JPH10319106A - Growing state analysis device and method - Google Patents

Growing state analysis device and method

Info

Publication number
JPH10319106A
JPH10319106A JP9127701A JP12770197A JPH10319106A JP H10319106 A JPH10319106 A JP H10319106A JP 9127701 A JP9127701 A JP 9127701A JP 12770197 A JP12770197 A JP 12770197A JP H10319106 A JPH10319106 A JP H10319106A
Authority
JP
Japan
Prior art keywords
sample
magnetic field
air core
sample cell
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9127701A
Other languages
Japanese (ja)
Other versions
JP3086868B2 (en
Inventor
Akira Horikane
彰 堀金
Hisashi Yoshida
久 吉田
Hideo Hirasawa
秀雄 平澤
Masao Takadate
正男 高舘
Yukio Maruyama
幸夫 丸山
Atsushi Koyanagi
敦史 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO NOGYO KENKYU C
NORIN SUISANSYO NOGYO KENKYU CENTER SHOCHO
Original Assignee
NORIN SUISANSYO NOGYO KENKYU C
NORIN SUISANSYO NOGYO KENKYU CENTER SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO NOGYO KENKYU C, NORIN SUISANSYO NOGYO KENKYU CENTER SHOCHO filed Critical NORIN SUISANSYO NOGYO KENKYU C
Priority to JP09127701A priority Critical patent/JP3086868B2/en
Publication of JPH10319106A publication Critical patent/JPH10319106A/en
Application granted granted Critical
Publication of JP3086868B2 publication Critical patent/JP3086868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To analyze the growing state of, for example, sprouting and extension by obtaining a clear MR image and a spectrum by reducing the influence of free water while a plant has grown in a soil, especially fresh water soil. SOLUTION: In a device, an air-core part 3 of a magnetic field formation device 2 is arranged by mounting a sample cell 7 where a plant sample 34 is grown by filling an artificial soil 33 consisting of a non-penetration non- magnetic body particle inside on a sample holder 8, a static magnetic field and an inclination magnetic field are formed by a magnetic field formation device 2, an RF pulse is transmitted from an RF transmission/reception device 4 to the sample cell 7, and a magnetic resonance signal is received, thus obtaining an MR image and a spectrum and analyzing the growing state of the sample.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気共鳴イメージ
ング(以下、MRIという)装置を用いて、植物体、種
子、組織、カルスなどの植物試料の生育状態を、静態的
または動態的に解析するための装置および方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for statically or dynamically analyzing the growth state of a plant sample such as a plant, a seed, a tissue, or a callus using a magnetic resonance imaging (hereinafter, referred to as MRI) apparatus. And a method for the same.

【0002】[0002]

【従来の技術】従来、植物の種子は、塩水を用いた比重
選によって播種の適、不適が判定されてきたが、これだ
けでは発芽性その他の評価は困難である。そこで発芽性
や栽培条件の評価等の解析を行うために、これらを栽培
ないし培養してその生育状態を観察することが行われて
いる。この場合出芽の良否は、例えば水稲の場合、発
芽、伸長後に土水面から突出した芽の数を播種量と比較
して判定されてきたが、下部に伸長する根の形成過程お
よび芽が土壌を突き破って出芽するまでの経時的変化を
非破壊で追跡することは困難であった。また、出芽時間
は、気温や水温、ならびに圃場の土壌等の環境条件の影
響を受けるため、精度の高い診断が困難であった。
2. Description of the Related Art Conventionally, plant seeds have been determined to be suitable or unsuitable for seeding by specific gravity selection using salt water. However, it is difficult to evaluate germination and other properties by using this alone. Therefore, in order to perform analysis such as evaluation of germination and cultivation conditions, cultivation or cultivation of these and observation of their growth state have been performed. In this case, the quality of emergence has been determined, for example, in the case of rice, by comparing the number of shoots protruding from the soil surface after germination and elongation with the seeding amount. It was difficult to non-destructively track the change over time until breakthrough and budding. In addition, the emergence time is affected by environmental conditions such as air temperature, water temperature, and soil in a field, so that it is difficult to make a highly accurate diagnosis.

【0003】一方、種子を含む生物試料、ならびにその
生育状況をMRI装置を用いて非破壊で観察することが
提案されている(例えば特開平8−240651号、特
開平9−5317号)。しかしこの方法は種子等の生物
試料をMRI装置に搬入してMR画像を得たり、あるい
はMRI装置内において生育させてMR画像を得ている
が、いずれも試料を気相に置いてMR画像を得ている。
[0003] On the other hand, it has been proposed to non-destructively observe a biological sample including seeds and its growth state using an MRI apparatus (for example, JP-A-8-240651 and JP-A-9-5317). However, in this method, a biological sample such as a seed is carried into an MRI apparatus to obtain an MR image, or an MR image is obtained by growing it in an MRI apparatus. It has gained.

【0004】このような気相での観察は、播種による土
壌中での出芽、特に水稲の場合の湛水土壌中での出芽と
は条件が異なるため、出芽性の解析には利用できない。
上記の場合、気相での生育に代えて土壌中あるいは水中
での生育を行ってそのまま観察しようとすると、土壌中
の磁性体や自由水がMR画像に影響を与え、鮮明な画像
を得ることが困難である。特に、湛水土壌のように多量
の自由水が存在すると、影響が現われる。湛水していな
い一般の土壌においても、土壌中に含まれる砂鉄等の磁
性体により影響を受けやすい。
[0004] Such observation in the gaseous phase cannot be used for the analysis of sprouting properties because the conditions differ from sprouting in soil by sowing, especially in paddy rice in flooded soil.
In the above case, if you try to grow in the soil or water instead of growing in the gas phase and observe it as it is, the magnetic substance and free water in the soil will affect the MR image and obtain a clear image. Is difficult. In particular, the presence of large amounts of free water, such as flooded soil, has an effect. Even ordinary soil that is not submerged is easily affected by magnetic substances such as iron sand contained in the soil.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、土壌
中特に湛水土壌中において植物を生育させた状態で自由
水の影響を少なくして鮮明なMR画像およびスペクトル
を得ることができ、これにより発芽、伸長等の生育状態
を解析することができる生育状態解析装置および方法を
提供することである。
An object of the present invention is to obtain a clear MR image and spectrum by reducing the influence of free water in a state where plants are grown in soil, especially in flooded soil, Accordingly, an object of the present invention is to provide a growth state analyzing apparatus and method capable of analyzing the growth state such as germination and elongation.

