JPH1031955A - Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source - Google Patents

Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source

Info

Publication number
JPH1031955A
JPH1031955A JP18720896A JP18720896A JPH1031955A JP H1031955 A JPH1031955 A JP H1031955A JP 18720896 A JP18720896 A JP 18720896A JP 18720896 A JP18720896 A JP 18720896A JP H1031955 A JPH1031955 A JP H1031955A
Authority
JP
Japan
Prior art keywords
electron source
source
thermal diffusion
electron
scandium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18720896A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishiyama
英利 西山
Hiroyuki Shinada
博之 品田
Taku Oshima
卓 大嶋
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18720896A priority Critical patent/JPH1031955A/en
Publication of JPH1031955A publication Critical patent/JPH1031955A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To monochromate an emitted electron energy by using a thermal diffusion supply type electron source capable of being set at an operation temperature lower than that of an electron source Zr/O/W. SOLUTION: To the tip of a W-made heating element 1 formed in V-shape is spot-welded W<100> monocrystal, and the tip is sharply tapered to form a needle electrode 2. It is then heated in vacuum, whereby the tip radius is set at 1.2μm. The resulting electrode is taken out to the atmosphere, a supply source 3 is adhered close to the base part of the needle electrode to manufacture a thermal diffusion supply type electron source 4. This electron source 4 is loaded on an energy analyzing device. A suppresser electrode 5 is put on the thermal diffusion supply type electron source 4, and an anode 6 is set in a position opposed thereto. The electron source 4 is electrically heated by a heating power source 8. The energy distribution of the emitted electron is measured by an energy analyzer 7. The electron emitting passage of this device is evacuated, the heating element 1 is heated to provide the emitted electron, and the emitted electron is put in the energy analyzer 7 for measurement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は電子顕微鏡や電子線
描画装置等の電子線応用装置において用いられる電子源
製造方法に関し,特に長期安定でかつエネルギーの揃っ
た電子放出,すなわちエネルギー分布の半値幅(FWH
M:Full Width at Half Maxi
mum)の狭い電子放出を得るための電子源材料および
電子源動作温度の条件,ならびにその電子源を用いたこ
れら電子線応用装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an electron source used in an electron beam application apparatus such as an electron microscope and an electron beam lithography apparatus, and more particularly to a long-term stable and uniform electron emission, that is, a half width of an energy distribution. (FWH
M: Full Width at Half Maxi
The present invention relates to an electron source material and an electron source operating temperature condition for obtaining an electron emission having a narrow electron emission (mum), and an electron beam application apparatus using the electron source.

【0002】[0002]

【従来の技術】長期安定でかつエネルギーの揃った電子
放出が得られる電子源として,これまで熱拡散補給型電
子源が用いられていた。この電子源は1000K以上に
加熱して使用するので残留ガスの吸着が少なく,安定性
に優れている。例えば,図2のようにW製の加熱用V字
型発熱体21と先端を尖らせたW<100>針状電極2
2と針状電極22の根元に補給源として酸化ジルコニウ
ム粉末23を焼結させたもの(以下Zr/O/Wと略
す)が使用されていた(特開昭59−49065)。こ
の電子源は,該補給源のZrおよびOを〜1800Kの
加熱により拡散させ,針状電極先端へ安定に供給し,針
状電極先端にZrおよびOを吸着させ,電子放出面であ
る(100)面の仕事関数を特に減少させている。 こ
のとき針状電極先端に電場を印加することによって放出
電子を得る。Zr/O/Wでは,放出電子のFWHMは
最小値でも〜0.4eVであった。
2. Description of the Related Art A thermal diffusion supplementary electron source has hitherto been used as an electron source capable of obtaining stable electron emission with stable energy for a long period of time. Since this electron source is used after being heated to 1000 K or more, it has little adsorption of residual gas and is excellent in stability. For example, as shown in FIG. 2, a heating V-shaped heating element 21 made of W and a W <100> needle-shaped electrode 2
2 and a sintered zirconium oxide powder 23 (hereinafter abbreviated as Zr / O / W) as a replenishing source at the base of the needle electrode 22 (JP-A-59-49065). This electron source diffuses the Zr and O of the replenishing source by heating up to 1800 K, stably supplies the Zr and O to the tip of the needle electrode, adsorbs Zr and O to the tip of the needle electrode, and serves as an electron emission surface (100 ) The work function of the surface is particularly reduced. At this time, emitted electrons are obtained by applying an electric field to the tip of the needle electrode. In Zr / O / W, the FWHM of the emitted electrons was about 0.4 eV at the minimum.

【0003】一方, FWHMの狭い電子源としてはW
<310>電界放出電子源(以下W<310>と略す)
がある。この電子源は室温にて,電子源先端に電場を印
加することによってW(310)面からの電界放出電子
を得ている。このときのFWHMは〜0.3eVであ
り,Zr/O/Wよりも狭いが残留ガスの吸着による電
子放出面の仕事関数増加により,放出電流が不安定とな
るため,定期的(約8時間おき)に加熱処理が必要であ
った。
On the other hand, as a narrow electron source of FWHM, W
<310> Field emission electron source (hereinafter abbreviated as W <310>)
There is. This electron source obtains field emission electrons from the W (310) plane by applying an electric field to the tip of the electron source at room temperature. The FWHM at this time is about 0.3 eV, which is smaller than Zr / O / W, but the emission current becomes unstable due to the increase in the work function of the electron emission surface due to the adsorption of the residual gas. Every second) required heat treatment.

【0004】これら電子源は,透過型電子顕微鏡,走査
型電子顕微鏡(SEM,Scanning Elect
ron Microscope),低加速SEM,測長
SEM,電子線描画装置等の電子線応用装置に利用され
ている。
These electron sources include a transmission electron microscope and a scanning electron microscope (SEM, Scanning Elect).
ron Microscope), low-acceleration SEM, length measurement SEM, electron beam lithography, and other electron beam application devices.

