃でガラス板上にキャス
トした。直ちに70℃の水中に浸漬して凝固させ、水、
エタノールで洗浄後乾燥した。次いで、該多孔質膜に電
子線照射(照射量30Mrad)し、架橋した多孔質膜
を作成した。
Example 3 Vinylidene fluoride polymer (Kureha Chemical, K
F # 1000: homopolymer) 17.2 parts by weight, polyethylene glycol # 200 (manufactured by Wako Pure Chemical Industries) 11.5
A solution consisting of 0.8 parts by weight of polyoxyethylene (20) sorbitan monooleate (manufactured by Wako Pure Chemical Industries, reagent) and 70.5 parts by weight of dimethylacetamide (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared. Cast on a glass plate at ° C. Immediately immersed in 70 ° C. water to solidify,
After washing with ethanol, it was dried. Next, the porous film was irradiated with an electron beam (irradiation amount: 30 Mrad) to prepare a crosslinked porous film.

【0046】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部には巨
大空孔部と三次元網目構造部を有していた。両表面の平
均孔径は、それぞれ0.1μm、0.3μmであり、そ
の比が3.0であった。この多孔質膜は、膜厚50μ
m、空隙率81%であり、透水量が1090(リットル
/m2 /hr/atm、25℃)、PC透液量が250
(kg/m2 /hr/atm)であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had a relatively dense layer, and had a huge pore and a three-dimensional network structure inside. The average pore sizes on both surfaces were 0.1 μm and 0.3 μm, respectively, and the ratio was 3.0. This porous membrane has a thickness of 50 μm.
m, porosity 81%, water permeability 1090 (liter / m 2 / hr / atm, 25 ° C.), PC liquid permeability 250
(Kg / m 2 / hr / atm).

【0047】該多孔質膜を室温で電解液中に浸漬したと
ころ、数秒以内に含浸し、完全に透明になった。この電
解液含浸隔膜のイオン伝導度は1.1mS/cmであ
り、その電池性能は92%であった。
When the porous membrane was immersed in an electrolytic solution at room temperature, it was impregnated within a few seconds and became completely transparent. The ionic conductivity of the electrolyte-impregnated membrane was 1.1 mS / cm, and the battery performance was 92%.

【0048】[0048]

【実施例4】平均一次粒子系16μm、比表面積110
2 /gの疎水性シリカ(アエロジルR−972)30
重量部、フタル酸ジオクチル37重量部、フタル酸ジブ
チル3重量部をヘンシェルミキサーで混合し、これにフ
ッ化ビニリデン重合体(呉羽化学製、KF#1000:
ホモポリマー)30重量部を添加し、再度ヘンシェルミ
キサーで混合した。該混合物を30mm二軸押出機(東
芝機械製)で混合してペレットにした。次いで、このペ
レットを30mm二軸押出機にTダイと冷却ロールを取
り付けた平膜製造装置を用いて薄膜を得た。該薄膜を
1,1,1−トリクロロエタン中に浸漬して、フタル酸
ジオクチルとフタル酸ジブチルを抽出した後、乾燥し
た。次いで、50%エチルアルコール水溶液に浸漬し、
更に水中に浸漬して親水化した後、70℃、20%苛性
ソーダ水溶液中に浸漬して疎水性シリカを抽出した。次
いで、十分水洗し、乾燥して多孔質膜を得た。
Example 4 Average primary particle system 16 μm, specific surface area 110
m 2 / g hydrophobic silica (Aerosil R-972) 30
Parts by weight, 37 parts by weight of dioctyl phthalate and 3 parts by weight of dibutyl phthalate were mixed with a Henschel mixer, and the mixture was mixed with a vinylidene fluoride polymer (KF # 1000, manufactured by Kureha Chemical Co., Ltd.).
30 parts by weight of a homopolymer) were added and mixed again with a Henschel mixer. The mixture was mixed into pellets using a 30 mm twin screw extruder (manufactured by Toshiba Machine Co., Ltd.). Next, a thin film was obtained from the pellets using a flat film production apparatus in which a T die and a cooling roll were attached to a 30 mm twin screw extruder. The thin film was immersed in 1,1,1-trichloroethane to extract dioctyl phthalate and dibutyl phthalate, and then dried. Then, immersed in 50% ethyl alcohol aqueous solution,
After further immersion in water to make it hydrophilic, it was immersed in a 20% aqueous sodium hydroxide solution at 70 ° C. to extract hydrophobic silica. Next, it was sufficiently washed with water and dried to obtain a porous membrane.