【0006】[0006]

【課題を解決するための手段】本発明は次の生育状態解
析装置および方法である。 (1) 空心部に静磁場および傾斜磁場を形成する磁場
形成装置と、内部に非浸透性の非磁性体粒子からなる人
工土壌を充填して植物試料を生育させる試料セルと、試
料セルを前記空心部に配置する試料ホルダと、前記試料
セルにRFパルスを発信し、磁気共鳴信号を受信するよ
うに空心部に配置されるRF発受信装置とを備えている
ことを特徴とする生育状態解析装置。 (2) RF発受信器を空心部に配置した状態で、試料
セルを搭載した試料ホルダを空心部の測定位置に搬送す
る試料搬送装置を有する上記(1)記載の装置。 (3) 試料ホルダは複数の試料セルを搭載できるよう
にされた上記(1)または(2)記載の装置。 (4) 内部に非浸透性の非磁性体粒子からなる人工土
壌を充填して植物試料を生育させた試料セルを試料ホル
ダに搭載して磁場形成装置の空心部に配置し、磁場形成
装置により静磁場および傾斜磁場を形成し、RF発受信
装置から試料セルにRFパルスを発信して、磁気共鳴信
号を受信し、これによりMR画像およびスペクトルを得
て、試料の生育状態を解析することを特徴とする生育状
態解析方法。 (5) RF発受信装置を空心部に配置した状態で、試
料搬送装置により試料ホルダを空心部に搬送して解析を
行うようにした上記(4)記載の方法。 (6) 試料ホルダに複数の試料セルを搭載して解析を
行うようにした上記(4)または(5)記載の方法。
The present invention relates to the following apparatus and method for analyzing a growth state. (1) A magnetic field forming device that forms a static magnetic field and a gradient magnetic field in the air core, a sample cell in which artificial soil made of non-permeable nonmagnetic particles is filled to grow a plant sample, and a sample cell A growth state analysis comprising: a sample holder arranged in an air core; and an RF transmitter / receiver arranged in the air core to transmit an RF pulse to the sample cell and receive a magnetic resonance signal. apparatus. (2) The apparatus according to (1), further including a sample transport device that transports the sample holder on which the sample cell is mounted to a measurement position of the air core, with the RF transmitter / receiver arranged in the air core. (3) The apparatus according to (1) or (2), wherein the sample holder is capable of mounting a plurality of sample cells. (4) A sample cell in which artificial soil composed of non-permeable non-magnetic particles is filled and a plant sample is grown is mounted on a sample holder and placed in the air core of a magnetic field forming device. Forming a static magnetic field and a gradient magnetic field, transmitting an RF pulse from the RF transmitter / receiver to the sample cell, receiving a magnetic resonance signal, thereby obtaining an MR image and a spectrum, and analyzing a growth state of the sample. Characteristic growth state analysis method. (5) The method according to (4), wherein the analysis is performed by transporting the sample holder to the air core by the sample transport device in a state where the RF transmitter / receiver is arranged in the air core. (6) The method according to the above (4) or (5), wherein the analysis is performed by mounting a plurality of sample cells on the sample holder.

【0007】本発明の生育状態解析装置および方法は、
一般に入手可能なMRI装置に、人工土壌を充填して植
物試料を生育させた試料セルを、試料ホルダに搭載して
空心部に配置し、MRI画像およびスペクトルを得て生
育状態を解析するように構成される。この場合、RF発
受信器を空心部に配置した状態で、試料セルを搭載した
試料ホルダを搬入、搬出できるように搬送手段を設ける
ことにより、測定条件を一定にして解析を行うことがで
きる。
[0007] The apparatus and method for analyzing a growth state of the present invention include:
In a commonly available MRI apparatus, a sample cell in which artificial soil is filled and a plant sample is grown is mounted on a sample holder and placed in the air core, and MRI images and spectra are obtained to analyze the growth state. Be composed. In this case, the analysis can be performed while keeping the measurement conditions constant by providing a transport means so that the sample holder on which the sample cell is mounted can be loaded and unloaded while the RF transmitter / receiver is arranged in the air core.

【0008】磁場形成装置およびRF発受信装置等はM
RI装置を構成するものであり、市販品を使用すること
ができる。静磁場形成装置としては超伝導磁石が好まし
く、空心円筒形に形成されたものを横形に配置して使用
するのが好ましい。傾斜磁場形成装置はX、Y、Zの三
次元方向に傾斜磁場を形成するように構成される。RF
発受信装置はRFコイルを有し、発信装置と受信装置が
一体化したものでよく、分離したものでもよい。RF発
受信装置は空心円筒状に形成し、その内部に試料セルを
配置して測定を行うように構成するのが好ましい。
The magnetic field forming device and the RF transmitting / receiving device are M
This constitutes an RI device, and a commercially available product can be used. As the static magnetic field forming device, a superconducting magnet is preferable, and a device formed in an air-core cylindrical shape is preferably used by arranging it horizontally. The gradient magnetic field forming device is configured to form a gradient magnetic field in three-dimensional directions of X, Y, and Z. RF
The transmitting / receiving device has an RF coil, and the transmitting device and the receiving device may be integrated or separated. It is preferable that the RF transmitter / receiver is formed in an air-core cylindrical shape, and a sample cell is arranged inside the RF transmitter / receiver to perform measurement.

【0009】試料セルには内部に非浸透性の非磁性体粒
子からなる人工土壌を充填して植物試料を生育させるよ
うに、容器状に形成される。試料セルは蓋を有するのが
好ましいが、蓋は生育条件に応じて通気性または非通気
性とすることができる。植物試料としては植物体、種
子、組織、カルスなど、生育の対象となるものであれば
よい。
The sample cell is formed in a container shape so that a plant sample can be grown by filling the inside thereof with artificial soil made of non-permeable nonmagnetic particles. The sample cell preferably has a lid, but the lid can be breathable or non-breathable depending on the growth conditions. The plant sample may be a plant, a seed, a tissue, a callus, etc., as long as it is a growth target.