【0005】[0005]

【発明が解決しようとする課題】従来の技術では,Zr
/O/Wは安定性は良いが,FWHMは広かった。一
方,W<310>はFWHMは狭いが安定性に弱点があ
った。本発明ではこれら問題を解決し,FWHMをW<
310>程度もしくはそれ以上に狭くし,かつ安定性を
Zr/O/W程度もしくはそれ以上に向上させるための
新材料を用いた熱拡散補給型電子源の製造方法を提案す
る。
In the prior art, Zr
Although / O / W had good stability, FWHM was wide. On the other hand, W <310> had a weak point in stability although FWHM was narrow. The present invention solves these problems and sets FWHM to W <
The present invention proposes a method for manufacturing a thermal diffusion supplementary electron source using a new material for narrowing to about 310> or more and improving the stability to about Zr / O / W or more.

【0006】一方,電子線応用装置,例えばLSI評価
に使用される低加速SEMおよび測長SEMにおいては
メンテナンスフリーの要求を満たすために長期安定性に
優れた熱拡散補給型電子源Zr/O/Wが用いられてい
た。しかし,この電子源はFWHMが広いという欠点が
あり,そのため色収差が大きくなり分解能の低下につな
がっていた。例えば,現在主流の16〜64Mbyte
のDRAM(Dynamic Random Acce
ss Memory)の電気線幅は0.25〜0.3μ
mである。一方,このDRAMの電気線の検査には,2
%の精度が要求されている。したがって,分解能として
は6nm(0.3μm×2%)が要求される。この分解
能は従来のZr/O/W(FWHMは0.4eV)で達
成されている。しかしながら,次世代の256M〜1G
byteのDRAMの電気線幅は0.2μmであり,分
解能は4nmが必要である。分解能はFWHM /(加
速電圧)に比例するので,FWHMとしては0.2〜
0.3eVが必要となる。それゆえに,このようにFW
HMが狭く,安定性に優れた熱拡散補給型電子源の開発
が必要とされている。
On the other hand, in an electron beam application apparatus, for example, a low acceleration SEM and a length measuring SEM used for LSI evaluation, a thermal diffusion supplementary electron source Zr / O / W was used. However, this electron source has a drawback that the FWHM is wide, so that the chromatic aberration is increased and the resolution is reduced. For example, the current mainstream 16-64 Mbyte
DRAM (Dynamic Random Access)
ss Memory) is 0.25-0.3μ
m. On the other hand, the inspection of the electric wires of this DRAM requires 2
% Accuracy is required. Therefore, a resolution of 6 nm (0.3 μm × 2%) is required. This resolution is achieved with conventional Zr / O / W (FWHM is 0.4 eV). However, next generation 256M-1G
The electric line width of the byte DRAM is 0.2 μm and the resolution is required to be 4 nm. The resolution is proportional to FWHM / (acceleration voltage).
0.3 eV is required. Therefore, this way FW
There is a need for the development of a thermal diffusion supplementary electron source with a narrow HM and excellent stability.

【0007】[0007]

【課題を解決するための手段】まず始めに熱拡散補給型
電子源の電子放出原理を説明し,どのようにすればFW
HMを狭めることができるかを説明する。図3は電子放
出の原理を示した図である。図3(a)は金属表面に電
場Fを印加することによって,金属内の電子が放出され
る様子を表している。ここでV(z)は,表面(z=
0)に電場Fを印加したときに生ずる表面近傍の電子の
受けるポテンシャル障壁である。V(z)は放出した電
子の鏡像効果と電場により,V(z)=−e・e/4z
−eFz(z>0)で表される。ただし,真空準位を0
とした。ポテンシャル障壁の頂点のエネルギーEmはV
(z)の式より,Em=−√(e・e・e・F/4)と
なり,電場Fが大きいほど真空準位より低下する。次
に,図3(b)にエネルギー分布の概形を表す。エネル
ギー分布の形は電場Fの大きさによって次の三種類に分
けられる。(i)F:小の場合。ポテンシャル障壁が厚
いので障壁を透過する電子は少なく,熱励起によりポテ
ンシャル障壁を越えて放出するショットキー放出電子が
主成分となる。したがって,エネルギー分布の概形は低
エネルギー側が急峻に落ち込んだものになる。また,こ
のとき放出する電子は熱励起されたものであるので,F
WHMは温度に比例する。(ii)F:大の場合。ポテ
ンシャル障壁が薄くなり障壁を透過する電界放出電子が
主成分となる。エネルギー分布の概形は,熱励起による
広がりを無視すれば,フェルミエネルギーEFより高エ
ネルギー側が急峻に落ち込んだものになる。(iii)
F:中の場合。ショットキー放出電子と電界放出電子が
ほぼ均等に混在した熱電界放出となる。熱拡散補給型電
子源の場合,ショットキー放出電子が放出する領域で使
用するためFWHMの最小値は温度で決定される。その
ため,動作温度が低いほど放出電子の単色化に有利にな
る。
Means for Solving the Problems First, the principle of electron emission of the thermal diffusion supplementary electron source will be described.
The following describes whether the HM can be reduced. FIG. 3 is a diagram showing the principle of electron emission. FIG. 3A shows a state in which electrons in the metal are emitted by applying an electric field F to the metal surface. Where V (z) is the surface (z =
0) is a potential barrier which is caused by electrons near the surface when the electric field F is applied. V (z) is given by V (z) = − e · e / 4z due to the image effect and the electric field of the emitted electrons.
−eFz (z> 0). However, if the vacuum level is 0
And The energy Em at the top of the potential barrier is V
From the equation (z), Em = −√ (eee ・ F / 4), and the larger the electric field F, the lower the vacuum level. Next, FIG. 3B shows an outline of the energy distribution. The shape of the energy distribution is classified into the following three types according to the magnitude of the electric field F. (I) F: Small case. Since the potential barrier is thick, few electrons penetrate the barrier, and the main component is Schottky emitted electrons that are emitted across the potential barrier by thermal excitation. Therefore, the general shape of the energy distribution sharply drops on the low energy side. Since the electrons emitted at this time are thermally excited, F
WHM is proportional to temperature. (Ii) F: Large case. The potential barrier becomes thinner, and the field emission electrons passing through the barrier become the main components. If the spread due to thermal excitation is ignored, the general shape of the energy distribution is such that the higher energy side drops sharply than the Fermi energy EF. (Iii)
F: Medium. Thermal field emission in which Schottky emitted electrons and field emission electrons are almost evenly mixed. In the case of a thermal diffusion supplementary electron source, the minimum value of the FWHM is determined by the temperature because it is used in a region where Schottky emitted electrons are emitted. Therefore, the lower the operating temperature, the more advantageous it is for monochromatic emission electrons.