【0049】上記の多孔質膜の表面と断面を観察したと
ころ、表面及び内部とも三次元網目構造であった。両表
面の平均孔径はそれぞれ0.8μm、1.9μmであ
り、その比が2.4であった。この多孔質膜は、膜厚8
0μm、空隙率73%であり、透水量が4400(リッ
トル/m2 /hr/atm、25℃)、PC透液量が9
20(kg/m2 /hr/atm)であった。
Observation of the surface and cross section of the above porous film revealed that both the surface and the inside had a three-dimensional network structure. The average pore diameter on both surfaces was 0.8 μm and 1.9 μm, respectively, and the ratio was 2.4. This porous membrane has a thickness of 8
0 μm, porosity 73%, water permeability 4400 (l / m 2 / hr / atm, 25 ° C.), PC liquid permeability 9
20 (kg / m 2 / hr / atm).

【0050】該多孔質膜を室温で電解液中に浸漬したと
ころ、数秒以内に含浸し、完全に透明になった。この電
解液含浸隔膜のイオン伝導度は1.2mS/cmであ
り、その電池性能は93%であった。
When the porous film was immersed in an electrolytic solution at room temperature, it was impregnated within several seconds and became completely transparent. The ionic conductivity of the electrolyte-impregnated membrane was 1.2 mS / cm, and the battery performance was 93%.

【0051】[0051]

【実施例5】実施例4で得た多孔質膜に電子線照射(照
射量30Mrad)し、架橋した多孔質膜を作成した。
上記の架橋した多孔質膜の構造及び膜厚、空隙率は、実
施例4と同じであった。この架橋多孔質膜の透水量は、
4500(リットル/m2 /hr/atm、25℃)で
あり、PC透液量は970(kg/m2 /hr/at
m)であった。
Example 5 The porous film obtained in Example 4 was irradiated with an electron beam (irradiation amount: 30 Mrad) to prepare a crosslinked porous film.
The structure, thickness, and porosity of the crosslinked porous film were the same as in Example 4. The water permeability of this crosslinked porous membrane is
4500 (liter / m 2 / hr / atm, 25 ° C.) and the PC liquid permeation amount is 970 (kg / m 2 / hr / at
m).

【0052】該多孔質膜を室温で電解液中に浸漬したと
ころ、数秒以内に含浸し、完全に透明になった。この電
解液含浸隔膜のイオン伝導度は1.2mS/cmであ
り、その電池性能は94%であった。
When the porous film was immersed in an electrolytic solution at room temperature, it was impregnated within a few seconds and became completely transparent. The ionic conductivity of the electrolyte-impregnated membrane was 1.2 mS / cm, and the battery performance was 94%.

【0053】[0053]

【比較例1】フッ化ビニリデン−ヘキサフルオロプロピ
レン共重合体(エルフ アトケム製、Kynar280
1:ヘキサフルオロプロピレン12wt%含有品)17
重量部、N−メチルピロリドン(東京化成社製、特級試
薬)83重量部からなる溶液を調製し、30℃でガラス
板上にキャストした。30℃相対湿度95%の環境下に
10分間保持した後、30℃の水中に浸漬して凝固さ
せ、水、エタノールで洗浄後乾燥した。次いで、該多孔
質膜に電子線照射(照射量30Mrad)し、架橋した
多孔質膜を作成した。
Comparative Example 1 Vinylidene fluoride-hexafluoropropylene copolymer (manufactured by Elf Atochem, Kynar 280)
1: product containing 12% by weight of hexafluoropropylene) 17
A solution consisting of 83 parts by weight of N-methylpyrrolidone (manufactured by Tokyo Chemical Industry Co., Ltd., special grade reagent) was prepared and cast on a glass plate at 30 ° C. After being kept in an environment of 30 ° C. and a relative humidity of 95% for 10 minutes, it was immersed in water at 30 ° C. to coagulate, washed with water and ethanol, and dried. Next, the porous film was irradiated with an electron beam (irradiation amount: 30 Mrad) to prepare a crosslinked porous film.

【0054】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部は三次
元網目構造をとっていた。両表面の平均孔径は、それぞ
れ1.7μm、5.0μmであり、その比が2.9であ
った。該多孔質膜は、膜厚66μm、空隙率70%であ
り、透水量が1070(リットル/m2 /hr/at
m、25℃)、PC透液量が24(kg/m2 /hr/
atm)であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had relatively dense layers, and the inside had a three-dimensional network structure. The average pore diameter on both surfaces was 1.7 μm and 5.0 μm, respectively, and the ratio was 2.9. The porous membrane has a thickness of 66 μm, a porosity of 70%, and a water permeability of 1070 (liter / m 2 / hr / at.
m, 25 ° C.) and the PC liquid permeation amount is 24 (kg / m 2 / hr /
atm).