【0010】試料セルに充填する人工土壌としては、
水、培養液等の液体が内部に浸透しない非浸透性の非磁
性体粒子からなるものが使用でき、非吸水性のものが好
ましい。このような非磁性体粒子としては、ジルコニア
等のセラミックス、ガラス、プラスチックスなどの非磁
性体粒子のうち、内部に隙間が存在せず、非浸透性のも
のを用いる。形状は球形またはこれに近いものが好まし
いが、他の形状でもよい。粒径としては0.1〜10m
m、好ましくは1〜5mmのものが好ましい。これらは
充填したときの間隙が少なくなるように、粒径の異なる
ものが混在しているのが好ましい。
As an artificial soil to be filled in the sample cell,
Particles made of non-permeable non-magnetic particles which do not penetrate liquids such as water and culture solution can be used, and non-water-absorbing particles are preferable. As such non-magnetic particles, use is made of non-magnetic particles such as zirconia and the like, ceramics, glass, plastics and the like, which have no gap therein and are non-permeable. The shape is preferably spherical or nearly spherical, but other shapes are also possible. The particle size is 0.1-10m
m, preferably 1-5 mm. It is preferable that those having different particle diameters are mixed so as to reduce the gap at the time of filling.

【0011】試料ホルダは上記の試料セルを搭載して磁
場形成装置の空心部の測定位置に配置するように可搬式
に形成される。試料ホルダは複数の試料セルを搭載でき
るように、複数の試料セル受けを形成するのが好まし
い。RF発受信装置が空心円筒状に形成される場合は、
その空心部に試料ホルダが配置されるように構成され
る。
The sample holder is formed in a portable manner so that the sample cell is mounted on the sample holder and is arranged at a measurement position of the air core of the magnetic field forming apparatus. Preferably, the sample holder has a plurality of sample cell receivers so that a plurality of sample cells can be mounted. When the RF transmitter / receiver is formed in an air-core cylindrical shape,
It is configured such that the sample holder is arranged in the air core.

【0012】RF発受信装置は通常クレードルに搭載し
て磁場形成装置の空心部に導入されるが、測定試料ごと
にクレードルを挿入、排出すると、その都度RF発信装
置の位置が微妙に変わるため、試料交換の都度チューニ
ングとシミングをやり直す必要がある。このためRF発
受信装置と試料搬送装置をクレードルに搭載して磁場形
成装置の空心部に固定し、試料搬送装置により、試料セ
ルを搭載した試料ホルダを測定位置に搬送するように構
成するのが好ましく、これによりチューニングとシミン
グのやり直しを省略することができる。
The RF transmitter / receiver is usually mounted on a cradle and introduced into the air core of the magnetic field forming apparatus. However, each time the cradle is inserted and ejected for each measurement sample, the position of the RF transmitter changes slightly each time. Tuning and shimming must be repeated each time the sample is replaced. Therefore, it is necessary to mount the RF transmitter / receiver and the sample transport device on a cradle, fix them to the air core of the magnetic field forming device, and transport the sample holder loaded with the sample cell to the measurement position by the sample transport device. Preferably, this eliminates the need for retuning and shimming.

【0013】試料搬送装置としては、RF発受信装置の
空心部から磁場形成装置の空心部を通して外部に伸びる
ガイド筒を設け、このガイド筒内を試料セルを搭載した
試料ホルダを搬入、搬出するように構成するのが好まし
いが、他の構成でもよい。
As the sample transporting device, a guide tube extending from the air core of the RF transmitting / receiving device to the outside through the air core of the magnetic field forming device is provided, and a sample holder on which a sample cell is mounted is carried in and out of the guide tube. Although it is preferable to configure it, other configurations may be used.

【0014】RF発受信装置および試料搬送装置はクレ
ードルに固定して磁場形成装置の空心部に搬入し、固定
できるようにすることができるが、試料の細部を観察す
る場合は、RF信号による衝撃波がMR画像に影響しな
いように、クレードルに鉛のような重量物を設置して空
心部内に保持するのが好ましい。
The RF transmitter / receiver and the sample transport device can be fixed to a cradle and carried into the air core of the magnetic field forming device so that they can be fixed. However, when observing the details of a sample, a shock wave due to an RF signal is required. It is preferable that a heavy object such as lead is installed in the cradle and held in the air core so that the cradle does not affect the MR image.

【0015】[0015]

【作用】上記のような装置による生育状態解析方法は、
内部に非浸透性の非磁性体粒子からなる人工土壌を充填
して植物試料を生育させた試料セルを試料ホルダに搭載
して磁場形成装置の空心部に配置し、磁場形成装置によ
り静磁場および傾斜磁場を形成し、RF発受信装置から
試料セルにRFパルスを発信して、磁気共鳴信号を受信
し、これによりMR画像およびスペクトルを得て、試料
の生育状態を解析する。
The method for analyzing the growth state using the above-described apparatus is as follows.
A sample cell in which artificial soil composed of non-permeable non-magnetic particles is filled and a plant sample is grown is mounted on a sample holder and placed in the air core of a magnetic field forming device. A gradient magnetic field is formed, an RF pulse is transmitted from the RF transmission / reception device to the sample cell, and a magnetic resonance signal is received. Thus, an MR image and a spectrum are obtained, and the growth state of the sample is analyzed.

【0016】RFパルスとしては、スピンエコーパルス
シーケンスまたはグラジエントエコーパルスシーケンス
が好ましいが、他のパルスシーケンスでもよい。
As the RF pulse, a spin echo pulse sequence or a gradient echo pulse sequence is preferable, but another pulse sequence may be used.

【0017】スピンエコーパルスシーケンスはMR画像
を得るために最も一般的に行われているパルスシーケン
スで、水素等の原子核に最初に90°のフリップ角のパ
ルス、続いて180°パルスを与えて、RF(高周波)
コイルの中に誘導される高周波の電気信号(Spin
echo)を得る。この信号のフーリエ変換により共鳴
周波数に対応するスペクトルが得られ、このスペクトル
を積算することによりMR画像が形成される。スピンエ
コー法では2つのパラメーター、繰り返し時間およびエ
コー時間がコントラストを決定する。最初の励起パルス
は90°パルスで、繰り返し時間は数百msec〜数秒
である。
A spin echo pulse sequence is the most commonly used pulse sequence for obtaining an MR image, in which a nucleus such as hydrogen is first given a pulse having a flip angle of 90 °, followed by a 180 ° pulse, RF (high frequency)
High frequency electric signal (Spin) induced in the coil
echo). A spectrum corresponding to the resonance frequency is obtained by Fourier transform of this signal, and an MR image is formed by integrating the spectra. In the spin echo method, two parameters, repetition time and echo time, determine the contrast. The first excitation pulse is a 90 ° pulse, and the repetition time is several hundred msec to several seconds.

