JPH10318831A - Pyroelectric infrared sensor and infrared camera provided therewith - Google Patents

Pyroelectric infrared sensor and infrared camera provided therewith

Info

Publication number
JPH10318831A
JPH10318831A JP9130768A JP13076897A JPH10318831A JP H10318831 A JPH10318831 A JP H10318831A JP 9130768 A JP9130768 A JP 9130768A JP 13076897 A JP13076897 A JP 13076897A JP H10318831 A JPH10318831 A JP H10318831A
Authority
JP
Japan
Prior art keywords
electrode
infrared sensor
substrate
insulating layer
pyroelectric infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9130768A
Other languages
Japanese (ja)
Inventor
Hidetoshi Matsumoto
秀俊 松本
Keita Ihara
慶太 井原
Koji Nakajima
晃治 中島
Takahiro Omori
高広 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9130768A priority Critical patent/JPH10318831A/en
Publication of JPH10318831A publication Critical patent/JPH10318831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pyroelectric infrared sensor which is suited to downsizing without shielding plate and driving motor for chopper, and is excellent in workability and productivity because of integrated production. SOLUTION: This infrared sensor is provided with a semiconductor substrate 1 made of conductive n-type silicon, a substrate insulation layer 10 laminated thereon, a spacer layer 9 formed on the specified part around the substrate insulation layer 10, an insulation layer 3 fixed on the spacer layer 9, an operating part 4 which is formed by notching the insulation layer 3 and whose both ends are connected to the insulation layer 3, a clearance part 2 formed between the operating part 4 and substrate insulation layer 10, a first electrode part 5 formed on the upper surface of the operating part 4, an infrared ray detection element 6 formed on the upper surface of the first electrode 5, a second electrode 7 formed on the infrared ray detection element 6, and a third electrode 8 laminated on the rear surface of the semiconductor substrate 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は焦電体の焦電効果を
利用して赤外線を検出する焦電型赤外線センサー及び焦
電型赤外線センサに赤外線を集光して入射し赤外線を検
出する赤外線カメラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyroelectric infrared sensor for detecting infrared rays by utilizing the pyroelectric effect of a pyroelectric body, and an infrared ray for condensing infrared rays into a pyroelectric infrared sensor and detecting the infrared rays. About the camera.

【0002】[0002]

【従来の技術】近年、焦電型赤外線センサーは非接触で
物体の検知や温度測定等が行えることから、防犯システ
ムや照明用やトイレ等の自動洗浄用等の各種スイッチ,
エアコンの室内温度制御,工業計測分野等で広く利用さ
れている。
2. Description of the Related Art In recent years, a pyroelectric infrared sensor can detect an object and measure a temperature without contact, so that various switches for a security system, for lighting, for automatic washing of a toilet, and the like,
It is widely used in air conditioner indoor temperature control and industrial measurement fields.

