JPH10318897A - Test method for impact fracture - Google Patents

Test method for impact fracture

Info

Publication number
JPH10318897A
JPH10318897A JP12750897A JP12750897A JPH10318897A JP H10318897 A JPH10318897 A JP H10318897A JP 12750897 A JP12750897 A JP 12750897A JP 12750897 A JP12750897 A JP 12750897A JP H10318897 A JPH10318897 A JP H10318897A
Authority
JP
Japan
Prior art keywords
shock
shock wave
specimen
tensile
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12750897A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kawaguchi
喜昭 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12750897A priority Critical patent/JPH10318897A/en
Publication of JPH10318897A publication Critical patent/JPH10318897A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to easily generate a brittle fracture by a method wherein a tensile shock wave which is introduced as a compressive shock wave from the shock incidence end of a specimen, which is reflected by the free end of the specimen and whose polarity is inverted so as to be turned down and a tensile shock wave which is introduced from a shock incidence end are superposed in the prescribed position of the specimen. SOLUTION: A compressive shock load is applied to the shock incidence end 3 of a specimen 1 in which a defect part 7 is formed. The motion of the specimen 1 to the direction of a compressive shock caused by the compressive shock load is stopped by a rigid block 4 near the shock incidence end. Thereby, a tensile shock wave is introduced into the specimen 1. The time which stops the motion by the rigid block 4 is set in such a way that the tensile shock wave is introduced by the stop of the motion and a tensile shock wave at a time when a compressive shock wave is reflected by the free end of the specimen 1 so as to be turned down by inverting its polarity are superposed in the defect part 7. The length of the specimen 1 is set in such a way that a direction in which a stress wave is propagated is decided to be single, and the cross-sectional shape of the specimen 1 may be an arbitrary shape such as, e.g. a circular shape, an H-shape or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、橋梁、高架道路、
建物、タンク等の建造物、とくに鋼構造物に地震等に起
因する衝撃荷重が負荷されたときの材料、とくに鋼材の
破壊現象を試験する衝撃破壊試験方法に関する。
TECHNICAL FIELD The present invention relates to a bridge, an elevated road,
BACKGROUND OF THE INVENTION The present invention relates to an impact fracture test method for testing a material, particularly a steel material, when an impact load caused by an earthquake or the like is applied to a structure such as a building or a tank, particularly a steel structure.

【0002】[0002]

【従来の技術】衝撃破壊の試験方法としては、split Ho
pkinson棒法、応力棒法、One Bar法等が知られている
(岸田敬三「固体の動力学」(培風館)p.96)。
2. Description of the Related Art As a test method for impact fracture, split Ho
The pkinson bar method, the stress bar method, the One Bar method, and the like are known (Keizo Kishida "Dynamics of solids" (Baifukan) p.96).

【0003】図5は、split Hopkinson 棒法と呼ばれる
衝撃破壊の試験方法として最も広く用いられている方法
である。この試験方法は短い円柱状試験体を長い2本の
弾性体からなる棒(入射棒と透過棒)にはさんでおく。
衝撃棒2の入射棒への衝突によって生じた応力波は入射
棒を伝わって、一部は試験体1に導入される。入射棒と
透過棒に貼りつけられたひずみゲージ6によりこの間の
応力波を測定すれば、入射棒と透過棒にはさまれた試験
体に生じる応力波に起因する応力とひずみの関係を知る
ことができる。応力棒法、One Bar法はこのsplit Hopki
nson棒法を改良した試験方法である。当初は、いずれも
圧縮試験として用いられたが、近年では衝撃荷重の与え
方によって引張試験にも用いられるようになってきてい
る。
FIG. 5 shows a method most widely used as an impact fracture test method called a split Hopkinson bar method. In this test method, a short columnar test body is sandwiched between two long elastic rods (incident rod and transmission rod).
The stress wave generated by the collision of the impact rod 2 with the incident rod propagates through the incident rod, and a part of the stress wave is introduced into the specimen 1. By measuring the stress wave between them using the strain gauge 6 attached to the incident rod and the transmission rod, it is possible to know the relationship between the stress and the strain caused by the stress wave generated in the specimen sandwiched between the incident rod and the transmission rod. Can be. The stress bar method and the One Bar method are
This is a test method improved from the nson bar method. Initially, all were used as compression tests, but in recent years, they have also been used in tensile tests depending on how to apply an impact load.

