JPH10319083A - Partial discharge measuring method - Google Patents

Partial discharge measuring method

Info

Publication number
JPH10319083A
JPH10319083A JP12568597A JP12568597A JPH10319083A JP H10319083 A JPH10319083 A JP H10319083A JP 12568597 A JP12568597 A JP 12568597A JP 12568597 A JP12568597 A JP 12568597A JP H10319083 A JPH10319083 A JP H10319083A
Authority
JP
Japan
Prior art keywords
partial discharge
pattern
blocks
data
statistical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12568597A
Other languages
Japanese (ja)
Other versions
JP3207371B2 (en
Inventor
Toshiyuki Sato
敏幸 佐藤
Akira Aikawa
明 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12568597A priority Critical patent/JP3207371B2/en
Publication of JPH10319083A publication Critical patent/JPH10319083A/en
Application granted granted Critical
Publication of JP3207371B2 publication Critical patent/JP3207371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a partial discharge measuring method which accurately determine noise signals generated in the upper right quadrant and the lower left quadrant. SOLUTION: A ϕ-g-t pattern (where, ϕ is phase, q is electric charge, and t is time) is created from measured signals, the ϕ-q-t pattern is divided into two blocks with phase angle. Following statistical values are determined: (1) number of signals (n), (2) average generated phase angle Avg (ϕ), (3) gradient A of a minimum square line derived from recursion with equation ϕ=A×t+B, (4) standard deviation (S) of displacement from the minimum square line, (5) standard deviation of discharging electric charge/average electric charge s(q)/ Avg (q) (where (1) to (4) are corresponding to data divided into two blocks, and (5) is corresponding to data integrated from two blocks). When all or part of these statistical values are within the specified statistical value range, it is determined that partial discharge occurs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力ケーブル及び
その付属品あるいはガス絶縁線路(GIL)等を含む電
力ケーブル線路およびその付属品もしくは電力機器等の
部分放電測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power cable line including a power cable and its accessories, a gas insulated line (GIL), and the like, and a partial discharge measuring method for the accessories and its power devices.

【0002】[0002]

【従来の技術】電力ケーブルの部分放電測定において、
測定した信号が、部分放電信号かノイズ信号であるかを
判定する場合、測定信号の放電電荷量(q)と課電位相
(φ)と単位時間当たりの発生頻度(n)からφ−q−
nパターンを作成して、このφ−q−nパターンを、予
め部分放電パルスのφ−q−nパターンを学習させたニ
ューラルネットワークに入力して、部分放電の有無を判
断させる方法が提案されている(例えば特開平5−25
6895号公報参照)。
2. Description of the Related Art In partial discharge measurement of power cables,
When it is determined whether the measured signal is a partial discharge signal or a noise signal, φ-q− is determined from the amount of discharge charge (q), potential application phase (φ), and occurrence frequency per unit time (n) of the measurement signal.
A method has been proposed in which n patterns are created, and the φ-qn pattern is input to a neural network in which the φ-qn pattern of the partial discharge pulse has been learned in advance to determine the presence or absence of a partial discharge. (For example, see JP-A-5-25
No. 6895).

【0003】[0003]

【発明が解決しようとする課題】部分放電信号は、過去
の研究から課電圧位相信号(正弦波)の位相角度で0°
〜90°(第1象限)と、180°〜270°(第3象
限)に発生しやすいことがわかっている。図10は、部
分放電信号のφ−q−nパターン例を示す図であり、横
軸は課電位相(φ)、縦軸は部分放電電荷量(q)であ
り、単位時間当たりの発生頻度(n)を濃淡で示してい
る。一般に、ノイズ信号の大部分は、課電位相と相関が
ないため、上記した従来方法のφ−q−nパターンを用
いたニューラルネットワークによる判定で部分放電との
識別が可能である。しかしながら、第1象限と第3象限
に発生するノイズ信号に対しては、その発生位相が部分
放電と同様であることから、上記した従来の判定方法で
は誤って判定してしまう問題がある。
According to past research, the partial discharge signal has a phase angle of 0 ° of the applied voltage phase signal (sine wave).
It is known that it is easy to occur in the range of 90 to 90 degrees (first quadrant) and 180 to 270 degrees (third quadrant). FIG. 10 is a diagram showing an example of a φ-qn pattern of a partial discharge signal. The horizontal axis represents the potential application phase (φ), the vertical axis represents the partial discharge charge amount (q), and the frequency of occurrence per unit time. (N) is indicated by shading. In general, most of the noise signal has no correlation with the applied potential phase. Therefore, it is possible to discriminate the partial discharge from the partial discharge by the determination by the neural network using the φ-qn pattern of the above-described conventional method. However, the noise signal generated in the first quadrant and the third quadrant has the same phase as that of the partial discharge, so that there is a problem that the above-described conventional determination method erroneously determines the noise signal.