【0003】焦電型赤外線センサはチタン酸ジルコン酸
鉛系セラミックス等の強誘電体セラミックス,タンタル
酸リチュウム等の単結晶、ポリふっ化ビニリデン等の有
機材料があり、温度上昇により自発分極が変化して表面
電荷が発生する焦電効果を利用したセンサである。入射
した赤外線を熱に変化して、焦電効果により電器信号に
変換するのが焦電型赤外線センサである。焦電効果によ
る検出信号は微分信号であるため、静止した物体を検出
する場合には赤外線検出素子に入射する赤外線量を強制
的に変化させる必要がある。赤外線量を強制的に変化さ
せる手段として、焦電型赤外線センサの前面に遮蔽板を
設置し、ある周期で入射赤外線を遮蔽したり、検出させ
たりするチョッパ機構を設けたものが、特開平6−21
3714号公報や、特開平6−102088号公報に開
示されている。
The pyroelectric infrared sensor includes ferroelectric ceramics such as lead zirconate titanate-based ceramics, single crystals such as lithium tantalate, and organic materials such as polyvinylidene fluoride. This is a sensor utilizing a pyroelectric effect in which surface charges are generated. A pyroelectric infrared sensor converts incident infrared light into heat and converts it into an electric signal by a pyroelectric effect. Since the detection signal due to the pyroelectric effect is a differential signal, when detecting a stationary object, it is necessary to forcibly change the amount of infrared light incident on the infrared detection element. As means for forcibly changing the amount of infrared light, Japanese Patent Application Laid-Open No. Hei 6 (1999) discloses a method in which a shielding plate is provided in front of a pyroelectric infrared sensor and a chopper mechanism for shielding or detecting incident infrared light at a certain period is provided. -21
No. 3,714, and JP-A-6-102888.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記特開
平6−102088号公報及び特開平6−213714
号公報による焦電型赤外線センサは、機械的駆動方法で
遮蔽板を駆動させているため、赤外線検出部前面に遮蔽
板の移動空間と遮蔽板と赤外線検出部の間にそれぞれが
接触しない程度の空間が必要であり、いくら赤外線検出
部を小型化しようともチョッパ部の小型化ができず焦電
赤外線センサ自体のコンパクト化が図れないという課題
があった。また、遮蔽板や駆動モータの取り付け等作業
が煩雑で多大の生産工数を要し生産生に欠けるという課
題があった。更に、駆動モータは発熱体であり、その発
熱により赤外線検出部のノイズ成分が大きくなるという
課題を有していた。
However, the above-mentioned Japanese Patent Application Laid-Open No. 6-102888 and Japanese Patent Application Laid-Open No. 6-213714.
In the pyroelectric infrared sensor disclosed in Japanese Patent Application Laid-Open Publication No. H11-27139, since the shielding plate is driven by a mechanical driving method, the moving space of the shielding plate on the front surface of the infrared detection unit and the contact between the shielding plate and the infrared detection unit do not contact each other. There is a problem in that space is required, and no matter how small the infrared detection unit is, the chopper unit cannot be downsized and the pyroelectric infrared sensor itself cannot be downsized. In addition, there is a problem that work such as installation of a shield plate and a drive motor is complicated, requires a large number of production steps, and lacks production students. Furthermore, the drive motor is a heating element, and has a problem that the heat component increases the noise component of the infrared detection unit.

【0005】本発明は上記課題を解決するもので、チョ
ッパ用の遮蔽板及び駆動用モータを用いることなく、コ
ンパクト化に適するとともに一貫生産で作業性や生産性
に優れた焦電赤外線センサを提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and provides a pyroelectric infrared sensor which is suitable for downsizing and which is excellent in workability and productivity in integrated production without using a shield plate for a chopper and a driving motor. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の焦電型赤外線センサは、導電性の基板と、
前記基板上に積層された基板絶縁層と、前記基板絶縁層
の周囲等の所定部に形成されたスペーサー層と、前記ス
ペーサー層上に固定された絶縁層と、前記絶縁層を切り
欠いて形成され両端部で前記絶縁層に連接された動作部
と、前記動作部と前記基板絶縁層との間に形成された間
隙部と、前記動作部の上面に形成された第1電極部と前
記第1電極部の上面に形成された赤外線検出素子と、前
記赤外線検出素子上に形成された第2電極部と、前記基
板の裏面に積層された第3電極部と、を備えている。
In order to solve the above-mentioned problems, a pyroelectric infrared sensor according to the present invention comprises a conductive substrate,
A substrate insulating layer laminated on the substrate, a spacer layer formed in a predetermined portion around the substrate insulating layer, an insulating layer fixed on the spacer layer, and a cutout formed in the insulating layer. And an operating portion connected to the insulating layer at both ends, a gap formed between the operating portion and the substrate insulating layer, a first electrode portion formed on an upper surface of the operating portion, and An infrared detecting element formed on the upper surface of one electrode part, a second electrode part formed on the infrared detecting element, and a third electrode part laminated on the back surface of the substrate are provided.

【0007】この構成により、動作部の基板絶縁層への
接触動作により強度変化のない赤外線入射であっても検
出できるという作用を有する。その結果、遮蔽板や駆動
用モータを用いたのでコンパクト化できるとともに作業
工数を軽減し生産性を高めるという作用を有する。
[0007] With this configuration, there is an effect that even if an infrared ray having no change in intensity due to the contact operation of the operating section with the substrate insulating layer can be detected, the infrared ray can be detected. As a result, since the shield plate and the driving motor are used, it is possible to reduce the size of the work and to increase the productivity by reducing the number of work steps.