【0004】しかしながら、上記試験方法はいずれも微
小な試験体が対象である。鋼材等の延性および靭性に富
む材料に衝撃破壊を発生させるためには実際の材料寸法
に近い大きな試験体が必要であるが、上記の試験方法を
大きな試験体にそのまま適用しようとするときわめて大
がかりな衝撃荷重発生装置が必要となる。このため、地
震の衝撃に耐え得る鋼材の選定等を簡便に行うことがで
きなかった。
[0004] However, all of the above-mentioned test methods are intended for small test specimens. In order to cause impact fracture in materials such as steel and other materials with high ductility and toughness, a large specimen close to the actual material size is required.However, if the above test method is applied to a large specimen as it is, it will be extremely large. An impact load generator is required. For this reason, it was not possible to easily select a steel material capable of withstanding the impact of the earthquake.

【0005】[0005]

【発明が解決しようとする課題】本発明は、大がかりな
衝撃荷重発生装置を用いずに、各種建造物に用いられる
鋼材等の材料の衝撃破壊を簡易に試験する方法を提供す
ることを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for simply testing the impact fracture of materials such as steel used for various buildings without using a large-scale impact load generator. I do.

【0006】[0006]

【課題を解決するための手段】以後の説明において「衝
撃破壊」とは、衝撃波によって破壊することをさし、破
壊の形態は主に脆性破壊であるが、低延性破壊、粒界破
壊等も含む。「衝撃波」を、引張衝撃波と圧縮衝撃波に
分けて論ずる。「引張衝撃波」とは、材料中を進行する
衝撃波の先端の部分が引張の極性になっているものをさ
し、「圧縮応力波」は衝撃波の先端の部分が圧縮の極性
になっているものをさす。
Means for Solving the Problems In the following description, "impact fracture" refers to destruction by a shock wave. The type of fracture is mainly brittle fracture, but low ductility fracture, grain boundary fracture, etc. Including. "Shock waves" will be discussed separately for tensile shock waves and compression shock waves. "Tensile shock wave" means that the tip of the shock wave traveling through the material has a tensile polarity, and "compressive stress wave" means that the tip of the shock wave has the polarity of compression. Point out.

【0007】本発明者は、実際に衝撃破壊が発生した各
種の機械装置や建造物を解析することにより下記の事項
を確認することができた。
The present inventor was able to confirm the following items by analyzing various types of machinery and buildings in which impact fracture actually occurred.

【0008】(a)衝撃波がそれほど大きくない場合、
単一の衝撃波では靭性、延性に富む鋼材等を衝撃破壊さ
せることは困難である。
(A) When the shock wave is not so large,
With a single shock wave, it is difficult to cause impact fracture of a steel material or the like that is rich in toughness and ductility.

【0009】(b)外部から導入された衝撃波とそれが
端面で反射した反射衝撃波とが重畳されると、両者が強
め合い大きな衝撃波となる。この大きな衝撃波が発生す
る位置は、衝撃波の試験体中の伝播速度、試験体自由端
での衝撃波の極性の反転等を考慮して、任意の位置とす
ることができる。
(B) When the shock wave introduced from the outside and the shock wave reflected from the end face thereof are superimposed, they are strengthened to form a large shock wave. The position where the large shock wave is generated can be set to an arbitrary position in consideration of the propagation speed of the shock wave in the test object, the reversal of the polarity of the shock wave at the free end of the test object, and the like.

【0010】本発明は上記の事項をもとに基礎試験と実
サイズ試験を繰り返して完成されたもので、その要旨は
下記の試験方法にある(後記する図1および図2参
照)。
The present invention has been completed by repeating a basic test and an actual size test based on the above matters, and the gist of the present invention lies in the following test method (see FIGS. 1 and 2 described later).

【0011】(1)試験体1の衝撃入射端3から圧縮衝
撃波11として導入され、試験体の自由端8で反射し極
性を反転し折り返す引張衝撃波13と、衝撃入射端3か
ら導入された引張衝撃波12とを、試験体の所定の位置
で重畳させ試験体を衝撃破壊させる衝撃破壊試験方法。
(1) A tensile shock wave 13 introduced from the shock incident end 3 of the specimen 1 as a compression shock wave 11, reflected at the free end 8 of the specimen, inverted in polarity, and turned back, and a tensile shock wave 13 introduced from the shock incident end 3. An impact fracture test method in which a shock wave 12 is superimposed at a predetermined position on a test body and the test body is subjected to impact fracture.