【0018】グラジエントエコー(gradient
echo、あるいはfield echo)パルスシー
ケンスは高速撮像に適したパルスシーケンスで、水素等
の原子核に最初に小さいフリップ角(15〜45°)の
励起パルスを与えて、続いて傾斜磁場(勾配磁場)を正
負に反転させてスピンの位相を揃ったエコーを生じさ
せ、MR画像を得る方法である。フリップ角が小さいの
で縦緩和が戻るまでの時間が短く、エコー時間、繰り返
し時間はスピンエコー法よりきわめて短い数十msec
程度で画像データを取得するので、著しく短い時間での
MR撮像が可能となる。主要なシーケンスとしてはFL
ASH(Fast Low AngleShot)など
がある。
Gradient echo (gradient echo)
The echo or field echo pulse sequence is a pulse sequence suitable for high-speed imaging, in which an excitation pulse having a small flip angle (15 to 45 °) is first applied to a nucleus such as hydrogen, and then a gradient magnetic field (gradient magnetic field) is generated. This is a method of obtaining an MR image by inverting the sign to produce an echo with the same spin phase. Since the flip angle is small, the time until the longitudinal relaxation returns is short, and the echo time and repetition time are several tens of msec, which is much shorter than the spin echo method.
Since the image data is acquired in the degree, the MR imaging can be performed in an extremely short time. The main sequence is FL
ASH (Fast Low Angle Shot) and the like.

【0019】上記のようなRFパルスをRF発受信装置
から発信し、発信停止後MR信号を受信する際、試料セ
ル内が水で充満していると、多量の自由水がMR画像に
影響を与え、鮮明なMR画像およびスペクトルを得るこ
とができない。試料セル内に土壌が充填されている場合
でも、水が土壌内に浸透するため同様の現像が生じる。
When the above-described RF pulse is transmitted from the RF transmitter / receiver and the MR signal is received after transmission is stopped, if the sample cell is filled with water, a large amount of free water affects the MR image. And clear MR images and spectra cannot be obtained. Even when the sample cell is filled with soil, similar development occurs because water penetrates into the soil.

【0020】これに対して本発明のように試料セル内に
非浸透性の非磁性体からなる人工土壌を充填すると、水
が投入された場合でも人工土壌の粒子の内部に水が浸透
しないので、試料セル内に保持される自由水の量は少な
くなり、このため、MR画像への自由水の影響は少なく
なり、鮮明な画像およびスペクトルを得ることができ
る。
On the other hand, when artificial soil made of a non-permeable nonmagnetic material is filled in the sample cell as in the present invention, water does not permeate into the particles of the artificial soil even when water is supplied. In addition, the amount of free water retained in the sample cell is reduced, so that the influence of free water on the MR image is reduced, and a clear image and spectrum can be obtained.

【0021】このように試料セル内に人工土壌を充填し
た状態で試料を生育させ、その状態のMR画像を得るこ
とができるので、土壌中における出芽、伸長等の生育状
態を解析することができる。このとき人工土壌とともに
水を充満させても鮮明な画像を得ることができるので、
水稲の種子などについて、湛水土壌中での生育状態につ
いても正確に解析することができる。
As described above, the sample can be grown in a state where the sample cell is filled with the artificial soil, and an MR image of the state can be obtained. Therefore, the growth state such as budding and elongation in the soil can be analyzed. . At this time, a clear image can be obtained even if water is filled together with the artificial soil,
For rice seeds, etc., it is possible to accurately analyze the growth state in flooded soil.

【0022】RF発受信装置を空心部に配置した状態
で、試料搬送装置により試料ホルダを空心部に搬送して
解析を行うようにすると、チューニングおよびシミング
を1回だけ行えばよく、その後は単に試料交換をするだ
けでMR画像を得ることができる。
When the RF transmitter / receiver is placed in the air core and the sample holder is transported to the air core by the sample transport device and the analysis is performed, tuning and shimming need only be performed once, and thereafter, simply. An MR image can be obtained simply by exchanging the sample.

【0023】また試料ホルダに複数の試料セルを搭載し
て解析を行うようにすると、異なる試料について同時に
MR画像およびスペクトルを得て比較解析することが可
能になる。
When a plurality of sample cells are mounted on the sample holder for analysis, it is possible to simultaneously obtain MR images and spectra of different samples and perform comparative analysis.

【0024】[0024]

【発明の効果】本発明によれば、試料セルの内部に非浸
透性の非磁性体粒子からなる人工土壌を充填して植物試
料を生育させた状態でMR画像およびスペクトルを得る
ようにしたので、土壌中特に湛水土壌中において植物を
生育させた状態で、自由水の影響を少なくして鮮明なM
R画像およびスペクトルを得ることができ、これにより
発芽、伸長等の生育状態を解析することができる。
According to the present invention, an MR image and a spectrum are obtained in a state where a plant sample is grown by filling the inside of a sample cell with artificial soil made of non-permeable nonmagnetic particles. In a state where plants are grown in soil, especially in flooded soil, the effect of free water is reduced to
An R image and a spectrum can be obtained, whereby the growth state such as germination and elongation can be analyzed.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は実施例の生育状態解析装置
を示す分解斜視図、図2はその垂直断面図、図3は試料
セルの垂直断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing a growth state analyzing apparatus according to an embodiment, FIG. 2 is a vertical sectional view thereof, and FIG. 3 is a vertical sectional view of a sample cell.

【0026】図1において、1は生育状態解析装置で、
円筒状の磁場形成装置2内に形成された空心部3に、R
F発受信装置4およびこれに固定された試料搬送装置5
を搭載したクレードル6が搬入、搬出可能とされてお
り、試料搬送装置5には試料セル7を搭載した試料ホル
ダ8が搬入、搬出可能とされている。
In FIG. 1, reference numeral 1 denotes a growth state analyzer,
The air core 3 formed in the cylindrical magnetic field forming device 2 has R
F emitting / receiving device 4 and sample transport device 5 fixed thereto
The cradle 6 on which the sample cell 7 is mounted can be loaded and unloaded, and the sample carrier 8 on which the sample cell 7 is loaded can be loaded and unloaded from the sample transport device 5.

【0027】磁場形成装置2は超伝導マグネットからな
る横型空心円筒状の静磁場コイル2aの内周部に同心円
状の傾斜磁場コイル2bが一体化されて支持台9上に支
持され、中央部にクレードル6の外径に対応した内径を
有する空心部3が形成されている。
In the magnetic field forming device 2, a concentric gradient magnetic field coil 2b is integrated with an inner peripheral portion of a horizontal air-core cylindrical static magnetic field coil 2a made of a superconducting magnet and is supported on a support table 9, and is provided at a central portion. An air core 3 having an inner diameter corresponding to the outer diameter of the cradle 6 is formed.