【0008】また、本発明の赤外線カメラは、レンズと
レンズの焦点位置に小型で高性能の焦電型赤外線センサ
を備えている作用を有する。
Further, the infrared camera according to the present invention has a function of providing a small and high-performance pyroelectric infrared sensor at a lens and a focal position of the lens.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の焦電型
赤外線センサーは、導電性の基板と、前記基板上に積層
された基板絶縁層と、前記基板絶縁層の周囲等の所定部
に形成されたスペーサー層と、前記スペーサー層上に固
定された絶縁層と、前記絶縁層を切り欠いて形成され両
端部で前記絶縁層に連接された動作部と、前記動作部と
前記基板絶縁層との間に形成された間隙部と、前記動作
部の上面に形成された第1電極部と前記第1電極部の上
面に形成された赤外線検出素子と、前記赤外線検出素子
上に形成された第2電極部と、前記基板の裏面に積層さ
れた第3電極部と、を備えている。これにより、動作部
が基板絶縁層への接触動作により、強度変化のない赤外
線入射であっても検出できるため、赤外線を断絶するチ
ョッパ用の遮蔽板及び駆動用モータが不要で焦電型赤外
線センサを小型化できるという作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A pyroelectric infrared sensor according to a first aspect of the present invention includes a conductive substrate, a substrate insulating layer laminated on the substrate, and a predetermined portion such as a periphery of the substrate insulating layer. A spacer layer formed in the portion, an insulating layer fixed on the spacer layer, an operating portion formed by cutting out the insulating layer and connected to the insulating layer at both ends, the operating portion and the substrate A gap formed between the insulating layer, a first electrode formed on the upper surface of the operating section, an infrared detecting element formed on the upper surface of the first electrode, and a first electrode formed on the infrared detecting element; And a third electrode unit laminated on the back surface of the substrate. This allows the operating section to detect even incident infrared light with no change in intensity due to the contact operation with the substrate insulating layer, eliminating the need for a chopper shield plate and a drive motor to cut off infrared light, and a pyroelectric infrared sensor. Has the effect of reducing the size.

【0010】本発明の請求項2に記載の焦電型赤外線セ
ンサーは、請求項1において、前記動作部が前記絶縁層
の中央部を平行に切り欠いて形成された複数の短冊状の
動作単位部と、各前記動作単位部の前記第1電極部と前
記第2電極部に各々独立して結線された結線部と、を備
えている。これにより、複数の各動作単位部と基板絶縁
層の接触動作を独立にすることにより、随時各赤外線検
出素子の放熱を行うことができるため、その組み合わせ
により、強化変化のない赤外線入射であっても検出で
き、赤外線を断絶するチョッパ用の遮蔽板及び駆動用モ
ータが不要で多素子タイプの焦電型赤外線センサの小型
化が可能となるという作用を有する。
According to a second aspect of the present invention, in the pyroelectric infrared sensor according to the first aspect, a plurality of strip-shaped operation units are formed by cutting the central portion of the insulating layer in parallel. And a connection part independently connected to the first electrode part and the second electrode part of each of the operation unit parts. This makes it possible to radiate heat of each infrared detecting element at any time by making the contact operation of each of the plurality of operation unit portions and the substrate insulating layer independent, so that the combination makes it possible to receive infrared light with no enhanced change. This also has the effect of eliminating the need for a chopper shield plate and a drive motor for cutting off the infrared rays and making it possible to reduce the size of the multi-element type pyroelectric infrared sensor.

【0011】本発明の請求項3に記載の焦電型赤外線セ
ンサーは、請求項1において、前記動作部が前記絶縁層
の中央部を除く周縁部をくの字状や円弧状に切り欠かれ
て形成された複数の動作支持部と、前記各動作支持部の
他端部に連設された方形等の多角形や円,楕円等に形成
された1乃至複数の平板状の動作単位部と、各前記動作
単位部の前記第1電極部と前記第2電極部に各々独立し
て結線された結線部と、を備えた構成を有している。こ
れにより、平板状の動作単位部が基板絶縁層への接触動
作により、強度変化のない赤外線入射であっても検出で
きるため、赤外線を断絶するチョッパ用の遮蔽板及び駆
動用モータが不要で焦電型赤外線センサの小型化が可能
となる作用を有する。
According to a third aspect of the present invention, there is provided a pyroelectric infrared sensor according to the first aspect, wherein the operating portion is formed by cutting a peripheral portion of the insulating layer except for a central portion in a shape of a letter or an arc. A plurality of operation support portions formed in the above-mentioned manner, and one or a plurality of plate-like operation unit portions formed in a polygon, such as a square, a circle, an ellipse, etc., connected to the other end of each of the operation support portions. And a connection section independently connected to the first electrode section and the second electrode section of each of the operation unit sections. As a result, even when the flat operation unit is in contact with the substrate insulating layer, it is possible to detect even an incident infrared light having no change in intensity. Therefore, a chopper shield plate for cutting off the infrared light and a driving motor are unnecessary, and the focus is not required. This has the function of enabling the electronic infrared sensor to be downsized.