【0008】しかし, 動作温度が低いと放出電子数が
減少してしまうし,針状電極先端まで補給源が供給され
ない可能性もある。そこで,それを補うために,動作温
度が1800Kより低くても針状電極先端に供給され,
電子放出面の仕事関数をZr/O/Wより減少させる
ことのできる補給源を用いる。
However, when the operating temperature is low, the number of emitted electrons decreases, and there is a possibility that the supply source is not supplied to the tip of the needle electrode. Therefore, in order to compensate for this, even if the operating temperature is lower than 1800K, it is supplied to the tip of the needle electrode,
A replenishing source capable of reducing the work function of the electron emission surface from Zr / O / W is used.

【0009】この課題を解決するために,先端を針状に
し,先端の表面が(100)となるW<100>針状電
極と,補給源としてスカンジウム,酸化スカンジウムも
しくはそれらの混合体からなる物質を用いる。補給源と
して酸化スカンジウム,もしくは酸化スカンジウムとス
カンジウムの混合物を用いた場合,それらを拡散させる
ことによって 針状電極先端に酸素とスカンジウムを吸
着させる。一方,補給源としてスカンジウムを用いた場
合は,スカンジウムを拡散させ,かつ酸素ガスと反応さ
せて針状電極先端に酸素とスカンジウムを同時に吸着さ
せる。以下,この電子源をSc/O/Wと略記する。ま
た,針状電極は,W,Ta,NbおよびMoとして(1
00),(111),(110)もしくは(310)
の,Hf,Re,Os, TcおよびRuとして(11
00)もしくは(0001)の,Irとして(10
0),(110)もしくは(111)の結晶面が先端と
なるような単結晶を用いてもよい。
In order to solve this problem, a W <100> needle electrode having a needle-like tip and a tip surface of (100) and a material comprising scandium, scandium oxide or a mixture thereof as a replenishing source Is used. When scandium oxide or a mixture of scandium oxide and scandium is used as a replenishing source, oxygen and scandium are adsorbed on the tip of the needle electrode by diffusing them. On the other hand, when scandium is used as a replenishing source, the scandium is diffused and reacted with oxygen gas to simultaneously adsorb oxygen and scandium on the tip of the needle electrode. Hereinafter, this electron source is abbreviated as Sc / O / W. In addition, the needle-shaped electrodes are represented by W, Ta, Nb and Mo as (1
00), (111), (110) or (310)
As Hf, Re, Os, Tc and Ru (11
(00) or (0001) as Ir (10
A single crystal in which the crystal plane of (0), (110) or (111) is the tip may be used.