【0012】(2)欠陥部7を設けた試験体1の衝撃入
射端3に圧縮衝撃荷重を与え圧縮衝撃波11を試験体1
に導入し、かつその圧縮衝撃荷重に起因する圧縮衝撃方
向への試験体の運動を衝撃入射端付近において剛ブロッ
ク4により阻止することにより引張衝撃波12を試験体
に導入し、かつ剛ブロックによる阻止の時期を、その阻
止によって導入される引張衝撃波12が、前記の圧縮衝
撃波11が試験体の自由端8で反射し極性を反転させ折
り返してくる引張衝撃波13と欠陥部7において重畳す
るようにとる上記(1)の衝撃破壊試験方法。
(2) A compressive shock load is applied to the shock incident end 3 of the test piece 1 provided with the defect portion 7 to generate a compression shock wave 11
And the rigid block 4 prevents the movement of the specimen in the direction of the compression impact caused by the compression impact load by the rigid block 4 so that the tensile shock wave 12 is introduced into the specimen and blocked by the rigid block. Is set so that the tensile shock wave 12 introduced by the inhibition is superimposed on the tensile shock wave 13 which is reflected at the free end 8 of the test piece, inverts the polarity and turns back, at the defect portion 7. The impact fracture test method of the above (1).

【0013】上記において「試験体」は、応力波が伝播
する方向を1方向に定められる程度の長さを持った試験
体である。断面形状は任意でよく、円、四角、H型、I
型等であってよい。圧縮衝撃荷重が加えられる方向を
「圧縮衝撃方向」という。圧縮衝撃荷重の結果、試験体
は圧縮衝撃方向と同じ方向に運動を始める。(2)にお
いて、「剛ブロックにより阻止する」具体的な方法とし
ては、静止した剛ブロックと試験体の衝撃入射端付近と
を衝突させることにより阻止する方法、および圧縮衝撃
方向と逆方向に剛ブロックを運動させて、同様に試験体
と衝突させて阻止する方法の両方を含む。その阻止の時
期は、阻止によって試験体に導入される引張衝撃波12
と折り返してくる引張衝撃波13とが欠陥部7において
会合するように、両衝撃波の伝播速度5000m/秒を
考慮して定められる。「欠陥」は、切り欠き、溶接不
良、脆性溶接ビード等が該当する。
In the above description, the "specimen" is a specimen having a length such that the direction in which the stress wave propagates is determined in one direction. The cross-sectional shape may be arbitrary, such as circle, square, H-shaped, I
It may be a type or the like. The direction in which the compression impact load is applied is referred to as “compression impact direction”. As a result of the compression impact load, the specimen starts to move in the same direction as the compression impact direction. In (2), specific methods of “blocking by a rigid block” include a method of blocking by making a stationary rigid block collide with the vicinity of a shock incident end of a test piece, and a method of blocking in a direction opposite to a compression shock direction. Includes both methods of moving the block and also colliding and stopping the specimen. The timing of the stop is determined by the tensile shock wave 12 introduced into the specimen by the stop.
Is determined in consideration of the propagation speed of both shock waves of 5000 m / sec so that the returning tensile shock wave 13 and the folded shock wave 13 meet at the defect portion 7. The “defect” corresponds to a notch, poor welding, brittle welding bead, or the like.

【0014】[0014]

【発明の実施の形態】図1は本発明の試験方法を模式的
に例示する図である。試験体1の衝撃入射端3として、
例えばストライカーを取り付け、圧縮衝撃荷重2として
は、例えば高速で飛来する弾丸とする。
FIG. 1 is a diagram schematically illustrating a test method of the present invention. As the impact incident end 3 of the test body 1,
For example, a striker is attached, and the compression impact load 2 is a bullet flying at a high speed, for example.

【0015】図2は衝撃波の試験体における位置を示す
図である。
FIG. 2 is a diagram showing a position of a shock wave on a test body.