【0012】本発明の請求項4に記載の焦電型赤外線セ
ンサーは、請求項1乃至3の内いずれか1において、前
記基板が、シリコン半導体で形成されている構成を有し
ている。これにより、強度変化のない赤外線入射であっ
ても検出できる。基板をシリコン半導体で形成したこと
により酸化法やエッチング法、ボンディング法で製造で
き、薄膜の成膜工程が不要になり生産工数を著しく減ら
すことができる。また、動作部がシリコン半導体で形成
されているため信頼性を向上させることができるという
作用を有する。
According to a fourth aspect of the present invention, there is provided a pyroelectric infrared sensor according to any one of the first to third aspects, wherein the substrate is formed of a silicon semiconductor. Thereby, it is possible to detect even an infrared ray incident with no change in intensity. Since the substrate is formed of a silicon semiconductor, the substrate can be manufactured by an oxidation method, an etching method, or a bonding method, and a thin film forming process is not required, thereby significantly reducing the number of production steps. In addition, since the operation section is formed of a silicon semiconductor, it has an effect that reliability can be improved.

【0013】本発明の請求項5に記載の焦電型赤外線セ
ンサーは、請求項1乃至4の内いずれか1において、前
記基板がP型のシリコン半導体で形成され、前記スペー
サー層がn型半導体で形成されている構成を有してい
る。これにより、強度変化のない赤外線入射であっても
検出できるための基板絶縁層への独立な接触動作を簡単
な製造方法で製造できるという作用を有する。
According to a fifth aspect of the present invention, in the pyroelectric infrared sensor according to any one of the first to fourth aspects, the substrate is formed of a P-type silicon semiconductor, and the spacer layer is formed of an n-type semiconductor. It has the structure formed by. Accordingly, there is an effect that an independent contact operation to the substrate insulating layer can be manufactured by a simple manufacturing method so that even the infrared ray incident with no change in intensity can be detected.

【0014】本発明の請求項6に記載の焦電型赤外線セ
ンサーは、請求項1又は2において、前記基板の前記動
作部の各対向面に形成された第4電極部を備えた構成を
有している。これにより、強度変化のない赤外線入射で
あっても検出するための動作部が基板絶縁層への独立な
接触動作を可能にする作用を有する。
According to a sixth aspect of the present invention, there is provided a pyroelectric infrared sensor according to the first or the second aspect, further comprising a fourth electrode portion formed on each of the opposing surfaces of the operation portion of the substrate. doing. Thereby, the operation unit for detecting even the incident infrared light with no change in intensity has an effect of enabling an independent contact operation to the substrate insulating layer.

【0015】本発明の請求項7に記載の焦電型赤外線セ
ンサーは、請求項6において、前記第4電極部に電圧を
印加し、各前記動作単位部を各々独立に前記基板絶縁層
に接触させる結線部を備えた構成を有している。これに
より、強度変化のない赤外線入射であっても検出できる
ための動作が基板動作部が基板絶縁層への独立な接触動
作を可能にできる作用を有する。
According to a seventh aspect of the present invention, in the pyroelectric infrared sensor according to the sixth aspect, a voltage is applied to the fourth electrode portion, and each of the operation units is independently contacted with the substrate insulating layer. It has a configuration provided with a connection portion to be made. Accordingly, the operation for detecting even the incident infrared light with no change in intensity has an effect that the substrate operation unit can perform an independent contact operation with the substrate insulating layer.