【0028】RF発受信装置4は空心部11を有する短
い円筒状に形成され、その内部にトリマーコンデンサ、
チップコンデンサ等のコンデンサおよびRFコイルを内
蔵しており、その一端からチューニング棒12が磁場形
成装置2外に突出している。磁場形成装置2およびRF
発受信装置4はMRI装置を構成し、コンピュータによ
り制御されてMR画像およびスペクトルを形成するよう
に構成されているが、詳細な図示は省略されている。
The RF transmitter / receiver 4 is formed in a short cylindrical shape having an air core portion 11, and a trimmer capacitor,
A tuning rod 12 protrudes out of the magnetic field forming device 2 from one end of a capacitor such as a chip capacitor and an RF coil. Magnetic field forming device 2 and RF
The transmitter / receiver 4 constitutes an MRI apparatus, and is configured to form an MR image and a spectrum under the control of a computer, but detailed illustration is omitted.

【0029】クレードル6は傾斜磁場コイル2bの内径
にほぼ相当する外径を有する円筒を軸方向に分割した部
分円筒状に形成され、その内周側に突出する取付部材1
3に、止具14によりRF発受信装置4が固定されてい
る。クレードル6の外周部には、フッ素樹脂(テフロ
ン)等の低摩擦性材料からなる滑材15が貼付けられて
いる。またクレードル6の一端部にはロックピン16が
設けられていて、クレードル6を傾斜コイル2bに固定
して位置決めするようにされている。他端部には支持部
材17が内周側に突出し、先端に緩衝材18が取付けら
れている。
The cradle 6 is formed in a partially cylindrical shape obtained by dividing a cylinder having an outer diameter substantially equivalent to the inner diameter of the gradient coil 2b in the axial direction, and the mounting member 1 protruding inward from the cylinder.
3, the RF transmitter / receiver 4 is fixed by a stopper 14. A sliding member 15 made of a low friction material such as a fluororesin (Teflon) is attached to an outer peripheral portion of the cradle 6. Further, a lock pin 16 is provided at one end of the cradle 6 so that the cradle 6 is fixed to the gradient coil 2b and positioned. A support member 17 protrudes inward from the other end, and a cushioning member 18 is attached to the tip.

【0030】試料搬送装置5は、長尺円筒からなるガイ
ド筒21の一端部側の外周部から1対のスペーサ22が
突出しており、その先端に設けられた緩衝材23がRF
発受信装置4の円周部に密着するとともに、ガイド筒2
1の他端部側が緩衝材18を介して支持部材17に支持
されることによりガイド筒21がRF発受信装置4の空
心部11に固着されるようになっている。ガイド筒21
の空心部24には試料ホルダ8がスライドするようにさ
れており、これを案内するための丸棒状のガイドレール
25がガイド筒21の底部に設けられている。
In the sample transport device 5, a pair of spacers 22 protrude from an outer peripheral portion on one end side of a guide cylinder 21 formed of a long cylinder, and a cushioning material 23 provided at the tip thereof has an RF.
While being in close contact with the circumference of the transmitting / receiving device 4, the guide tube 2
The guide tube 21 is fixed to the air core 11 of the RF transmitter / receiver 4 by supporting the other end of the first tube 1 on the support member 17 via the buffer member 18. Guide tube 21
The sample holder 8 is slidable in the air core portion 24, and a round guide bar 25 for guiding the sample holder 8 is provided at the bottom of the guide tube 21.

【0031】試料ホルダ8はガイド筒21の内径にほぼ
等しい外径を有する円柱を軸方向にほぼ半切した形状の
ブロックからなり、円弧状の底部にガイドレール25に
係合するガイド溝26を有し、平面状の上部から底部側
に試料セル7を搭載するための円形穴からなる試料セル
受け27が複数個形成されている。試料ホルダ8の一端
側には操作棒28が取付けられている。29はその反対
側に相当する位置のガイド筒21に設けられたストッパ
である。
The sample holder 8 is a block having a shape in which a cylinder having an outer diameter substantially equal to the inner diameter of the guide cylinder 21 is cut substantially in half in the axial direction, and has a guide groove 26 which engages with the guide rail 25 at an arc-shaped bottom. A plurality of sample cell receivers 27 each having a circular hole for mounting the sample cell 7 from the top to the bottom of the planar shape are formed. An operation rod 28 is attached to one end of the sample holder 8. Reference numeral 29 denotes a stopper provided on the guide cylinder 21 at a position corresponding to the opposite side.

【0032】試料セル7は試料セル受け27に挿着され
る大きさの小型試験管状に形成されたセル本体31およ
び蓋32からなり、内部に非浸透性の非磁性体からなる
人工土壌33が充填されており、植物種子等の試料34
を生育できるように構成されている。試料セル7内に
は、生育に応じて水35が入れられ、また蓋32を通気
性または非通気性にして試料34の生育が行われる。
The sample cell 7 comprises a cell body 31 and a lid 32 formed in a small test tube having a size to be inserted into the sample cell receiver 27, and an artificial soil 33 made of a non-permeable non-magnetic material is provided therein. A sample 34 such as a plant seed
It is configured to grow. Water 35 is put into the sample cell 7 according to the growth, and the sample 32 is grown by making the lid 32 air-permeable or air-impermeable.

【0033】上記の装置による生育状態解析方法は、ま
ず図1に示すように、RF発受信装置4および試料搬送
装置5をクレードル6に固定した状態からクレードル6
を矢印aの方向に移動させて、磁場形成装置2の空心部
3に導入する。このとき、滑材15の低摩擦性を利用し
て傾斜磁場コイル2b上をスライドさせ、ロックピン1
6により所定位置にクレードル6を固定して位置決めす
る。
In the method of analyzing the growth state by the above-mentioned apparatus, first, as shown in FIG.
Is moved in the direction of arrow a, and is introduced into the air core 3 of the magnetic field forming apparatus 2. At this time, the sliding member 15 is slid on the gradient magnetic field coil 2b by utilizing the low friction property,
6, the cradle 6 is fixedly positioned at a predetermined position.