【0004】図11に、従来の判定方法で間違え易い第
1象限と第3象限に発生するノイズ信号のφ−q−nパ
ターン例を示す。図11の例では、ノイズ信号が第1象
限と第3象限に発生しており、上記図10に示す部分放
電信号のφ−q−nと識別が困難である。本発明は上記
した従来技術の問題点を考慮してなされたものであっ
て、本発明の目的は、従来のφ−q−nパターンを用い
たニューラルネットワークによる判定方法では識別が困
難であった第1象限と第3象限に発生するノイズ信号を
精度よく判定することができる部分放電測定方法を提供
することである。
FIG. 11 shows an example of a φ-qn pattern of a noise signal generated in the first quadrant and the third quadrant, which is likely to be mistaken by the conventional determination method. In the example of FIG. 11, the noise signal is generated in the first quadrant and the third quadrant, and it is difficult to discriminate from the partial discharge signal φ-qn shown in FIG. The present invention has been made in consideration of the above-mentioned problems of the related art, and an object of the present invention is that it is difficult to discriminate by a conventional determination method using a neural network using a φ-qn pattern. An object of the present invention is to provide a partial discharge measurement method capable of accurately determining a noise signal generated in a first quadrant and a third quadrant.

【0005】[0005]

【課題を解決するための手段】図12に図10に示した
部分放電信号のφ−q−tパターンを示す。同図におい
て、横軸は課電位相φ、縦軸は時間tであり、電荷量q
は濃淡(又は色)で示している。同図に示すように、部
分放電の発生位相角は、ある位相範囲内でランダム的に
発生している。また、図13に図11に示したノイズ信
号のφ−q−tパターンを示す。同図に示すように、ノ
イズの位相角は、同じ位相に継続して発生している傾向
が見られる。従来のφ−q−nパターンによる判定方法
で判断しようとする場合、測定データはφ−q−nパタ
ーンに変換されることから、時間的変化の情報が発生頻
度nとしてまとめられてしまう。つまり、測定信号の時
系列的な情報が失われてしまうことになり、部分放電と
ノイズとの判別が困難となる。
FIG. 12 shows a φ-qt pattern of the partial discharge signal shown in FIG. In the figure, the horizontal axis represents the potential application phase φ, the vertical axis represents time t, and the charge amount q
Is indicated by shading (or color). As shown in the figure, the phase angle at which the partial discharge occurs occurs randomly within a certain phase range. FIG. 13 shows a φ-qt pattern of the noise signal shown in FIG. As shown in the figure, the phase angle of the noise tends to be continuously generated in the same phase. When an attempt is made to make a determination using a conventional φ-qn pattern, measurement data is converted into a φ-qn pattern, so that information on temporal changes is collected as an occurrence frequency n. That is, the time-series information of the measurement signal is lost, and it is difficult to distinguish between partial discharge and noise.