【0016】本発明の請求項8に記載の赤外線カメラ
は、レンズと、前記レンズの焦点域に配設された請求項
1乃至7に記載の焦電型赤外線センサーと、を備えた構
成を有している。これにより、センサを非冷却で赤外線
画像を高精度で検出できる作用を有する。
According to an eighth aspect of the present invention, there is provided an infrared camera having a configuration including a lens and the pyroelectric infrared sensor according to any one of the first to seventh aspects disposed in a focal range of the lens. doing. This has the function of detecting the infrared image with high accuracy without cooling the sensor.

【0017】以下、本発明の実施の形態について、図面
を用いて具体的に説明する。 (実施の形態1)図1は本発明の実施の形態1における
焦電型赤外線センサの要部破断斜視概念図であり、図2
は本発明の実施の形態1における焦電型赤外線センサの
要部断面概念図である。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. (Embodiment 1) FIG. 1 is a schematic perspective view of a main part of a pyroelectric infrared sensor according to Embodiment 1 of the present invention.
FIG. 2 is a conceptual sectional view of a main part of the pyroelectric infrared sensor according to Embodiment 1 of the present invention.

【0018】図1及び図2ではn型シリコン製の半導体
基板1と、シリコン酸化物製の短冊状に形成された動作
単位部からなる動作部4、上記動作部4を上記n型シリ
コン製の半導体基板1から熱的に断熱する間隙部2、上
記n型シリコン製の半導体基板1と配線(図示せず)を
絶縁する絶縁層3、赤外線検出素子6、上記赤外線検出
素子6から信号を取り出す第1電極部5と第2電極部
7、n型シリコン製の半導体基板1の背面に設置された
第3電極部8、間隙部を確保するためのスペーサ層9、
シリコンの熱酸化膜よりなる基板絶縁層10とで構成さ
れている。
In FIG. 1 and FIG. 2, a semiconductor substrate 1 made of n-type silicon, an operation unit 4 made of a silicon oxide strip-shaped operation unit, and the operation unit 4 are formed of the n-type silicon. A gap portion 2 that thermally insulates from the semiconductor substrate 1, an insulating layer 3 that insulates the wiring (not shown) from the n-type silicon semiconductor substrate 1, an infrared detection element 6, and a signal from the infrared detection element 6 A first electrode unit 5 and a second electrode unit 7, a third electrode unit 8 provided on the back surface of the semiconductor substrate 1 made of n-type silicon, a spacer layer 9 for securing a gap,
And a substrate insulating layer 10 made of a thermal oxide film of silicon.

【0019】以上のように構成された実施の形態1にお
ける焦電型赤外線センサについて、以下その製造方法を
説明する。
The method of manufacturing the pyroelectric infrared sensor according to the first embodiment configured as described above will be described below.

【0020】図3(a)〜(e)及び図4(f)〜
(j)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図である。
FIGS. 3A to 3E and FIGS. 4F to 4F.
(J) is an essential part cross sectional view of a step showing a method for manufacturing a pyroelectric infrared sensor in Embodiment 1 of the present invention.