【0034】次いで図3のように非浸透性の非磁性体か
らなる人工土壌33を充填して試料34を埋設し、水3
5を入れ生育させた試料セル7を、図1のように、試料
ホルダ8の試料セル受け27に保持した状態から、矢印
aの方向に移動させて、試料搬送装置5の空心部24に
導入する。そしてガイドレール25にガイド溝26を係
合させて操作棒28を押すことにより試料ホルダ7を空
心部24内を移動させ、ストッパ29に当たる位置で停
止することにより、試料セル7をRF発受信装置4の空
心部11内に位置決めする。
Next, as shown in FIG. 3, an artificial soil 33 made of a non-permeable non-magnetic material is filled and a sample 34 is buried in the soil.
As shown in FIG. 1, the sample cell 7 into which the sample cell 7 has been grown is moved in the direction of arrow a from the state where the sample cell 7 is held in the sample cell receiver 27 of the sample holder 8 and introduced into the air core 24 of the sample transfer device 5. I do. Then, the sample holder 7 is moved in the air core 24 by engaging the guide groove 26 with the guide rail 25 and pressing the operation rod 28, and is stopped at a position where the sample holder 7 hits the stopper 29. 4 is positioned in the air core 11.

【0035】この状態で磁場形成装置2の静磁場コイル
2aで静磁場を形成し、傾斜磁場コイル2bで傾斜磁場
を形成し、傾斜磁場コイル2bのシミングを行う。そし
てチューニング棒12によりチューニングを行い、磁場
を均一化する。その後RF発受信装置4によりRFパル
スを発信し、MR信号を受信してMR画像として再構成
することにより、試料の生育状態のMR画像およびスペ
クトルを得、生育状態の解析を行う。
In this state, a static magnetic field is formed by the static magnetic field coil 2a of the magnetic field forming apparatus 2, a gradient magnetic field is formed by the gradient magnetic field coil 2b, and shimming of the gradient magnetic field coil 2b is performed. Then, tuning is performed by the tuning rod 12 to make the magnetic field uniform. Thereafter, an RF pulse is transmitted by the RF transmission / reception device 4, and the MR signal is received and reconstructed as an MR image, thereby obtaining an MR image and a spectrum of the growth state of the sample and analyzing the growth state.

【0036】上記のようなRFパルスをRF発受信装置
から発信し、発信停止後MR信号を受信する際、一般的
な方法では試料セル内の多量の自由水がMR画像に影響
を与え、鮮明なMR画像およびスペクトルを得ることが
できないが、上記のように試料セル7内に非浸透性の非
磁性体からなる人工土壌33を充填すると、水35が投
入された場合でも人工土壌33の粒子の内部に水が浸透
しないので、試料セル7内に保持される自由水の量は少
なくなり、このためMR画像への自由水の影響は少なく
なり、鮮明な画像およびスペクトルを得ることができ
る。
When the above-described RF pulse is transmitted from the RF transmitter / receiver and the MR signal is received after the transmission is stopped, in a general method, a large amount of free water in the sample cell affects the MR image, and the image is sharp. However, when the sample cell 7 is filled with the artificial soil 33 made of a non-permeable nonmagnetic material as described above, the particles of the artificial soil 33 can be obtained even when the water 35 is charged. Since the water does not penetrate into the sample cell, the amount of free water held in the sample cell 7 is reduced, and thus the influence of the free water on the MR image is reduced, and a clear image and spectrum can be obtained.

【0037】このように試料セル7内に人工土壌33を
充填した状態で試料34を生育させ、その状態のMR画
像およびスペクトルを得ることができるので、土壌中に
おける出芽、伸長等の生育状態を解析することができ
る。このとき人工土壌33とともに水35を充満させて
も正確な画像を得ることができるので、水稲の種子など
について、湛水土壌中での生育状態についても正確に解
析することができ、出芽性の診断その他の解析を行うこ
とができる。
As described above, the sample 34 is grown in a state where the artificial soil 33 is filled in the sample cell 7, and an MR image and a spectrum of the sample 34 can be obtained. Can be analyzed. At this time, since an accurate image can be obtained even when the water 35 is filled together with the artificial soil 33, it is possible to accurately analyze the growth state of the paddy rice seeds and the like in the flooded soil. Diagnosis and other analysis can be performed.

【0038】上記の装置ではRF発受信装置4を空心部
に配置した状態で、試料搬送装置5により試料ホルダ8
を空心部11に搬送して解析を行うので、チューニング
およびシミングを1回だけ行えばよく、その後は単に試
料交換するだけで、続けてMR画像を得ることができ
る。また試料ホルダ8に複数の試料セル7を搭載して解
析を行えるので、異なる試料について同時にMR画像お
よびスペクトルを得て比較解析することが可能になる。
In the above-described apparatus, the sample holder 8 is moved by the sample transfer device 5 with the RF transmitter / receiver 4 disposed in the air core.
Is transported to the air core portion 11 for analysis, so that tuning and shimming need only be performed once, and thereafter, an MR image can be continuously obtained by simply exchanging the sample. Further, since a plurality of sample cells 7 are mounted on the sample holder 8 for analysis, it is possible to simultaneously obtain MR images and spectra of different samples and perform comparative analysis.

【0039】次に試験例について説明する。人工土壌と
して粒径0.5mmのジルコニアを試料セルに充填して
水を張り、イネ種子(品種:コシヒカリ)を図3に示す
ように入れて出芽試験を行い、5日後の生育状態を解析
した(実施例1)。
Next, test examples will be described. A sample cell was filled with zirconia having a particle size of 0.5 mm as artificial soil, filled with water, rice seeds (variety: Koshihikari) were put in as shown in FIG. 3, a budding test was performed, and the growth state after 5 days was analyzed. (Example 1).

【0040】比較例として、土壌(黒ボク)を充填した
場合(比較例1)、ならびに水のみを張った場合(比較
例2)について、各試料セルを並べてスピンエコー法に
より解析を行い得たMR画像およびスペクトルを図4に
示す。
As a comparative example, when the soil (black and white) was filled (Comparative Example 1) and when only water was filled (Comparative Example 2), each sample cell was arranged and analyzed by the spin echo method. The MR image and spectrum are shown in FIG.

【0041】図4は右から実施例1,比較例1,2の順
番で並べたMR画像、および縦軸が2.3cmのスライ
ス面のプロトンスペクトル強度を示し、Aは実施例1の
スペクトルで発芽種子のプロトンのスペクトルが鮮明に
現われているのがわかる。これに対しB、Cはそれぞれ
比較例1、2のスペクトルで、それぞれ土壌または水が
影響して種子のスペクトルが鮮明に得られないことがわ
かる。
FIG. 4 shows MR images arranged in the order of Example 1, Comparative Examples 1 and 2 from the right, and the proton spectrum intensity of the slice plane whose vertical axis is 2.3 cm. It can be seen that the spectrum of the protons of the germinated seeds appears clearly. On the other hand, B and C are the spectra of Comparative Examples 1 and 2, respectively, and it can be seen that the spectra of the seeds cannot be obtained clearly due to the influence of soil or water, respectively.