【0006】そこで、本発明においては、測定信号の時
系列的な情報が失われていないφ−q−tパターンを使
用して、φ−q−tのグラフから統計処理を行い、少な
くとも一つ以上の統計数値を求め、これらの統計数値の
全てあるいは一部が所定の統計数値範囲内にある時、部
分放電と判定する。例えば、図1に示すように、φ−q
−tのグラフを位相角度で2つのブロックに分割し、単
位時間当たりの信号個数:n、平均発生位相角:Avg
(φ)、式φ=A×t+Bで回帰した最小自乗直線の傾
き:A、最小自乗直線からのズレの標準偏差:s、放電
電荷量の標準偏差/平均電荷量:s(q)/Avg
(q)の統計数値を求め、これらの統計数値の全てある
いは一部が所定の統計数値範囲内にある時、部分放電と
判定する。本発明においては、上記のようにして部分放
電を判定しているので、第1象限と第3象限に発生する
ようなノイズ信号を精度よく判定することができ、部分
放電信号とノイズ信号を精度よく識別することができ
る。
Accordingly, in the present invention, statistical processing is performed from a graph of φ-qt using a φ-qt pattern in which time-series information of a measurement signal is not lost, and at least one The above statistical values are obtained, and when all or some of these statistical values are within a predetermined statistical value range, it is determined that partial discharge has occurred. For example, as shown in FIG.
The graph of -t is divided into two blocks by the phase angle, the number of signals per unit time: n, and the average generated phase angle: Avg
(Φ), slope of the least-square line regressed by equation φ = A × t + B: A, standard deviation of deviation from the least-square line: s, standard deviation of discharged electric charge / average electric charge: s (q) / Avg
The statistical values of (q) are obtained, and when all or some of these statistical values are within a predetermined statistical value range, it is determined that partial discharge has occurred. In the present invention, since the partial discharge is determined as described above, a noise signal generated in the first quadrant and the third quadrant can be accurately determined, and the partial discharge signal and the noise signal can be accurately determined. Can be well identified.

【0007】[0007]

【発明の実施の形態】現地に布設してある275kVC
Vケーブル線路で測定したノイズ信号のデータに対し
て、上記した本発明の方法によりノイズの判定を行っ
た。図2に本発明の実施例の部分放電判定装置の構成例
を示す。同図において、1は電力ケーブル、2a,2b
は気中端末部であり、課電トランス12から上記気中端
末部2aを介して電力ケーブル1に交流電圧が印加され
る。上記構成のケーブル線路において、課電トランス1
1と気中端末部2aの間に結合コンデンサ3を介して部
分放電検出器4aを接続するとともに、電力ケーブル1
に部分放電検出器4bを接続し、部分放電検出器4a,
4bの出力をバランサ5を介して部分放電測定器6に入
力した。
BEST MODE FOR CARRYING OUT THE INVENTION 275 kVC laid on site
Noise was determined for the data of the noise signal measured on the V cable line by the method of the present invention described above. FIG. 2 shows a configuration example of the partial discharge determination device according to the embodiment of the present invention. In the figure, 1 is a power cable, 2a, 2b
Is an aerial terminal unit, and an AC voltage is applied to the power cable 1 from the power application transformer 12 via the aerial terminal unit 2a. In the cable line having the above configuration, the power transformer 1
1 and a partial discharge detector 4a between the aerial terminal 2a via a coupling capacitor 3 and a power cable 1
Is connected to the partial discharge detector 4b, and the partial discharge detector 4a,
The output of 4b was input to the partial discharge measuring device 6 via the balancer 5.

【0008】そして、部分放電測定器6により得られた
測定信号を上記電力ケーブル1に印加される交流電圧の
課電位相信号8とともにA/D変換器7に入力した。A
/D変換器7は、予め設定された時間(t)の間、測定
信号および課電位相信号8をデジタル信号に変換し、パ
ソコン9に出力する。パソコン9は、測定信号を放電電
荷量(q)に換算し、課電位相(φ)との関係をφ−q
−t特性として求め、φ−q−tパターンから5種類の
統計数値を計算し、モニタ10に出力する。
Then, the measurement signal obtained by the partial discharge measuring device 6 was input to the A / D converter 7 together with the application potential phase signal 8 of the AC voltage applied to the power cable 1. A
The / D converter 7 converts the measurement signal and the potential application phase signal 8 into digital signals for a preset time (t), and outputs the digital signals to the personal computer 9. The personal computer 9 converts the measurement signal into a discharge charge amount (q), and determines the relationship with the potential application phase (φ) by φ-q
It is obtained as a −t characteristic, and five types of statistical numerical values are calculated from the φ-qt pattern and output to the monitor 10.