【0055】該多孔質膜を室温で電解液中に浸漬したと
ころ、数秒以内に含浸し、完全に透明になった。この電
解液含浸隔膜のイオン伝導度は1.2mS/cmであ
り、その電池性能は31%であった。
When the porous film was immersed in an electrolytic solution at room temperature, it was impregnated within several seconds and became completely transparent. The ionic conductivity of the electrolyte-impregnated membrane was 1.2 mS / cm, and the battery performance was 31%.

【0056】[0056]

【比較例2】実施例1と同様のポリマー溶液を、ギアポ
ンプを介してTダイから薄膜状にして25wt%N−メ
チルピロリドン水溶液中に押し出し、凝固させた。次い
で、水、エタノールで洗浄後乾燥して多孔質膜を得た。
さらに該多孔質膜に電子線照射(照射量30Mrad)
し、架橋した多孔質膜を作成した。
Comparative Example 2 The same polymer solution as in Example 1 was formed into a thin film from a T-die through a gear pump and extruded into a 25 wt% aqueous solution of N-methylpyrrolidone to be coagulated. Next, the resultant was washed with water and ethanol and then dried to obtain a porous membrane.
Further, the porous film is irradiated with an electron beam (irradiation amount: 30 Mrad).
Then, a crosslinked porous membrane was prepared.

【0057】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部には巨
大空孔部と三次元網目構造部を有していた。両表面の平
均孔径は、それぞれ0.1μm、0.1μmであり、そ
の比が1.0であった。該多孔質膜は、膜厚57μm、
空隙率80%であり、透水量が1100(リットル/m
2 /hr/atm、25℃)、PC透液量が19(kg
/m2 /hr/atm)であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had a relatively dense layer, and had a huge void and a three-dimensional network structure inside. The average pore diameter on both surfaces was 0.1 μm and 0.1 μm, respectively, and the ratio was 1.0. The porous membrane has a thickness of 57 μm,
The porosity is 80%, and the water permeability is 1100 (liter / m
2 / hr / atm, 25 ° C.)
/ M 2 / hr / atm).

【0058】該多孔質膜を室温で電解液中に浸漬したと
ころ、完全に透明な状態になるのに約10分必要であっ
た。この電解液含浸隔膜のイオン伝導度は1.3mS/
cmであり、その電池性能は28%であった。
When the porous film was immersed in an electrolytic solution at room temperature, it took about 10 minutes to be completely transparent. The ionic conductivity of this electrolyte impregnated membrane was 1.3 mS /
cm, and the battery performance was 28%.

【0059】[0059]

【比較例3】フッ化ビニリデン重合体(呉羽化学製、K
F#1000:ホモポリマー)17重量部、N−メチル
ピロリドン(東京化成社製特級試薬)83重量部からな
る溶液を調製し、30℃でガラス板上にキャストした。
直ちに30℃の水中に浸漬して凝固させ、水、エタノー
ルで洗浄後乾燥した。次いで、該多孔質膜に電子線照射
(照射量30Mrad)し、架橋した多孔質膜を作成し
た。
Comparative Example 3 Vinylidene fluoride polymer (Kureha Chemical, K
A solution consisting of 17 parts by weight of F # 1000: homopolymer) and 83 parts by weight of N-methylpyrrolidone (special grade reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was prepared and cast on a glass plate at 30 ° C.
Immediately, it was immersed in water at 30 ° C. for coagulation, washed with water and ethanol, and dried. Next, the porous film was irradiated with an electron beam (irradiation amount: 30 Mrad) to prepare a crosslinked porous film.

【0060】上記の架橋した多孔質膜の断面を観察する
と、両表面に比較的緻密な層を有していて、内部には巨
大空孔部と三次元網目構造部を有していた。15000
倍に拡大しても両表面には孔が観察されなかった。おそ
らく0.01μm以下の孔が存在していると推測され
る。該多孔質膜は、膜厚40μm、空隙率79%であ
り、透水量が37(リットル/m2 /hr/atm、2
5℃)、PC透液量が2(kg/m2/hr/atm)
であった。
Observation of the cross section of the crosslinked porous membrane revealed that both surfaces had a relatively dense layer, and had a huge pore and a three-dimensional network structure inside. 15000
No pores were observed on both surfaces even when magnified twice. It is presumed that there is probably a hole of 0.01 μm or less. The porous membrane has a thickness of 40 μm, a porosity of 79%, and a water permeability of 37 (liter / m 2 / hr / atm, 2
5 ° C), PC liquid permeation amount is 2 (kg / m 2 / hr / atm)
Met.