【0042】以上の通り上記の装置は、試料セルの内部
に非浸透性の非磁性体粒子からなる人工土壌を充填して
植物試料を生育させた状態でMR画像およびスペクトル
を得るようにしたので、土壌中特に湛水土壌中において
植物を生育させた状態で、自由水の影響を少なくして鮮
明なMR画像およびスペクトルを得ることができ、これ
により発芽、伸長等の生育状態を解析することができ
る。
As described above, in the above-described apparatus, an MR image and a spectrum are obtained in a state where a plant sample is grown by filling the inside of the sample cell with artificial soil made of non-permeable nonmagnetic particles. It is possible to obtain clear MR images and spectra by reducing the effect of free water while growing plants in soil, especially in flooded soil, and to analyze growth conditions such as germination and elongation. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の生育状態解析装置の分解斜視図であ
る。
FIG. 1 is an exploded perspective view of a growth state analyzing apparatus according to an embodiment.

【図2】図1の垂直断面図である。FIG. 2 is a vertical sectional view of FIG.

【図3】試料セルの垂直断面図である。FIG. 3 is a vertical sectional view of a sample cell.

【図4】試験例の結果を示すMR画像およびスペクトル
図である。
FIG. 4 is an MR image and a spectrum diagram showing results of a test example.

【符号の説明】[Explanation of symbols]

1 生育状態解析装置 2 磁場形成装置 2a 静磁場コイル 2b 傾斜磁場コイル 3、11、24 空心部 4 RF発受信装置 5 試料搬送装置 6 クレードル 7 試料セル 8 試料ホルダ 9 支持台 12 チューニング棒 13 取付部材 14 止具 15 滑材 16 ロックピン 17 支持部材 18、23 緩衝材 21 ガイド筒 22 スペーサ 25 ガイドレール 26 ガイド溝 27 試料セル受け 28 操作棒 29 ストッパ 31 セル本体 32 蓋 33 人工土壌 34 試料 35 水 REFERENCE SIGNS LIST 1 growth state analyzing device 2 magnetic field forming device 2a static magnetic field coil 2b gradient magnetic field coil 3, 11, 24 air core 4 RF transmitting and receiving device 5 sample transport device 6 cradle 7 sample cell 8 sample holder 9 support base 12 tuning rod 13 mounting member 14 Stopper 15 Sliding Material 16 Lock Pin 17 Supporting Member 18, 23 Buffer Material 21 Guide Tube 22 Spacer 25 Guide Rail 26 Guide Groove 27 Sample Cell Receiver 28 Operating Rod 29 Stopper 31 Cell Body 32 Lid 33 Artificial Soil 34 Sample 35 Water

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 幸夫 茨城県つくば市稲荷前27−25 (72)発明者 小柳 敦史 茨城県つくば市吾妻2−1−2−713−101 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yukio Maruyama 27-25 Inari-mae, Tsukuba, Ibaraki Prefecture (72) Inventor Atsushi Koyanagi 2-1-2-713-101, Azuma, Tsukuba, Ibaraki Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空心部に静磁場および傾斜磁場を形成す
る磁場形成装置と、 内部に非浸透性の非磁性体粒子からなる人工土壌を充填
して植物試料を生育させる試料セルと、 試料セルを前記空心部に配置する試料ホルダと、 前記試料セルにRFパルスを発信し、磁気共鳴信号を受
信するように空心部に配置されるRF発受信装置とを備
えていることを特徴とする生育状態解析装置。
1. A magnetic field forming device for forming a static magnetic field and a gradient magnetic field in an air core, a sample cell in which artificial soil made of non-permeable nonmagnetic particles is filled to grow a plant sample, and a sample cell A sample holder arranged in the air core, and an RF transmitter / receiver arranged in the air core to transmit an RF pulse to the sample cell and receive a magnetic resonance signal. Condition analyzer.
【請求項2】 RF発受信器を空心部に配置した状態
で、試料セルを搭載した試料ホルダを空心部の測定位置
に搬送する試料搬送装置を有する請求項1記載の装置。
2. The apparatus according to claim 1, further comprising a sample transport device that transports a sample holder on which a sample cell is mounted to a measurement position of the air core, with the RF transmitter / receiver disposed in the air core.
【請求項3】 試料ホルダは複数の試料セルを搭載でき
るようにされた請求項1または2記載の装置。
3. The apparatus according to claim 1, wherein the sample holder is capable of mounting a plurality of sample cells.
【請求項4】 内部に非浸透性の非磁性体粒子からなる
人工土壌を充填して植物試料を生育させた試料セルを試
料ホルダに搭載して磁場形成装置の空心部に配置し、 磁場形成装置により静磁場および傾斜磁場を形成し、 RF発受信装置から試料セルにRFパルスを発信して、
磁気共鳴信号を受信し、 これによりMR画像およびスペクトルを得て、試料の生
育状態を解析することを特徴とする生育状態解析方法。
4. A sample cell in which an artificial soil made of non-permeable non-magnetic particles is filled and a plant sample is grown is mounted on a sample holder and placed in an air core of a magnetic field forming apparatus. A static magnetic field and a gradient magnetic field are formed by the device, and an RF pulse is transmitted from the RF transmitting / receiving device to the sample cell,
A method for analyzing a growth state, comprising: receiving a magnetic resonance signal; obtaining an MR image and a spectrum thereby; and analyzing a growth state of the sample.
【請求項5】 RF発受信装置を空心部に配置した状態
で、試料搬送装置により試料ホルダを空心部に搬送して
解析を行うようにした請求項4記載の方法。
5. The method according to claim 4, wherein the sample holder is transported to the air core by the sample transport device and the analysis is performed in a state where the RF transmitter / receiver is arranged in the air core.
【請求項6】 試料ホルダに複数の試料セルを搭載して
解析を行うようにした請求項4または5記載の方法。
6. The method according to claim 4, wherein the analysis is performed by mounting a plurality of sample cells on the sample holder.
JP09127701A 1997-05-16 1997-05-16 Growth condition analysis apparatus and method Expired - Lifetime JP3086868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09127701A JP3086868B2 (en) 1997-05-16 1997-05-16 Growth condition analysis apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09127701A JP3086868B2 (en) 1997-05-16 1997-05-16 Growth condition analysis apparatus and method

Publications (2)

Publication Number Publication Date
JPH10319106A true JPH10319106A (en) 1998-12-04
JP3086868B2 JP3086868B2 (en) 2000-09-11