【0010】実験によると,1200K〜1700Kの
温度範囲で拡散源のScおよびOが針状電極先端に安定
に供給され,電子放出面(100)の仕事関数を減少さ
せ,電子放出が得られた。図4にそのときの実験結果を
示す。針状電極先端の曲率半径は1.2μm,先端に印
加した電場は0.46V/nmである。縦軸は放射角電
流密度,横軸は針状電極先端の温度である。この図から
わかるように〜1200Kで電子が放出し始め,〜17
00Kで電子の放出はなくなる。〜1700Kで電子放
出がなくなる理由は,ScおよびOの供給量より蒸発量
が大きくなるためである。安定に電子放出しているとき
の放射角電流密度は,動作温度が低いにもかかわらず,
Zr/O/Wと同程度であった。このことはZr/O/
WよりもSc/O/Wの仕事関数が小さいことを示して
いる。すなわち,Sc/O/WはZr/O/Wより動作
温度が低く,FWHMが狭くなることを示している。
According to experiments, Sc and O as diffusion sources were stably supplied to the tip of the needle electrode in the temperature range of 1200 K to 1700 K, the work function of the electron emission surface (100) was reduced, and electron emission was obtained. . FIG. 4 shows the experimental results at that time. The radius of curvature at the tip of the needle electrode is 1.2 μm, and the electric field applied to the tip is 0.46 V / nm. The vertical axis represents the radiation angle current density, and the horizontal axis represents the temperature at the tip of the needle electrode. As can be seen from this figure, electrons began to be emitted at ~ 1200K and ~ 17K.
At 00K, there is no emission of electrons. The reason why the electron emission stops at 1700K is that the evaporation amount is larger than the supply amounts of Sc and O. The emission angular current density during stable electron emission is low despite the low operating temperature.
It was about the same as Zr / O / W. This means that Zr / O /
This shows that the work function of Sc / O / W is smaller than W. That is, the operating temperature of Sc / O / W is lower than that of Zr / O / W, and the FWHM is smaller.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)図1に,本発明の第一の実施例を示す。ま
ず,V字型に成形された直径0.127mmのタングス
テン(W)製発熱体1の先端に直径0.127mmから
なるW<100>単結晶を点熔接し,その先端を濃度5
%の水酸化ナトリウム水溶液で電界研磨により鋭く尖ら
せて針状電極2を作成する(図1(a))。このときの
先端曲率半径は0.1μm程度であり,また発熱体1か
ら針状電極2先端までの長さを1mm程度になるように
する。その後,10の−6乗Torr程度の真空中で2
100K,10日間加熱することにより先端曲率半径を
1.2μmにする。次に,空気中に取り出し,補給源3
として酸化スカンジウムの粉末を純水もしくはニトロセ
ルロースを混合した有機溶媒,例えばコロジオンでスラ
リー状にし,針状電極2の根元近傍に付着させ熱拡散補
給型電子源を作製する(図1(b))。次に,この熱拡
散補給型電子源4を図1(d)のようなエネルギー分析
装置に搭載する。熱拡散補給型電子源4には,針状電極
先端以外からの電子放出を防ぐためサプレッサ電極5を
かぶせ,対向する位置にアノード6を置く。熱拡散補給
型電子源4は加熱電源8により通電加熱できるようにな
っており,針状電極の温度は光温度計10によって測定
され,温度と加熱電流の関係が記録される。また,アノ
ード6を接地し,熱拡散補給型電子源4に引出電圧9に
より負の電位を与えることができる。放出された電子は
エネルギー分析器7によりエネルギー分布が測定され
る。この装置の熱拡散補給型電子源4を含む電子放出経
路を10の−9乗Torr程度の真空にし,発熱体1を
加熱電源8を用いて電流値〜2.6Aで通電加熱して,
1800K程度にし,純水もしくはコロジオンを蒸発さ
せ,酸化スカンジウムを焼結させる。その後, 補給源
3のScおよびOを針状電極先端へ供給させるために,
光温度計10で針状電極の温度を測定しながら加熱電源
8を電流値〜2.5Aに調節し,針状電極の動作温度を
1500Kに保つ。すると,補給源3のScおよびOが
針状電極2の先端部まで拡散する。このようにして針状
電極2先端にScおよびOを供給させ,(100)表面
の仕事関数を減少させる。ここで,針状電極2先端に,
引出電源9を用いて,電場を印加して放出電子を得る。
放出電子はエネルギー分析器7に入り,エネルギー分布
が測定される。安定に電子放出しているときの放射角電
流密度Jとエネルギー分布の半値幅(FWHM)の関係
を図5に示す。Zr/O/Wよりも仕事関数および動作
温度が低くなっているため,FWHMは狭くなってい
る。ここでは,針状電極の動作温度を1500Kにした
が,1200K〜1700Kの範囲ならば補給源からS
cおよびOは安定に供給される。
(Embodiment 1) FIG. 1 shows a first embodiment of the present invention. First, a W <100> single crystal having a diameter of 0.127 mm is spot-welded to the tip of a tungsten (W) heating element 1 having a diameter of 0.127 mm and formed into a V-shape, and the tip has a concentration of 5%.
A needle electrode 2 is formed by sharply sharpening it with an aqueous sodium hydroxide solution by electropolishing (FIG. 1A). At this time, the radius of curvature of the tip is about 0.1 μm, and the length from the heating element 1 to the tip of the needle electrode 2 is about 1 mm. After that, 2 in a vacuum of about 10 −6 Torr
The radius of curvature at the tip is reduced to 1.2 μm by heating at 100K for 10 days. Next, take it out into the air,
A scandium oxide powder is made into a slurry with pure water or an organic solvent containing nitrocellulose mixed with nitrocellulose, for example, collodion, and attached near the base of the needle electrode 2 to produce a heat diffusion replenishment type electron source (FIG. 1B). . Next, this thermal diffusion supplementary electron source 4 is mounted on an energy analyzer as shown in FIG. The thermal diffusion replenishment type electron source 4 is covered with a suppressor electrode 5 in order to prevent electron emission from portions other than the tip of the needle electrode, and an anode 6 is placed at a position facing the suppressor electrode 5. The heat diffusion replenishment type electron source 4 can be energized and heated by a heating power supply 8, the temperature of the needle electrode is measured by an optical thermometer 10, and the relationship between the temperature and the heating current is recorded. Further, the anode 6 is grounded, and a negative potential can be applied to the heat diffusion replenishment electron source 4 by the extraction voltage 9. The energy distribution of the emitted electrons is measured by the energy analyzer 7. The electron emission path including the heat diffusion replenishment type electron source 4 of this apparatus is evacuated to a vacuum of about 10 −9 Torr, and the heating element 1 is heated and heated at a current value of 2.6 A using the heating power supply 8.
The temperature is adjusted to about 1800 K, pure water or collodion is evaporated, and scandium oxide is sintered. Then, in order to supply Sc and O of the supply source 3 to the tip of the needle electrode,
While measuring the temperature of the needle electrode with the optical thermometer 10, the heating power supply 8 is adjusted to a current value of 2.5 A, and the operating temperature of the needle electrode is maintained at 1500K. Then, Sc and O of the replenishing source 3 diffuse to the tip of the needle electrode 2. In this way, Sc and O are supplied to the tip of the needle electrode 2 to reduce the work function of the (100) surface. Here, at the tip of the needle electrode 2,
Using an extraction power source 9, an electric field is applied to obtain emitted electrons.
The emitted electrons enter the energy analyzer 7 and the energy distribution is measured. FIG. 5 shows the relationship between the emission angular current density J and the full width at half maximum (FWHM) of the energy distribution when electrons are stably emitted. Since the work function and the operating temperature are lower than those of Zr / O / W, the FWHM is narrow. Here, the operating temperature of the needle electrode is set to 1500 K. However, if the operating temperature is in the range of 1200 K to 1700 K, S
c and O are supplied stably.

【0012】また,補給源3として酸化スカンジウム,
酸化スカンジウムおよびスカンジウムの混合体,もしく
はそれらを含む物質を用いて図1(b)のように針状電
極2の根元近傍に付着させても良いし,酸化スカンジウ
ム,酸化スカンジウムおよびスカンジウムの混合体,も
しくはそれらを含む物質を針状電極自身,もしくはその
近傍に図1(c)のように蒸着しても良い。それ以外に
も,補給源3としてスカンジウム,もしくはそれを含む
物質を図1(b)のように針状電極2の根元近傍に付着
させても,針状電極自身,もしくはその近傍に図1
(c)のように蒸着しても,その後酸素と反応させるこ
とによって,針状電極2先端にScおよびOを供給する
ことができる。これらの場合も針状電極の動作温度範囲
は1200K〜1700Kであった。さらに針状電極2
は,W,Ta,NbおよびMoとして(100),(1
11),(110)もしくは(310)の,Hf,R
e,Os, TcおよびRuとして(1100)もしく
は(0001)の,Irとして(100),(110)
もしくは(111)の結晶面が先端となるような単結晶
を用いても同様の効果が得られた。
Further, scandium oxide is used as the replenishing source 3,
A scandium oxide and a mixture of scandium or a substance containing them may be attached to the vicinity of the root of the needle electrode 2 as shown in FIG. 1B, or a mixture of scandium oxide, scandium oxide and scandium, Alternatively, a substance containing them may be deposited on the needle electrode itself or in the vicinity thereof as shown in FIG. In addition, even if scandium or a substance containing it is attached as the replenishing source 3 to the vicinity of the base of the needle electrode 2 as shown in FIG.
Even when the vapor deposition is performed as shown in FIG. 4C, Sc and O can be supplied to the tip of the needle electrode 2 by reacting with oxygen thereafter. Also in these cases, the operating temperature range of the needle electrode was 1200K to 1700K. Needle electrode 2
Are (100), (1) as W, Ta, Nb and Mo.
11), (110) or (310), Hf, R
e, Os, Tc, and Ru are (1100) or (0001), and Ir is (100), (110).
Alternatively, the same effect was obtained by using a single crystal having the (111) crystal plane as a tip.