【0009】図3は本実施例における部分放電判定処理
の概要を示すフローチャートであり、本実施例において
は、次のようにして部分放電であるかノイズであるかを
判定する。パソコン9はt軸を課電サイクル単位に、φ
軸は360°を100分割してφ−q−tパターンを求
め、φ−q−tパターンを位相領域(360°)で2つ
のブロックに分割する。2つのブロックの第1のブロッ
クは−36°〜144°、第2のブロックは144°〜
324°である。図4に2つのブロックに分割したφ−
q−tパターンの概要を示す。なお、同図に示す直線
は、φ−q−tパターンを最小自乗法により回帰した直
線である。
FIG. 3 is a flowchart showing the outline of the partial discharge determination process in the present embodiment. In the present embodiment, it is determined whether the discharge is a partial discharge or a noise as follows. The personal computer 9 uses the t-axis in units of
The axis divides 360 ° into 100 to obtain a φ-qt pattern, and divides the φ-qt pattern into two blocks in the phase domain (360 °). The first of the two blocks is between -36 ° and 144 °, the second block is between 144 ° and
324 °. Fig. 4 shows φ- divided into two blocks.
The outline of qt pattern is shown. The straight line shown in the figure is a straight line obtained by regressing the φ-qt pattern by the least square method.

【0010】以上のように2つのブロックに分割した
後、図3に示すように、次の〜の5種類の統計数値
を求めた。 データ個数:n 時間t内に発生した各ブロックにおけるデータの個数 平均発生位相角::Avg(φ) 各ブロックにおける部分放電信号の発生位相角の平均値 最小自乗直線の傾き:A 各ブロックにおけるφ−q−tパターンを最小自乗法に
より回帰した直線φ=A×t+Bにおける傾きA(前記
図4参照)。 最小自乗直線からφのズレの標準偏差:s 各ブロックで求めた最小自乗直線φ=A×t+Bからの
位相角φのズレの標準偏差 放電電荷量の標準偏差/平均電荷量:s(q)/A
vg(q) 2つのブロックをまとめたデータについて求めた放電電
荷量の標準偏差s(q)と平均電荷量Avg(q)の比
After dividing into two blocks as described above, as shown in FIG. 3, the following five kinds of statistical numerical values were obtained. Number of data: n Number of data in each block generated within time t Average generated phase angle: Avg (φ) Average value of generated phase angle of partial discharge signal in each block Minimum slope of linear line: A φ in each block -A slope A on a straight line φ = A × t + B obtained by regressing the qt pattern by the method of least squares (see FIG. 4). Standard deviation of deviation of φ from least square line: s Standard deviation of deviation of phase angle φ from least square line φ = A × t + B found in each block Standard deviation of discharge charge / average charge: s (q) / A
vg (q) The ratio between the standard deviation s (q) of the discharge charge amount and the average charge amount Avg (q) obtained for the data obtained by combining the two blocks.

【0011】上記のように5種類の統計数値を求めたの
ち、図3に示すように次の識別条件で部分放電であるか
ノイズであるかを判定した。 10≦n≦80 15≦Avg(φ)≦40 −0.5≦A≦0.5 2.0≦s≦15.0 0.3≦s(q)/Avg(q) なお、部分放電の判定に当たっては、予めどの統計数値
を使用するかを設定しておき、その設定された統計数値
が条件を満たしている場合を部分放電とし、満たしてい
ない場合をノイズとする。
After obtaining the five types of statistical values as described above, it was determined whether the discharge was a partial discharge or a noise under the following identification conditions as shown in FIG. 10 ≦ n ≦ 80 15 ≦ Avg (φ) ≦ 40 −0.5 ≦ A ≦ 0.5 2.0 ≦ s ≦ 15.0 0.3 ≦ s (q) / Avg (q) determining when the previously set whether to use the advance which statistical data, a case where the set statistical data meets the condition and the partial discharge, the case does not meet the noise.