Family

ID=14966574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09127701A Expired - Lifetime JP3086868B2 (en) 1997-05-16 1997-05-16 Growth condition analysis apparatus and method

Country Status (1)

Country Link
JP (1) JP3086868B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059586A3 (en) * 2000-12-20 2003-07-17 Monsanto Technology Llc Apparatus and methods for analyzing and improving agricultural products
EP1625407A2 (en) * 2003-05-16 2006-02-15 The Boc Group, Inc. Nmr measuring system
US7600642B2 (en) 2003-09-23 2009-10-13 Monsanto Technology, Llc High throughput automated seed analysis system
US7685768B2 (en) 2004-08-26 2010-03-30 Monsanto Technology Llc Automated testing of seeds
US7934600B2 (en) 2002-04-04 2011-05-03 Monsanto Technology Llc Automated picking, weighing and sorting system for particulate matter
US7998669B2 (en) 2006-03-02 2011-08-16 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US8959833B2 (en) 2004-08-26 2015-02-24 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US8965101B2 (en) 2007-05-31 2015-02-24 Monsanto Technology Llc Seed sorter
US8997398B2 (en) 2006-03-02 2015-04-07 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US11084064B2 (en) 2006-06-28 2021-08-10 Monsanto Technology Llc Small object sorting system and method
US12048951B2 (en) 2020-06-30 2024-07-30 Monsanto Technology Llc Automated systems for use in sorting small objects, and related methods

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813936A1 (en) * 2000-12-20 2007-08-01 Monsanto Technology, LLC Magnetic resonance analysis of seeds
US7367155B2 (en) 2000-12-20 2008-05-06 Monsanto Technology Llc Apparatus and methods for analyzing and improving agricultural products
WO2002059586A3 (en) * 2000-12-20 2003-07-17 Monsanto Technology Llc Apparatus and methods for analyzing and improving agricultural products
US8281935B2 (en) 2002-04-04 2012-10-09 Monsanto Technology Llc Automated picking, weighing and sorting system for particulate matter
US7934600B2 (en) 2002-04-04 2011-05-03 Monsanto Technology Llc Automated picking, weighing and sorting system for particulate matter
US8752712B2 (en) 2002-04-04 2014-06-17 Monsanto Technology Llc Automated picking, weighing and sorting system for particulate matter
EP1625407A2 (en) * 2003-05-16 2006-02-15 The Boc Group, Inc. Nmr measuring system
EP1625407A4 (en) * 2003-05-16 2006-11-29 Boc Group Inc Nmr measuring system
US7600642B2 (en) 2003-09-23 2009-10-13 Monsanto Technology, Llc High throughput automated seed analysis system
US9986699B2 (en) 2004-08-26 2018-06-05 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US7685768B2 (en) 2004-08-26 2010-03-30 Monsanto Technology Llc Automated testing of seeds
US8959833B2 (en) 2004-08-26 2015-02-24 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US11006593B2 (en) 2004-08-26 2021-05-18 Monsanto Technology Llc Methods of seed breeding using high throughput nondestructive seed sampling
US9027278B2 (en) 2006-03-02 2015-05-12 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US10542661B2 (en) 2006-03-02 2020-01-28 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US11357159B2 (en) 2006-03-02 2022-06-14 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US9383291B2 (en) 2006-03-02 2016-07-05 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US9551636B2 (en) 2006-03-02 2017-01-24 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US8997398B2 (en) 2006-03-02 2015-04-07 Monsanto Technology Llc Automated high-throughput seed sampler and methods of sampling, testing and bulking seeds
US10254200B2 (en) 2006-03-02 2019-04-09 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US7998669B2 (en) 2006-03-02 2011-08-16 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US11293840B2 (en) 2006-03-02 2022-04-05 Monsanto Technology Llc Automated contamination-free seed sampler and methods of sampling, testing and bulking seeds
US11084064B2 (en) 2006-06-28 2021-08-10 Monsanto Technology Llc Small object sorting system and method
US11897003B2 (en) 2006-06-28 2024-02-13 Monsanto Technology Llc Small object sorting system and method
US8965101B2 (en) 2007-05-31 2015-02-24 Monsanto Technology Llc Seed sorter
US9275265B2 (en) 2007-05-31 2016-03-01 Monsanto Technology Llc Seed sorter
US12048951B2 (en) 2020-06-30 2024-07-30 Monsanto Technology Llc Automated systems for use in sorting small objects, and related methods

Also Published As

Publication number Publication date
JP3086868B2 (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP3086868B2 (en) Growth condition analysis apparatus and method
JP3505566B2 (en) Physiological condition analyzer and method
Connelly et al. High Resolution Imaging of Plant Tissues10
Borisjuk et al. Surveying the plant’s world by magnetic resonance imaging
EP0730164B1 (en) Apparatus and method for magnetic resonance imaging
Rogers et al. In situ nuclear magnetic resonance imaging of roots: influence of soil type, ferromagnetic particle content, and soil water 1
Brown et al. In vivo magnetic resonance microscopy of changing water content in Pelargonium hortorum roots
Windt et al. A mobile NMR sensor and relaxometric method to non-destructively monitor water and dry matter content in plants
Geya et al. Longitudinal NMR parameter measurements of Japanese pear fruit during the growing process using a mobile magnetic resonance imaging system
US20050218892A1 (en) Magnetic resonance method
CN101297193A (en) A portable quality and process control system for simultaneous magnetic resonance imaging of multiple samples
US20050248349A1 (en) Supersensitive nuclear magnetic resonance imaging apparatus
Price Annual reports on NMR spectroscopy
US10281534B2 (en) Tissue-slice MRI coil and rotation mechanism
Blystone et al. Towards portable MRI in the plant sciences
Shaw et al. Techniques for nuclear magnetic resonance measurements on granular hygroscopic materials
JPH022911A (en) Method and apparatus for measuring nmr of organism tissue
Van As NMR in horticulture: in situ plant water balance studies with NMR
JP2004305745A (en) System and method of electrically loading radio-frequency coils using conductive polymers
Olt et al. 23Na and 1H NMR microimaging of intact plants
Rahmatallah et al. Measurement of relaxation times in foodstuffs using a one-sided portable magnetic resonance probe
Harrison et al. Magnetic resonance imaging approaching microscopic scale: maturation stages of Acetabularia mediterranea reproductive caps
SU994968A1 (en) Device for determination of vegetable object biochemical changes and phisiological conditiion
Ishida et al. NMR micro-imaging of plant tissues
CA3236488A1 (en) System and method for characterising bioreactor fluids using a magnetic resonance apparatus

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term