【0016】弾丸が衝突すると、試験体には圧縮衝撃波
11が導入される。この後、試験体と一体化されたスト
ライカーが剛ブロック4により移動を阻止されると慣性
力により引張衝撃波12が試験体1に導入される。最初
に導入された圧縮衝撃波11は試験体中を約5000m
/秒の高速で伝播し、自由端である片端に到達すると引
張衝撃波13となって折り返す。引張衝撃波の伝播速度
は圧縮衝撃波の伝播速度と同じ約5000m/秒であ
る。
When the bullet collides, a compression shock wave 11 is introduced into the specimen. Thereafter, when the striker integrated with the test piece is prevented from moving by the rigid block 4, a tensile shock wave 12 is introduced into the test piece 1 by inertial force. The initially introduced compression shock wave 11 travels about 5000 m in the specimen.
Per second and reaches one end, which is a free end, and turns back as a tensile shock wave 13. The propagation speed of the tensile shock wave is about 5000 m / sec, which is the same as the propagation speed of the compression shock wave.

【0017】図2は、各衝撃波の試験体における位置を
示す。引張衝撃波13が、後から入射された引張衝撃波
12と重畳すると、大きな引張衝撃波14が生じる。し
たがって、2つの引張衝撃波12、13が欠陥部7にお
いて重畳すると、重畳引張衝撃波14が欠陥部7に瞬時
に発生し、欠陥は非常に大きなひずみ速度の引張応力に
さらされる。その結果、重畳引張衝撃波14の振幅が最
大となる位置付近に適切な切り欠きや溶接不良等の欠陥
があれば、この部分で衝撃破壊が発生する。この欠陥部
ではひずみ速度の大きな3軸応力状態が現出し、脆性破
壊の形態をとる場合が多いが、引張衝撃波の振幅が大き
い場合は低延性破壊が生じることもある。
FIG. 2 shows the position of each shock wave on the test piece. When the tensile shock wave 13 is superimposed on the tensile shock wave 12 that is incident later, a large tensile shock wave 14 is generated. Therefore, when the two tensile shock waves 12, 13 are superimposed on the defect 7, the superimposed tensile shock 14 is instantaneously generated at the defect 7, and the defect is exposed to a tensile stress having a very high strain rate. As a result, if there is a defect such as an appropriate notch or poor welding near the position where the amplitude of the superimposed tensile shock wave 14 is maximum, impact fracture occurs at this portion. At this defect, a triaxial stress state with a high strain rate appears and often takes the form of brittle fracture, but when the amplitude of the tensile shock wave is large, low ductile fracture may occur.

【0018】最初の圧縮衝撃波に対して後から入射する
引張衝撃波の入射時期を衝撃波の伝播速度約5000m
/秒を考慮して適当にずらすことにより、重畳引張衝撃
波14を欠陥部等の所定の位置に形成することは常に可
能である。
The propagation timing of the shock wave is about 5,000 m by the timing of the incidence of the tensile shock wave which is incident later on the first compression shock wave.
It is always possible to form the superimposed tensile shock wave 14 at a predetermined position such as a defective portion by appropriately shifting in consideration of / sec.

【0019】[0019]

【実施例】つぎに実施例により本発明の試験方法の効果
を説明する。
Next, the effects of the test method of the present invention will be described with reference to examples.

【0020】図3は本発明の試験方法を示す。供試材は
長さ5mの鉄筋(公称径9.53mm)である。衝撃入
射端面として、この鉄筋の片端に鋼片を取り付け、スト
ライカーとした。ストライカーと剛ブロックの隙間△L
は10mmとした。また、自由端から2mの位置にひず
みゲージを貼付し、同じく2mの位置でひずみゲージと
対面する表面位置に脆い溶接ビード7を置いた。
FIG. 3 shows the test method of the present invention. The test material is a reinforcing bar (nominal diameter of 9.53 mm) having a length of 5 m. A steel slab was attached to one end of this reinforcing bar as a shock incidence end face, and used as a striker. Clearance between striker and rigid block △ L
Was 10 mm. In addition, a strain gauge was attached at a position 2 m from the free end, and a brittle weld bead 7 was placed at the surface position facing the strain gauge at a position 2 m.

【0021】試験はつぎの手順で行った。高圧ガスによ
り重量5kgの弾丸を10m/秒で発射し、ストライカ
ーに衝突させた。最初の圧縮応力波と後の剛ブロックと
の衝突によって入射される引張応力波との時間間隔は約
0.001秒である。
The test was performed in the following procedure. A bullet weighing 5 kg was fired at 10 m / sec by high-pressure gas and hit a striker. The time interval between the first compressive stress wave and the tensile stress wave incident by the subsequent collision with the rigid block is about 0.001 second.

【0022】上記の試験の結果、衝撃破壊が溶接部の止
端部で発生した。
As a result of the above test, impact fracture occurred at the toe of the weld.