【0012】上記部分放電の識別条件は、実際に発生し
た部分放電データを用いて設定した。本実施例において
は、22kVCVケーブルの外部半導電層上から絶縁体
中にトリーイング針をさした欠陥と、外部半導電層にカ
ッターナイフで傷をつけた外傷欠陥によるデータを用い
た。49件の部分放電データから上記のように5種類の
統計数値をそれぞれ計算し、各統計数値毎にその存在範
囲を求めた。図5〜図9は上記49件のデータに対する
各統計数値を示す図であり、図5〜図9に示すように4
9件のデータについて5種類の統計数値を求め、求めた
統計数値から、上記〜の範囲にある場合を部分放電
とし、それ以外の範囲にある場合をノイズとした。
The conditions for identifying the partial discharge are set using data of the actually generated partial discharge. In the present embodiment, data on a defect in which a treeing needle was inserted into the insulator from above the outer semiconductive layer of the 22 kVCV cable and a data on a trauma defect in which the outer semiconductive layer was damaged with a cutter knife were used. Five kinds of statistical values were calculated from the 49 partial discharge data as described above, and the existence range was obtained for each statistical value. FIG. 5 to FIG. 9 are diagrams showing statistical values for the above 49 data, and as shown in FIG.
Five types of statistical numerical values were obtained for the nine data, and from the obtained statistical numerical values, the partial discharge was determined when the value was in the range of the above, and the noise was determined in the other range.

【0013】以上のような部分放電判定装置を用い、2
75kVCVケーブル線路の現地ノイズデータ2745
件について、判定を行った。表1は統計数値とのみ
を用いた場合と、統計数値〜の全てを用いて上記2
745件のデータについて判定を行った結果を示す表で
ある。なお、表1には従来のφ−q−nパターンを用い
たニューラルネットワークによる部分放電判定方法で同
じノイズデータを判定した結果を合わせて示してある。
Using the above-described partial discharge determination device, 2
On-site noise data of 75kVCV cable line 2745
A judgment was made on the matter. Table 1 shows the case where only the statistical values are used and the case where only the statistical values are used.
It is a table | surface which shows the result of having determined about 745 data. Table 1 also shows the result of determining the same noise data by the conventional partial discharge determination method using a neural network using the φ-qn pattern.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より、従来のニューラルネットワーク
による方法に比較して、統計数値による方法がより精度
の高い識別を行っていることがわかる。すなわち、と
の2種類の統計数値のみを使用した場合97.6%、
〜の全ての統計数値を用いた場合98.1%の判定
率が得られたが、従来のニューラルネットワークによる
方法では87.5%であった。従って、従来のφ−q−
nパターンを用いたニューラルネットワークによる判定
よりも、本発明による統計数値による判定の方が、より
精度良く部分放電とノイズを識別することが可能とな
る。また、今回の判定は、統計数値が所定の統計数値範
囲内にあるか否かで判定したが、ニューロファジイ理論
等を適用してファジイルールを設定し、ファジイ推論で
判定することにより、より精度の高い判定が望める。
From Table 1, it can be seen that the method using statistical numerical values performs more accurate classification than the conventional method using a neural network. That is, 97.6% when only two types of statistical values are used,
A judgment rate of 98.1% was obtained when all the statistical values of the above were used, but it was 87.5% with the method using the conventional neural network. Therefore, the conventional φ-q-
The determination based on the statistical values according to the present invention makes it possible to distinguish between partial discharge and noise with higher accuracy than the determination based on the neural network using n patterns. In addition, this determination was made based on whether or not the statistical value is within a predetermined statistical value range.However, a fuzzy rule is set by applying a neuro-fuzzy theory or the like, and the determination is made by fuzzy inference. High judgment can be expected.