【0013】(実施例2)実施例1に記載の熱拡散補給
型電子源を搭載した低加速SEMの例を図6に示す。サ
プレッサ電極602を備えた熱拡散補給型電子源601
の直下にはアノード603があり,熱拡散補給型電子源
601とアノード603の間には高圧の引き出し電源6
04により電場が与えられている。また,熱拡散補給型
電子源601は加速電源605によりグランドに対して
負の電位が与えられている。熱拡散補給型電子源601
は加熱電源606により通電加熱できるようになってい
る。加熱電流とその値に対する電子源の温度の関係はあ
らかじめ測定されている。熱拡散補給型電子源601よ
り引き出された電子607はアノード603の中心に開
けられた孔を通過し,走査偏向器608により偏向され
た後,レンズ609により収束される。対物絞り610
を通過した電子はステージ612にのせた試料611上
に焦点を結ぶ。試料に当たった電子はその後反射され,
反射電子616の電流を検出器617で測定することに
より試料の像を得る。なお,引き出し電源604,加速
電源605および加熱電源606は制御計算機613に
より制御されている。走査偏向器608,レンズ60
9,対物絞り610およびステージ612は制御計算機
614により制御されている。
(Embodiment 2) FIG. 6 shows an example of a low-acceleration SEM on which the thermal diffusion supplementary electron source described in Embodiment 1 is mounted. Thermal diffusion supply type electron source 601 having suppressor electrode 602
An anode 603 is provided immediately below the high-voltage power supply 6 between the heat diffusion replenishment electron source 601 and the anode 603.
04 provides an electric field. Further, the thermal diffusion replenishment type electron source 601 is given a negative potential with respect to the ground by the acceleration power supply 605. Thermal diffusion supply type electron source 601
Can be energized and heated by a heating power source 606. The relationship between the heating current and the temperature of the electron source with respect to the value is measured in advance. Electrons 607 extracted from the thermal diffusion supplementary electron source 601 pass through a hole formed in the center of the anode 603, are deflected by the scanning deflector 608, and are converged by the lens 609. Objective diaphragm 610
Are focused on the sample 611 placed on the stage 612. The electrons that hit the sample are then reflected,
An image of the sample is obtained by measuring the current of the backscattered electrons 616 with the detector 617. The drawer power supply 604, the acceleration power supply 605, and the heating power supply 606 are controlled by the control computer 613. Scanning deflector 608, lens 60
9. The objective aperture 610 and the stage 612 are controlled by the control computer 614.

【0014】このような構成において,まず搭載した熱
拡散補給型電子源601の先端の仕事関数,温度,加速
電圧および電流密度を制御計算機612に入力する。す
ると,必要な電流密度の得られる引き出し電圧が自由電
子モデル計算により決定され,引き出し電源604が設
定される。これにより電子放出が得られる。さらに試料
611の観測したい領域を制御計算機614に入力する
ことにより,低加速SEMが実現できる。
In such a configuration, first, the work function, temperature, acceleration voltage, and current density of the tip of the mounted thermal diffusion replenishment electron source 601 are input to the control computer 612. Then, the extraction voltage at which the required current density is obtained is determined by the free electron model calculation, and the extraction power supply 604 is set. Thereby, electron emission is obtained. Further, by inputting a region of the sample 611 to be observed to the control computer 614, a low-acceleration SEM can be realized.

【0015】この低加速SEMのように従来型Zr/O
/Wの代わりにSc/O/Wを搭載すると,分解能の向
上が図れる。低加速SEMの場合,低放射角電流密度
(J〜10μA/sr),低加速電圧〜800Vで使用
するので,得られる分解能はほぼ放出電子のFWHMに
比例する。図3からもわかるように,J〜10μA/s
r では,Zr/O/WよりもFWHMを0.25/
0.4倍にできることから,分解能の向上に役立つ。具
体的には,Zr/O/WからSc/O/Wにすることに
よって分解能が6nmから4nmになった。このような
効果は測長SEMに関しても同様である。なお,試料6
11に電子を照射することによって発生する反射電子,
透過電子もしくは光の強度もしくはエネルギーを検出器
617で検出すれば試料の組成分析にも応用可能であ
る。
As in this low acceleration SEM, a conventional Zr / O
By mounting Sc / O / W instead of / W, the resolution can be improved. In the case of a low-acceleration SEM, since the device is used at a low emission angular current density (J to 10 μA / sr) and a low acceleration voltage to 800 V, the resolution obtained is almost proportional to the FWHM of the emitted electrons. As can be seen from FIG. 3, J to 10 μA / s
r, the FWHM is 0.25 / Zr / Zr / O / W
Since it can be increased by 0.4 times, it is useful for improving the resolution. Specifically, the resolution was changed from 6 nm to 4 nm by changing from Zr / O / W to Sc / O / W. Such an effect is the same for the length measurement SEM. Sample 6
Reflected electrons generated by irradiating electrons to 11,
If the intensity or energy of transmitted electrons or light is detected by the detector 617, it can be applied to the composition analysis of a sample.