【0023】図4はひずみゲージ6により計測されたひ
ずみの時間変化を示す。最初に導入された圧縮衝撃波1
1と大きな重畳引張衝撃波14が計測された。衝撃破壊
はこの重畳引張衝撃波14により発生したものである。
衝撃破壊によって生成した破面は、へき開面を有する脆
性破面を呈した。
FIG. 4 shows a time change of the strain measured by the strain gauge 6. First introduced compression shock wave 1
A superimposed tensile shock wave 14 as large as 1 was measured. The impact fracture is generated by the superimposed tensile shock wave 14.
The fracture surface generated by the impact fracture exhibited a brittle fracture surface having a cleavage surface.

【0024】[0024]

【発明の効果】本発明の試験方法における重畳引張衝撃
波は、従来の常識によれば衝撃波では脆性破壊が起こり
得ないとされていた鋼構造物においても脆性破壊を容易
に発生させることができる。この結果、耐震性を有する
材料や施工方法について有益なデータを得ることがで
き、耐震材料および耐震施工の技術の進歩に資するとこ
ろが大きい。
The superimposed tensile shock wave in the test method of the present invention can easily generate a brittle fracture even in a steel structure where brittle fracture cannot be caused by the shock wave according to conventional common sense. As a result, useful data can be obtained on materials having a seismic resistance and construction methods, which greatly contributes to the advancement of technologies for seismic materials and construction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の試験方法の原理を示す図である。FIG. 1 is a diagram showing the principle of the test method of the present invention.

【図2】本発明の試験方法における衝撃波先端部の応力
の試験体中の位置を示す図である。
FIG. 2 is a view showing a position in a test body of a stress at a tip end of a shock wave in the test method of the present invention.

【図3】本発明の実施例の試験方法を示す図である。FIG. 3 is a diagram showing a test method according to an example of the present invention.

【図4】実施例において計測されたひずみの経時変化を
示す図である。
FIG. 4 is a diagram showing a change with time of strain measured in an example.

【図5】従来の試験方法であるSplit Hopkinson棒法を
示す図である。
FIG. 5 is a view showing a Split Hopkinson bar method which is a conventional test method.

【符号の説明】[Explanation of symbols]

1…試験体 2…衝撃荷重物体 3…衝撃入射端 4…剛ブロック 5…試験体支持 6…ひずみ計 7…欠陥部 8…自由端 11…圧縮衝撃波先端部の応力 12…引張衝撃波先端部の応力 13…折り返し引張衝撃波先端部の応力 14…重畳引張衝撃波発生時点の応力分布 DESCRIPTION OF SYMBOLS 1 ... Test body 2 ... Impact load object 3 ... Shock incidence end 4 ... Rigid block 5 ... Specimen support 6 ... Strain gauge 7 ... Defect part 8 ... Free end 11 ... Stress at the tip of compression shock wave 12 ... At the tip of tensile shock wave Stress 13: Stress at the tip of folded tensile shock wave 14: Stress distribution at the time of occurrence of superimposed tensile shock wave

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試験体(1)の衝撃入射端(3)から圧縮
衝撃波として導入され、試験体の自由端(8)で反射し
極性を反転し折り返す引張衝撃波と、衝撃入射端(3)
から導入された引張衝撃波とを、試験体の所定の位置で
重畳させ試験体を衝撃破壊させることを特徴とする衝撃
破壊試験方法。
A tensile shock wave which is introduced from a shock incident end (3) of a test body (1) as a compression shock wave, reflected at a free end (8) of the test body, inverts the polarity and turns back, and a shock incident end (3).
And a tensile shock wave introduced from the above is superimposed at a predetermined position on the test body to cause the test body to break.
【請求項2】欠陥部(7)を設けた試験体(1)の衝撃
入射端(3)に圧縮衝撃荷重を与え圧縮衝撃波を試験体
(1)に導入し、かつその圧縮衝撃荷重に起因する圧縮
衝撃方向への試験体の運動を衝撃入射端付近において剛
ブロック(4)により阻止することにより引張衝撃波を
試験体に導入し、かつ剛ブロックによる阻止の時期を、
その阻止によって導入される引張衝撃波が、前記圧縮衝
撃波が試験体の自由端(8)で反射し極性を反転させ折
り返してくる引張衝撃波と欠陥部(7)において重畳す
るようにとることを特徴とする請求項1の衝撃破壊試験
方法。
2. A compressive shock load is applied to a shock incident end (3) of a test piece (1) provided with a defect portion (7) to introduce a compressive shock wave into the test piece (1), and the compressive shock load is caused by the compressive shock load. The rigid block (4) blocks the movement of the test specimen in the direction of the compression shock in the direction of the compression shock, thereby introducing a tensile shock wave to the test specimen, and the timing of the blockage by the rigid block is
The tensile shock wave introduced by the inhibition is characterized in that the compressive shock wave is reflected at the free end (8) of the test specimen, reverses the polarity and overlaps with the returning tensile shock wave at the defect (7). 2. The method of claim 1, wherein
JP12750897A 1997-05-16 1997-05-16 Test method for impact fracture Pending JPH10318897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12750897A JPH10318897A (en) 1997-05-16 1997-05-16 Test method for impact fracture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12750897A JPH10318897A (en) 1997-05-16 1997-05-16 Test method for impact fracture