【0016】[0016]

【発明の効果】以上説明したように、本発明において
は、従来のφ−q−nパターンを用いたニューラルネッ
トワークによる判定方法では識別が困難であった、第1
象限と第3象限に発生するようなノイズ信号を精度良く
判定することが可能になり、このため、より精度よく部
分放電とノイズを識別することが可能となる。
As described above, in the present invention, it is difficult to discriminate by the conventional determination method using the neural network using the φ-qn pattern.
It is possible to accurately determine a noise signal generated in the quadrant and the third quadrant, so that it is possible to more accurately distinguish partial discharge from noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概要を示す図である。FIG. 1 is a diagram showing an outline of the present invention.

【図2】本発明の実施例の部分放電判定装置の構成例を
示す図である。
FIG. 2 is a diagram illustrating a configuration example of a partial discharge determination device according to an embodiment of the present invention.

【図3】本発明の実施例の部分放電判定処理の概要を示
すフローチャートである。
FIG. 3 is a flowchart illustrating an outline of a partial discharge determination process according to the embodiment of the present invention.

【図4】2つのブロックに分割したφ−q−tパターン
の概要を示す図である。
FIG. 4 is a diagram showing an outline of a φ-qt pattern divided into two blocks.

【図5】部分放電データの信号個数nを示す図であ
る。
FIG. 5 is a diagram showing the number n of signals of partial discharge data.

【図6】部分放電データの平均発生位相角Avg
(φ)を示す図である。
FIG. 6 shows an average phase angle Avg of partial discharge data.
FIG.

【図7】部分放電データの最小自乗直線の傾きAを示
す図である。
FIG. 7 is a diagram showing a slope A of a least square line of partial discharge data.

【図8】部分放電データの最小自乗直線からのズレの
標準偏差sを示す図である。
FIG. 8 is a diagram showing a standard deviation s of deviation of partial discharge data from a least square line.

【図9】部分放電データの放電電荷量の標準偏差/平
均電荷量s(q)/Avg(q) を示す図である。
FIG. 9 is a view showing standard deviation / average charge amount s (q) / Avg (q) of discharge charge amount of partial discharge data.

【図10】部分放電信号のφ−q−nパターン例を示す
図である。
FIG. 10 is a diagram showing an example of a φ-qn pattern of a partial discharge signal.

【図11】第1象限と第3象限に発生するノイズ信号の
φ−q−nパターンの例を示す図である。
FIG. 11 is a diagram illustrating an example of a φ-qn pattern of a noise signal generated in a first quadrant and a third quadrant;

【図12】図10の部分放電信号のφ−q−tパターン
の例を示す図である。
FIG. 12 is a diagram illustrating an example of a φ-qt pattern of the partial discharge signal of FIG. 10;

【図13】図11のノイズ信号のφ−q−tパターンの
例を示す図である。
FIG. 13 is a diagram illustrating an example of a φ-qt pattern of the noise signal in FIG. 11;

【符号の説明】[Explanation of symbols]

1 電力ケーブル 2a,2b 気中端末部 3 結合コンデンサ 4a,4b 部分放電検出器 5 バランサ 6 部分放電測定器 7 A/D変換器 8 課電位相信号 9 パソコン 10 モニタ 11 課電トランス DESCRIPTION OF SYMBOLS 1 Power cable 2a, 2b Air terminal part 3 Coupling capacitor 4a, 4b Partial discharge detector 5 Balancer 6 Partial discharge measuring instrument 7 A / D converter 8 Potential application phase signal 9 Personal computer 10 Monitor 11 Power supply transformer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電力ケーブル及び付属品あるいは電力ケ
ーブル線路、電力機器等の部分放電を測定して絶縁診断
を行う部分放電測定方法であって、 課電電圧の位相信号と部分放電検出器で検出した測定信
号から、所定の時間(t)の間の測定信号の放電電荷量
(q)と、発生位相(φ)を求めて、φ−q−tパター
ンを作成し、 φ−q−tパターンから統計処理を行い、少なくとも1
つ以上の統計数値を求め、これらの統計数値の全てある
いは一部が所定の数値範囲内にあるとき、部分放電と判
別することを特徴とする部分放電測定方法。
1. A partial discharge measuring method for measuring a partial discharge of a power cable and accessories, a power cable line, a power device, etc., and performing an insulation diagnosis, wherein the partial discharge is detected by a phase signal of an applied voltage and a partial discharge detector. From the obtained measurement signal, a discharge charge amount (q) and a generation phase (φ) of the measurement signal during a predetermined time (t) are obtained to create a φ-qt pattern, and a φ-qt pattern Statistical processing from at least 1
A partial discharge measurement method, wherein one or more statistical values are obtained, and when all or a part of these statistical values are within a predetermined numerical range, a partial discharge is determined.
JP12568597A 1997-05-15 1997-05-15 Partial discharge measurement method Expired - Lifetime JP3207371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12568597A JP3207371B2 (en) 1997-05-15 1997-05-15 Partial discharge measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12568597A JP3207371B2 (en) 1997-05-15 1997-05-15 Partial discharge measurement method