【0021】まず、図3(a)に示すように結晶方位面
100面が上部表面であり、しかも片面にn型シリコン
半導体であるスペーサ層9を4μmの厚みで形成したp
型シリコン半導体補助基板11を用意し、最表面に熱酸
化法で第二の絶縁膜10aを0.5μmの厚みで形成す
る。図3(b)に示すように結晶方位面100面が上部
表面であるn型シリコン製の半導体基板1を用意し、最
表面に熱酸化法で第二の絶縁膜10bを0.5μmの厚
みで形成する。次いで、図3(c)に示すように最表面
の第二の絶縁膜10a、10bをシリコンフュージョン
ボンディング法で接着し、10a、10bを一体の層で
ある基板絶縁層10にする。次に図3(a)p型シリコ
ン半導体補助基板11を電気化学的エッチング法で除去
することにより、エッチングはスペーサ層9の表面で自
動的に停止し、スペーサ層が最表面に露出形成される。
次に、図3(e)に示すように露出したスペーサ層9表
面に熱酸化法で絶縁層3を2μmの厚みで形成する。上
記のn型シリコン製の半導体基板1の裏面の酸化膜をバ
ッファードふっ酸等を用い、ウェットエッチング法で除
去してシリコン裏面を露出させる。次いで、図4(f)
に示すように露出したシリコン裏面に烝着法で金属膜を
0.2μmの厚みで成膜する。絶縁層3の表面にフォト
リソグラフィ法でパターン形成を行い、絶縁層3にバッ
ファートふっ酸等を用いたウェットエッチングを施す。
このようにして図4(g)に示すようにエッチングされ
た絶縁層3は動作部4の中間形成物と絶縁層3に分離さ
れる。
First, as shown in FIG. 3A, a p-type crystal having a crystal orientation plane 100 as an upper surface and a spacer layer 9 of n-type silicon semiconductor formed on one side with a thickness of 4 μm is formed.
A silicon semiconductor auxiliary substrate 11 is prepared, and a second insulating film 10a is formed on the outermost surface by a thermal oxidation method with a thickness of 0.5 μm. As shown in FIG. 3B, a semiconductor substrate 1 made of n-type silicon having a crystal orientation plane 100 as an upper surface is prepared, and a second insulating film 10b is formed on the outermost surface by thermal oxidation to a thickness of 0.5 μm. Formed. Next, as shown in FIG. 3C, the second insulating films 10a and 10b on the outermost surface are bonded by a silicon fusion bonding method to form the substrate insulating layer 10 as an integrated layer. Next, by removing the p-type silicon semiconductor auxiliary substrate 11 by an electrochemical etching method in FIG. 3A, the etching is automatically stopped on the surface of the spacer layer 9, and the spacer layer is formed to be exposed on the outermost surface. .
Next, as shown in FIG. 3E, an insulating layer 3 is formed to a thickness of 2 μm on the exposed surface of the spacer layer 9 by a thermal oxidation method. The oxide film on the back surface of the n-type silicon semiconductor substrate 1 is removed by wet etching using buffered hydrofluoric acid or the like to expose the silicon back surface. Next, FIG.
A metal film is formed to a thickness of 0.2 μm on the exposed silicon back surface by a deposition method as shown in FIG. A pattern is formed on the surface of the insulating layer 3 by a photolithography method, and the insulating layer 3 is subjected to wet etching using buffered hydrofluoric acid or the like.
The insulating layer 3 thus etched as shown in FIG. 4G is separated into an intermediate product of the operation section 4 and the insulating layer 3.

【0022】次いで、図3(h)に示すように動作部4
の中間形成物表面に0.2μm厚の第1電極部5、0.
5μm厚の赤外線検出素子6と0.2μm厚の第2電極
部7を順にスクリーン印刷法等で積層する。尚、スクリ
ーン印刷法に代え、スパッタ法、蒸着法で0.2μm厚
の第1電極部5、0.5μm厚の赤外線検出素子6と
0.2μm厚の第2電極部7を順に積層し、フォトリソ
グラフィ法でパターン形成で製造してもよい。図4
(h)の状態で水酸化カリウム溶液やふっ硝酸溶液等で
エッチングを行ない、動作部4の中間形成物の下部のス
ペーサ層9を除去し、図4(i)に示すように動作部4
と間隙部2を形成する。最後に図4(j)に示すように
シリコン窓材14をシリコン酸化物等からなる酸化膜1
3を介して絶縁層3の上部に接着した後、内部を乾燥し
た窒素ガスで満たし封止する。
Next, as shown in FIG.
Of the first electrode portions 5, 0.
The infrared detecting element 6 having a thickness of 5 μm and the second electrode portion 7 having a thickness of 0.2 μm are sequentially laminated by a screen printing method or the like. In addition, instead of the screen printing method, the first electrode portion 5 having a thickness of 0.2 μm, the infrared detecting element 6 having a thickness of 0.5 μm, and the second electrode portion 7 having a thickness of 0.2 μm are sequentially laminated by a sputtering method or a vapor deposition method. It may be manufactured by pattern formation by photolithography. FIG.
In the state of (h), etching is performed with a potassium hydroxide solution, a nitric acid solution or the like to remove the spacer layer 9 below the intermediate product of the operation unit 4, and as shown in FIG.
And a gap 2 is formed. Finally, as shown in FIG. 4 (j), the silicon window material 14 is made of an oxide film 1 made of silicon oxide or the like.
After adhering to the upper part of the insulating layer 3 through the inside 3, the inside is filled with dry nitrogen gas and sealed.