【0061】該多孔質膜を室温で電解液中に浸漬したと
ころ、完全に透明な状態になるのに約20分必要であっ
た。この電解液含浸隔膜のイオン伝導度は1.1mS/
cmであり、その電池性能は25%であった。
When the porous membrane was immersed in an electrolytic solution at room temperature, it took about 20 minutes to become completely transparent. The ionic conductivity of this electrolyte impregnated membrane was 1.1 mS /
cm, and its battery performance was 25%.

【0062】[0062]

【発明の効果】本発明のフッ化ビニリデン系樹脂製多孔
質隔膜は、高いイオン伝導度を示す上、非水系電池に用
いたときには大きな電流密度でも高い電池性能を示す。
従って本発明のフッ化ビニリデン系樹脂製多孔質隔膜
は、リチウム電池等の一次電池や二次電池あるいはポリ
マー電池等非水系電池用の構成材料として有用なもので
ある。
The porous membrane made of vinylidene fluoride resin of the present invention exhibits high ionic conductivity and exhibits high battery performance even at a large current density when used in a non-aqueous battery.
Therefore, the porous membrane made of vinylidene fluoride resin of the present invention is useful as a constituent material for non-aqueous batteries such as primary batteries and secondary batteries such as lithium batteries, and polymer batteries.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表裏に連通した孔を有し、23℃におい
て1atmの静圧をかけた時のプロピレンカーボネート
の透液量が50kg/hr/m2 /atm以上であるフ
ッ化ビニリデン系樹脂製多孔質膜からなることを特徴と
する非水系電池用隔膜。
1. A vinylidene fluoride resin having a communicating hole on both sides thereof and having a liquid permeation amount of propylene carbonate of 50 kg / hr / m 2 / atm or more when a static pressure of 1 atm is applied at 23 ° C. A diaphragm for a non-aqueous battery, comprising a porous membrane.
JP9128790A 1997-05-19 1997-05-19 Nonaqueous battery diaphragm Pending JPH10321210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128790A JPH10321210A (en) 1997-05-19 1997-05-19 Nonaqueous battery diaphragm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128790A JPH10321210A (en) 1997-05-19 1997-05-19 Nonaqueous battery diaphragm

Publications (1)

Publication Number Publication Date
JPH10321210A true JPH10321210A (en) 1998-12-04

Family

ID=14993525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128790A Pending JPH10321210A (en) 1997-05-19 1997-05-19 Nonaqueous battery diaphragm

Country Status (1)

Country Link
JP (1) JPH10321210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305030A (en) * 2001-04-06 2002-10-18 Mitsubishi Cable Ind Ltd Sheet-type lithium secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002305030A (en) * 2001-04-06 2002-10-18 Mitsubishi Cable Ind Ltd Sheet-type lithium secondary battery

Similar Documents

Publication Publication Date Title
CA2922834C (en) A protective film, and a separator and a secondary battery using the same
KR100633713B1 (en) An electrolytic-solution-supporting polymer film, a polymer electrolyte secondary battery using the same and a process for producing the battery
KR101965915B1 (en) Separator and method for producing same
JP2007510267A (en) Electrode coated with polymer in independent phase and electrochemical device including the same
WO1997048106A1 (en) Hybrid electrolyte, method for manufacturing the same, and method for manufacturing electrochemical element using the same
JP2992598B2 (en) Lithium ion battery
JP4303355B2 (en) Polyvinylidene fluoride resin, porous membrane comprising the same, and battery using the porous membrane
JP4209986B2 (en) Polyolefin microporous membrane secondary battery separator
US20230395940A1 (en) Nonaqueous electrolyte secondary battery separator
KR19990039865A (en) Polymer gel electrolyte for secondary battery and manufacturing method thereof
JPH10316793A (en) Porous film prepared from vinylidene fluoride resin
KR20160144369A (en) Layered porous film, and non-aqueous electrolyte secondary battery
JP3942277B2 (en) Composite polymer electrolyte membrane and method for producing the same
JPH10321210A (en) Nonaqueous battery diaphragm
JP2000315523A (en) Electrolytic solution carrying polymer film and secondary battery using it
JPH1186828A (en) Battery separator and its manufacture
JPH09306462A (en) Battery separator
JP2001319690A (en) Polymer-electrolyte battery and its manufacturing method
JP2000021233A (en) Fluorine resin porous film, gel type polymer electrolyte film using it, and manufacture thereof
JP4030142B2 (en) Thin film electrolyte for lithium ion battery
JPH1186909A (en) Electrolyte impregnated film
JP4090539B2 (en) Lithium ion conductive polymer substrate film
JPH10134793A (en) Porous membrane
JPH103897A (en) Separator for battery
JP4227209B2 (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617