Publications (2)

Publication Number Publication Date
JPH10319083A true JPH10319083A (en) 1998-12-04
JP3207371B2 JP3207371B2 (en) 2001-09-10

Family

ID=14916154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12568597A Expired - Lifetime JP3207371B2 (en) 1997-05-15 1997-05-15 Partial discharge measurement method

Country Status (1)

Country Link
JP (1) JP3207371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502876A (en) * 2014-12-12 2015-04-08 国家电网公司 Verification method for high-frequency partial discharge live detection of high-voltage cable accessory
CN112180221A (en) * 2020-08-17 2021-01-05 国网浙江省电力有限公司电力科学研究院 GIS unknown category partial discharge identification method based on double-measurement supervision rule

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502876A (en) * 2014-12-12 2015-04-08 国家电网公司 Verification method for high-frequency partial discharge live detection of high-voltage cable accessory
CN112180221A (en) * 2020-08-17 2021-01-05 国网浙江省电力有限公司电力科学研究院 GIS unknown category partial discharge identification method based on double-measurement supervision rule
CN112180221B (en) * 2020-08-17 2022-06-03 国网浙江省电力有限公司电力科学研究院 GIS unknown category partial discharge identification method based on double-measurement supervision rule

Also Published As

Publication number Publication date
JP3207371B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
James et al. Development of computer-based measurements and their application to PD pattern analysis
TW201621340A (en) Partial discharge determining device and partial discharge determining method
EP2193380A2 (en) A diagnostic method for determining deformations in a transformer winding
JPH10288639A (en) Apparatus and method for monitoring malfunction of electric apparatus
JP5539762B2 (en) Lightning arrester failure determination method
JPH1078471A (en) Measuring method for partial discharge
Von Glahn et al. Continuous recording and stochastic analysis of PD
CN114236212B (en) Voltage measurement method, voltage measurement circuit and voltage measurement equipment
JP3207371B2 (en) Partial discharge measurement method
Katsaprakakis et al. A power-quality measure
JP4256492B2 (en) Partial discharge monitoring device for rotating electrical machines
CN103926494A (en) Interference source determining method and device
JP3106884B2 (en) Partial discharge measurement method
JPH10197593A (en) Power cable degradation judging method
JPH0580112A (en) Failure diagnostic device for power cable
CN112129989B (en) Voltage sag segmentation depicting method based on adaptive clustering
JPH08338856A (en) Method for deciding partial discharge
CN109521253A (en) A kind of bus tracks and identifies method and system
JPH0611535A (en) Method for identifying partial discharge pulse
JPS6279375A (en) Evaluation of insulation film
JP4057182B2 (en) Partial discharge judgment method
Chang et al. Partial discharge distribution pattern analysis using combined statistical parameters
JPH11258296A (en) Automatic discrimination method for partial discharge
JP2006105714A (en) Method for determining cause of accident in power transmission line and distribution line
Mishra et al. Diagnostics analysis of partial discharge events of the power cables at various voltage levels using ramping behavior analysis method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

EXPY Cancellation because of completion of term