【0023】以上のようにして作製された実施の形態1
における焦電型赤外線センサについて、以下その動作を
図面を用いて説明する。図5(a)、(b)は実施の形
態1における焦電型赤外線センサの動作を示す要部断面
図である。
Embodiment 1 manufactured as described above
Hereinafter, the operation of the pyroelectric infrared sensor will be described with reference to the drawings. FIGS. 5A and 5B are cross-sectional views of main parts showing the operation of the pyroelectric infrared sensor according to the first embodiment.

【0024】まず、第1電極部5を接地し、第3電極部
8に正の電圧として、例えば30V印加すると動作部4
は静電力でn型シリコン製の半導体基板1に引きつけら
れ、動作部4の両端である絶縁層3との接続近傍が弾性
変形し、接続近傍以外の動作部4は基板絶縁層10に接
触する。第3電極部8の印加電圧を第1電極部と同電位
となる0Vにするとn型シリコン製の半導体基板1上部
表面の静電力は消滅し、動作部4の復元力により初期状
態に復元する。すなわち、第3電極部8の電圧を0Vと
30Vにスイッチングする事により、動作部4の中央部
を基板絶縁層10に接触させたり、離したりすることが
できる。上記の動作部4の接触動作によって赤外線検出
素子6の温度はn型シリコン製の半導体基板1と同一温
度になる。
First, when the first electrode unit 5 is grounded and a positive voltage of, for example, 30 V is applied to the third electrode unit 8, the operation unit 4 is activated.
Is attracted to the semiconductor substrate 1 made of n-type silicon by electrostatic force, the vicinity of the connection with the insulating layer 3 at both ends of the operation section 4 is elastically deformed, and the operation section 4 other than the vicinity of the connection comes into contact with the substrate insulating layer 10. . When the voltage applied to the third electrode unit 8 is set to 0 V, which is the same potential as the first electrode unit, the electrostatic force on the upper surface of the semiconductor substrate 1 made of n-type silicon disappears and is restored to the initial state by the restoring force of the operation unit 4. . That is, by switching the voltage of the third electrode unit 8 between 0 V and 30 V, the center of the operation unit 4 can be brought into contact with or separated from the substrate insulating layer 10. The temperature of the infrared detection element 6 becomes the same as that of the semiconductor substrate 1 made of n-type silicon by the contact operation of the operation section 4 described above.

【0025】赤外線検出素子6は薄膜で構成されてお
り、熱容量はn型シリコン製の半導体基板1に比べて非
常に小さく、赤外線検出素子6の温度がn型シリコン製
の半導体基板1と異なっていた場合、n型シリコン製の
半導体基板1の温度になるように冷却あるいは加熱され
るのである。ここで、第2電極部7の上部表面に垂直方
向から赤外線12が入射した場合、赤外線検出素子6は
加熱されn型シリコン製の半導体基板1や周囲温度より
も上昇する。上記の状態で第3電極部8に30Vを印加
すると動作部4がn型シリコン製の半導体基板1の上部
表面に接触し、赤外線検出素子6からn型シリコン製の
半導体基板1へ動作部4の接触部を通して熱が移動し赤
外線検出素子6は冷却され、赤外線検出素子6の温度は
n型シリコン製の半導体基板1の温度とほぼ一様にな
る。従って、第3電極部8の電圧を制御することによ
り、対象物からの放射赤外線により加熱された赤外線検
出素子6の温度を対象物からの放射赤外線のなかった初
期の温度に変化させることができる。
The infrared detecting element 6 is formed of a thin film, has a heat capacity much smaller than that of the semiconductor substrate 1 made of n-type silicon, and the temperature of the infrared detecting element 6 is different from that of the semiconductor substrate 1 made of n-type silicon. In this case, the semiconductor substrate 1 is cooled or heated to the temperature of the semiconductor substrate 1 made of n-type silicon. Here, when infrared rays 12 are incident on the upper surface of the second electrode portion 7 from the vertical direction, the infrared detecting element 6 is heated and rises above the semiconductor substrate 1 made of n-type silicon and the ambient temperature. When a voltage of 30 V is applied to the third electrode section 8 in the above state, the operating section 4 comes into contact with the upper surface of the semiconductor substrate 1 made of n-type silicon, and the operating section 4 is transferred from the infrared detecting element 6 to the semiconductor substrate 1 made of n-type silicon. The heat moves through the contact portion, and the infrared detecting element 6 is cooled, and the temperature of the infrared detecting element 6 becomes almost uniform with the temperature of the semiconductor substrate 1 made of n-type silicon. Therefore, by controlling the voltage of the third electrode unit 8, the temperature of the infrared detecting element 6 heated by the infrared radiation from the target can be changed to the initial temperature without the infrared radiation from the target. .