【0016】さらに,この熱拡散補給型電子源Sc/O
/Wを従来型Zr/O/Wの代わりに電子線描画装置に
搭載すると,FWHMが同じでも,放射角電流密度を〜
10倍にすることができスループットの向上が図れる。
具体的にはFWHM=0.5eVが必要であるとき,放
射角電流密度Jは,図5のように,Zr/O/Wを用い
た場合は200μA/srであるが,Sc/O/Wを用
いれば1000μA/srまで増加させることが可能で
ある。また,これら以外にも透過型電子顕微鏡に本発明
の熱拡散補給型電子源を利用可能である。
Further, the thermal diffusion supplementary electron source Sc / O
/ W is mounted on the electron beam lithography system instead of the conventional Zr / O / W, and even if the FWHM is the same, the emission angular current density becomes ~
It can be increased by a factor of 10 to improve the throughput.
Specifically, when FWHM = 0.5 eV is required, the emission angular current density J is 200 μA / sr when Zr / O / W is used as shown in FIG. 5, but Sc / O / W Can be increased to 1000 μA / sr. In addition to these, the thermal diffusion supplementary electron source of the present invention can be used for a transmission electron microscope.

【0017】[0017]

【発明の効果】従来の電子源Zr/O/Wよりも,動作
温度を100〜600K低くすることが可能な熱拡散補
給型電子源Sc/O/Wを使用することにより,放出電
子エネルギーの単色化をはかる。
According to the present invention, the use of the thermal diffusion supplementary electron source Sc / O / W capable of lowering the operating temperature by 100 to 600 K than that of the conventional electron source Zr / O / W enables the emission electron energy to be reduced. Measure monochromaticity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱拡散補給型電子源実施例1の形成工
程図,およびエネルギー分析装置である。
FIG. 1 is a diagram showing a forming process and an energy analyzer of a heat diffusion supplementary electron source according to a first embodiment of the present invention.

【図2】従来型電子源Zr/O/Wの図である。FIG. 2 is a diagram of a conventional electron source Zr / O / W.

【図3】電子源からの電子放出の原理図である。FIG. 3 is a diagram illustrating the principle of electron emission from an electron source.

【図4】本発明の熱拡散補給型電子源Sc/O/Wから
放出される電流の温度変化を示した実験結果である。
FIG. 4 is an experimental result showing a temperature change of a current emitted from the thermal diffusion supplementary electron source Sc / O / W of the present invention.

【図5】本発明の熱拡散補給型電子源Sc/O/Wと従
来型の熱拡散補給型電子源Zr/O/Wの放射角電流密
度JとFWHMの関係の実験結果である。
FIG. 5 is an experimental result of the relationship between the radiation angular current density J and the FWHM of the thermal diffusion supplementary electron source Sc / O / W of the present invention and the conventional thermal diffusion supplementary electron source Zr / O / W.

【図6】実施例2に係わる,本発明の熱拡散補給型電子
源を搭載した低加速走査型電子顕微鏡である。
FIG. 6 is a low-acceleration scanning electron microscope according to a second embodiment, on which the thermal diffusion supplementary electron source of the present invention is mounted.

【符号の説明】[Explanation of symbols]