Publications (1)

Publication Number Publication Date
JPH10318897A true JPH10318897A (en) 1998-12-04

Family

ID=14961738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12750897A Pending JPH10318897A (en) 1997-05-16 1997-05-16 Test method for impact fracture

Country Status (1)

Country Link
JP (1) JPH10318897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406846A (en) * 2014-11-28 2015-03-11 西安交通大学 Measurement system and measurement method for stress waves of Hopkinson bars by using flexoelectric effect
WO2021017242A1 (en) * 2019-08-01 2021-02-04 深圳大学 Temperature-pressure-osmotic pressure coupled two-way electromagnetic loading three-axis shpb test system
WO2021017241A1 (en) * 2019-08-01 2021-02-04 深圳大学 Electromagnetic loading triaxial shpb device and test method under coupling of osmotic pressure and static pressure
US11921088B2 (en) 2019-08-01 2024-03-05 Shenzhen University Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406846A (en) * 2014-11-28 2015-03-11 西安交通大学 Measurement system and measurement method for stress waves of Hopkinson bars by using flexoelectric effect
WO2021017242A1 (en) * 2019-08-01 2021-02-04 深圳大学 Temperature-pressure-osmotic pressure coupled two-way electromagnetic loading three-axis shpb test system
WO2021017241A1 (en) * 2019-08-01 2021-02-04 深圳大学 Electromagnetic loading triaxial shpb device and test method under coupling of osmotic pressure and static pressure
US11921088B2 (en) 2019-08-01 2024-03-05 Shenzhen University Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method

Similar Documents

Publication Publication Date Title
Abramson et al. Stress wave propagation in rods and beams
Symonds Survey of methods of analysis for plastic deformation of structures under dynamic loading
Adhikary et al. Low velocity impact response of reinforced concrete beams: experimental and numerical investigation
Shen et al. Coalescence of fractures under shear stresses in experiments
Ballio et al. A unified approach for the design of steel structures under low and/or high cycle fatigue
Nassr et al. Experimental performance of steel beams under blast loading
Malvern et al. Dynamic response of concrete and concrete structures
Jones Quasi-static analysis of structural impact damage
Cadoni et al. Modified Hopkinson bar technologies applied to the high strain rate rock tests
Liu et al. Impact Testing of Reinforced Concrete Beams Shear-Strengthened with Fiber-Reinforced Polymer Wraps.
JPH10318897A (en) Test method for impact fracture
Chen et al. Impact behavior of beam-column joint with geometric imperfections at weld root
Arai et al. Residual stress due to welding and its effect on the assessment of cracks near the weld interface
PIMANMAS et al. Influence of pre-crack on RC behavior in shear
Olamigoke Structural response of cable-stayed bridges to cable loss.
Theocaris et al. Rayleigh waves emitted by a propagating crack in a strain-rate dependent elastic medium
JP2002090350A (en) Non-destructive test method for magnetostrictive substance containing structural body
Xu et al. Dynamic responses of rock-pair subjected to impact loading
Nagel et al. Testing of ultra-low cycle fatigue at complex loading scenarios
Jia et al. Effect of post weld treatment on cracking behaviors of beam-column connections in steel bridge piers
Chao et al. Fracture response of externally flawed cylindrical shells to internal gaseous detonation loading
Tarasov Shear ruptures of extreme dynamics in laboratory and natural conditions
Irwin Basic concepts for dynamic fracture testing
Zhu Stress and strain analysis of plates subjected to transverse wedge impact
Kutter et al. The roles of stress wave and gas pressure in presplitting