1:発熱体 2:針状電極 3:熱拡散補給源 4:熱
拡散補給型電子源 5:サプレッサ電極 6:アノード
7:エネルギー分析器 8:加熱電源 9:引出電源
10:光温度計 21:発熱体 22:針状電極 2
3:熱拡散補給源 601:熱拡散補給型電子線源 602:サプレッサ電
極 603:アノード 604:引き出し電源 605:加速電源 606:加
熱電源 607:電子 608:走査偏向器 609:レンズ 610:対物絞
り 611:試料 612:ステージ 613:制御計
算機 614:制御計算機 616:反射電子 617:検出器。
1: Heating element 2: Needle electrode 3: Thermal diffusion supplementary source 4: Thermal diffusion supplementary electron source 5: Suppressor electrode 6: Anode 7: Energy analyzer 8: Heating power supply 9: Extraction power supply 10: Optical thermometer 21: Heating element 22: needle electrode 2
3: thermal diffusion supply source 601: thermal diffusion supply type electron beam source 602: suppressor electrode 603: anode 604: extraction power supply 605: acceleration power supply 606: heating power supply 607: electron 608: scanning deflector 609: lens 610: objective aperture 611 : Sample 612: Stage 613: Control computer 614: Control computer 616: Backscattered electrons 617: Detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒田 勝広 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Katsuhiro Kuroda, Inventor 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside Central Research Laboratory, Hitachi, Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】先端を針状にした金属の針状電極と該針状
電極を加熱する発熱体からなる電子源において,該電子
源は補給源を有し,該発熱体は電流加熱可能になってお
り,該補給源材料を該針状電極に供給させるための電子
源の温度を光温度計により測定し,該発熱体に流す電流
値を決定することを特徴とする熱拡散補給型電子源の製
造方法。
1. An electron source comprising a metal needle electrode having a needle-like tip and a heating element for heating the needle electrode, wherein the electron source has a supply source, and the heating element is capable of heating current. A heat-diffusion supply type electron device, wherein the temperature of an electron source for supplying the supply source material to the needle-shaped electrode is measured by an optical thermometer, and a current value flowing through the heating element is determined. Source manufacturing method.
【請求項2】請求項1に記載の熱拡散補給型電子源の製
造方法で,上記補給源は酸化スカンジウム,酸化スカン
ジウムおよびスカンジウムの混合体,もしくはそれらを
含む物質であり,該電子源の動作温度は,該補給源のス
カンジウムおよび酸素が該針状電極先端に拡散により供
給され,かつ該針状電極先端においてスカンジウムおよ
び酸素が存在しうる範囲であることを特徴とする熱拡散
補給型電子源の製造方法。
2. The method according to claim 1, wherein the replenishing source is scandium oxide, a mixture of scandium oxide and scandium, or a substance containing them. The thermal diffusion replenishment electron source is characterized in that the temperature is within a range in which scandium and oxygen of the replenishing source are supplied to the tip of the needle electrode by diffusion, and scandium and oxygen can exist at the tip of the needle electrode. Manufacturing method.
【請求項3】請求項1に記載の熱拡散補給型電子源の製
造方法で,上記補給源はスカンジウム,もしくはそれを
含む物質であり,該電子源の動作温度は,該補給源のス
カンジウムが該針状電極先端に拡散により供給され,か
つ雰囲気中の酸素と反応させ,該針状電極先端において
スカンジウムおよび酸素が存在しうる範囲であることを
特徴とする熱拡散補給型電子源の製造方法。
3. The method of manufacturing a thermal diffusion supplementary electron source according to claim 1, wherein the supplementary source is scandium or a substance containing the same, and the operating temperature of the electron source is such that the scandium of the supplementary source is A method for producing a thermal diffusion supplementary electron source, wherein the temperature is within a range where scandium and oxygen can be present at the tip of the needle electrode by being supplied to the tip of the needle electrode by diffusion and reacting with oxygen in the atmosphere. .
【請求項4】請求項2に記載の熱拡散補給型電子源の製
造方法で,上記補給源のうち酸化スカンジウム,もしく
は酸化スカンジウムおよびスカンジウムの混合体を含む
物質で,酸化スカンジウム,もしくは酸化スカンジウム
およびスカンジウムの重量パーセントが50%以上であ
ることを特徴とする熱拡散補給型電子源の製造方法。
4. A method of manufacturing a thermal diffusion replenishing electron source according to claim 2, wherein the replenishing source is scandium oxide, or a substance containing scandium oxide and a mixture of scandium, wherein scandium oxide or scandium oxide and A method for producing a thermal diffusion supplementary electron source, wherein the weight percentage of scandium is 50% or more.
【請求項5】請求項3に記載の熱拡散補給型電子源の製
造方法で,上記補給源のうちスカンジウムを含む物質
で,スカンジウムの重量パーセントが50%以上である
ことを特徴とする熱拡散補給型電子源の製造方法。
5. The method of manufacturing a thermal diffusion replenishing electron source according to claim 3, wherein, in the replenishing source, a substance containing scandium, wherein the weight percentage of scandium is 50% or more. Manufacturing method of refillable electron source.
【請求項6】請求項2,3,4および5に記載の熱拡散
補給型電子源の製造方法で,上記のスカンジウムおよび
酸素が上記針状電極先端に供給されるための針状電極先
端の動作温度範囲が1200K〜1700Kであること
を特徴とする熱拡散補給型電子源の製造方法。
6. The method for manufacturing a thermal diffusion supplementary electron source according to claim 2, wherein the scandium and oxygen are supplied to the tip of the needle electrode for supplying the scandium and oxygen to the tip of the needle electrode. A method for manufacturing a thermal diffusion supplementary electron source, wherein an operating temperature range is 1200 K to 1700 K.
【請求項7】請求項2,3,4,5および6に記載の熱
拡散補給型電子源の製造方法で,上記補給源に用いる材
料を上記針状電極,上記発熱体もしくはそれら近傍に付
着させるための手段として,純水もしくは有機物で混合
して塗布することを特徴とする熱拡散補給型電子源の製
造方法。
7. A method for manufacturing a thermal diffusion replenishment type electron source according to claim 2, wherein a material used for the replenishment source is adhered to the needle electrode, the heating element, or a vicinity thereof. A method for producing a heat diffusion replenishment type electron source, characterized by mixing and applying pure water or an organic substance as a means for causing the mixture to be applied.
【請求項8】請求項7に記載の熱拡散補給型電子源の製
造方法で,上記有機物には,ニトロセルロースを含むこ
とを特徴とする熱拡散補給型電子源の製造方法。
8. The method of manufacturing a thermal diffusion supplementary electron source according to claim 7, wherein the organic substance includes nitrocellulose.
【請求項9】請求項2,3,4,5および6に記載の熱
拡散補給型電子源の製造方法で,上記補給源を上記針状
電極,上記発熱体もしくはそれら近傍に付着させるため
の手段として,蒸着によって付着させることを特徴とす
る熱拡散補給型電子源の製造方法。
9. The method for manufacturing a thermal diffusion replenishing electron source according to claim 2, wherein the replenishing source is attached to the needle-like electrode, the heating element, or the vicinity thereof. A method for producing a thermal diffusion supplementary electron source, characterized in that the electron source is deposited by vapor deposition.
【請求項10】請求項2,3,4,5,6,7,8およ
び9に記載の熱拡散補給型電子源の製造方法で,上記針
状電極にW,Hf,Ta,Re,Os,Ir,Nb,M
o,TcもしくはRuを用いることを特徴とする熱拡散
補給型電子源の製造方法。
10. The method of manufacturing a heat diffusion supplementary electron source according to claim 2, wherein W, Hf, Ta, Re, Os , Ir, Nb, M
A method for manufacturing a thermal diffusion supplementary electron source, characterized by using o, Tc or Ru.
【請求項11】請求項10に記載の熱拡散補給型電子源
の製造方法で,上記針状電極のW,Ta,NbおよびM
oとして(100),(111),(110)もしくは
(310)の,Hf,Re,Os, TcおよびRuと
して(1100)もしくは(0001)の,Irとして
(100),(110)もしくは(111)の結晶面が
先端となるような単結晶を用いることを特徴とする熱拡
散補給型電子源の製造方法。
11. The method of manufacturing a thermal diffusion supplementary electron source according to claim 10, wherein W, Ta, Nb and M of said acicular electrode are provided.
(100), (111), (110) or (310) as o, (1100) or (0001) as Hf, Re, Os, Tc and Ru, and (100), (110) or (111) as Ir A) using a single crystal having a crystal face as a tip, wherein the method comprises the steps of:
【請求項12】熱拡散補給型電子源を搭載し,上記発熱
体を加熱する加熱電源と,該熱拡散補給型電子源から電
子を引き出すための電場を与える引き出し電源と,該熱
拡散補給型電子源からの放出電子を加速するための加速
電源と,該放出電子を収束させるための絞りを備えたレ
ンズと,収束させた該放出電子を試料の所定位置に照射
させるための走査偏向器およびステージからなることを
特徴とする熱拡散補給型電子源を用いた電子線装置。
12. A heating power supply for mounting the heat diffusion supplementary electron source and heating the heating element, an extraction power supply for supplying an electric field for extracting electrons from the heat diffusion supplementary electron source, An accelerating power supply for accelerating the emitted electrons from the electron source, a lens having a stop for converging the emitted electrons, a scanning deflector for irradiating the converged emitted electrons to a predetermined position on the sample, and An electron beam apparatus using a thermal diffusion supplementary electron source, comprising a stage.
【請求項13】請求項12に記載の電子線装置で,試料
に電子を照射することによって発生する反射電子,透過
電子もしくは光の強度もしくはエネルギーを検知する検
出器を備えたことを特徴とする熱拡散補給型電子源を用
いた電子線装置。
13. An electron beam apparatus according to claim 12, further comprising a detector for detecting the intensity or energy of reflected electrons, transmitted electrons, or light generated by irradiating the sample with electrons. An electron beam device using a thermal diffusion supplementary electron source.
【請求項14】請求項12もしくは13に記載の電子線
装置で,上記加熱電源を制御する制御計算機を備え,該
制御計算機は,上記熱拡散補給型電子源の針状電極の温
度を所定の温度になるように設定し,さらに,上記引き
出し電源,上記加速電源,上記レンズ,上記走査偏向器
および上記ステージを制御する制御計算機を備え,該制
御計算機は所定の電流密度が得られる強度の電場を該熱
拡散補給型電子源の先端に生じさせる引き出し電圧およ
び加速電圧を設定し,かつ該試料の所定の位置に電子を
照射させるための位置合わせを行うことを特徴とする熱
拡散補給型電子源を用いた電子線装置。
14. An electron beam apparatus according to claim 12, further comprising a control computer for controlling said heating power supply, said control computer controlling a temperature of a needle electrode of said heat diffusion replenishment type electron source to a predetermined value. A control computer for setting the temperature so as to be a temperature and controlling the extraction power supply, the acceleration power supply, the lens, the scanning deflector, and the stage, wherein the control computer has an electric field of an intensity capable of obtaining a predetermined current density. Wherein a drawing voltage and an accelerating voltage that cause the electron beam to be generated at the tip of the heat diffusion replenishment electron source are set, and alignment is performed to irradiate a predetermined position of the sample with electrons. Electron beam device using a source.
JP18720896A 1996-07-17 1996-07-17 Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source Pending JPH1031955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18720896A JPH1031955A (en) 1996-07-17 1996-07-17 Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18720896A JPH1031955A (en) 1996-07-17 1996-07-17 Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source

Publications (1)

Publication Number Publication Date
JPH1031955A true JPH1031955A (en) 1998-02-03

Family

ID=16201987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18720896A Pending JPH1031955A (en) 1996-07-17 1996-07-17 Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source

Country Status (1)

Country Link
JP (1) JPH1031955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507872A (en) * 1999-08-20 2003-02-25 フェイ カンパニ Schottky emitter with extended life
JP2008004411A (en) * 2006-06-23 2008-01-10 Denki Kagaku Kogyo Kk Electron source
JP2008047309A (en) * 2006-08-11 2008-02-28 Hitachi High-Technologies Corp Field emission type electron gun, and its operation method
JP2009187767A (en) * 2008-02-06 2009-08-20 Sumitomo Electric Ind Ltd Electron source structure, and electron source structure drive device
WO2018070010A1 (en) * 2016-10-13 2018-04-19 株式会社日立ハイテクノロジーズ Electron beam apparatus
CN114927396A (en) * 2022-04-24 2022-08-19 电子科技大学 Method for controlling diffusion length of NEA GaN electron source in real time

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507872A (en) * 1999-08-20 2003-02-25 フェイ カンパニ Schottky emitter with extended life
JP4656790B2 (en) * 1999-08-20 2011-03-23 エフ イー アイ カンパニ Schottky emitter with extended life
JP2008004411A (en) * 2006-06-23 2008-01-10 Denki Kagaku Kogyo Kk Electron source
JP2008047309A (en) * 2006-08-11 2008-02-28 Hitachi High-Technologies Corp Field emission type electron gun, and its operation method
JP2009187767A (en) * 2008-02-06 2009-08-20 Sumitomo Electric Ind Ltd Electron source structure, and electron source structure drive device
WO2018070010A1 (en) * 2016-10-13 2018-04-19 株式会社日立ハイテクノロジーズ Electron beam apparatus
US10522319B2 (en) 2016-10-13 2019-12-31 Hitachi High-Technologies Corporation Electron beam apparatus
CN114927396A (en) * 2022-04-24 2022-08-19 电子科技大学 Method for controlling diffusion length of NEA GaN electron source in real time

Similar Documents

Publication Publication Date Title
US9812279B2 (en) Electrode material with low work function and high chemical stability
US5763880A (en) Cathode, electron beam emission apparatus using the same, and method of manufacturing the cathode
EP1359599B1 (en) High angular intensity schottky electron point source
Ul-Hamid et al. Components of the SEM
US9640361B2 (en) Emitter structure, gas ion source and focused ion beam system
JPH1031955A (en) Manufacture of thermal diffusion supply type electron source, and electron beam applied device using the electron source
US6680562B1 (en) Schottky emitter having extended life
US20100181493A1 (en) Ionic emission micronic source
EP1123558B1 (en) Schottky emitter having extended life
JP3547531B2 (en) Electron beam equipment
US8957371B2 (en) Producing images of a specimen
Mase et al. Photostimulated desorption of NO on Pt (001) studied with a multiphoton ionization technique
JP2011238459A (en) Electron source
WO2011040326A1 (en) Rod for electron source, electron source, and electronic appliance
Tuck Surface studies of thermionic emitters by methods unique to them
JPH11224629A (en) Diffusion supply type electron source, its manufacture and electron beam device
JPH0794134A (en) Method and device for stabilizing electron source
Edgcombe et al. Field emission and electron microscopy
JPH0894646A (en) Surface analyzer
JPH08171879A (en) Action temperature setting method for shottky emission electron source
JP3419653B2 (en) Gallium ion source and method for producing the same
JP4874758B2 (en) Electron source
JPH04105079A (en) Electron beam device
JPH09120788A (en) Electron source of diffused supply type
JP2006032195A (en) Electron emission source