【0026】(実施の形態2)図6は本発明の実施の形
態2における焦電型赤外線センサ要部破断斜視概念図で
ある。また、図7は本発明の実施の形態2における焦電
型赤外線センサ要部断面概念図であり、図8は本発明の
実施の形態2における焦電型赤外線センサ要部平面概念
図である。図6乃至図8に示すように実施の形態2にお
ける焦電型赤外線センサは、n型シリコン製の半導体基
板1と、半導体基板1の中央部に方形状に形成された動
作単位部42、上記動作単位部42周辺をつなぐように
くの字状や円弧状に切り欠いて形成された動作支持部3
4、上記動作単位部42を上記n型シリコン製の半導体
基板1から熱的に断熱する間隙部2、上記n型シリコン
製の半導体基板1と配線(図示せず)を絶縁する絶縁層
3、赤外線検出素子6、上記赤外線検出素子6から信号
を取り出す第1電極部5と第2電極部7、n型シリコン
製の半導体基板1の背面に設置された第3電極部8、上
記動作支持部34と動作単位部42を保持するスペーサ
層9、シリコンの酸化膜よりなる基板絶縁層10とで構
成されている。
(Embodiment 2) FIG. 6 is a cutaway perspective view of a principal part of a pyroelectric infrared sensor according to Embodiment 2 of the present invention. FIG. 7 is a conceptual sectional view of a principal part of a pyroelectric infrared sensor according to a second embodiment of the present invention, and FIG. 8 is a conceptual plan view of a principal part of the pyroelectric infrared sensor according to the second embodiment of the present invention. As shown in FIGS. 6 to 8, the pyroelectric infrared sensor according to the second embodiment includes a semiconductor substrate 1 made of n-type silicon, an operation unit 42 formed in a square shape at the center of the semiconductor substrate 1, The motion support portion 3 formed by cutting out in a U-shape or an arc shape so as to connect the periphery of the motion unit portion 42
4. a gap 2 for thermally insulating the operation unit 42 from the n-type silicon semiconductor substrate 1; an insulating layer 3 for insulating the n-type silicon semiconductor substrate 1 from wiring (not shown); An infrared detecting element 6; a first electrode section 5 and a second electrode section 7 for extracting signals from the infrared detecting element 6; a third electrode section 8 provided on the back surface of the semiconductor substrate 1 made of n-type silicon; 34, a spacer layer 9 for holding the operation unit 42, and a substrate insulating layer 10 made of a silicon oxide film.

【0027】以上のように構成された実施の形態2にお
ける焦電型赤外線センサについて、以下その製造方法を
説明する。第3電極部8の形成までは実施の形態1と同
様の工程で製造される。動作支持部34と動作単位部4
2の製造は次のように行なわれる。まず、絶縁層3の表
面にフォトリソグラフィ法でパターン形成を行う。絶縁
層3をバッファードふっ酸等を用いてウェットエッチン
グを施す。エッチングされた絶縁層3は動作支持部34
の中間形成物、動作単位部42の中間形成物と絶縁層3
に分離される。動作単位部42の中間形成物の表面に第
1電極部5、赤外線検出素子6と第2電極部7を順にス
クリーン印刷法で積層する。動作支持部34の中間形成
物と動作単位部42の下部のスペーサ層9を水酸化カリ
ウム溶液やふっ硝酸溶液等でエッチングし除去すること
で動作支持部34、動作単位部42と間隙部2を形成す
る。動作支持部34と動作単位部42のパターニング形
状は実施の形態1と異なり、図8に示す形状でらせん状
の形状になっている。動作支持部34の長さを長くする
ことで動作支持部厚が厚くても小さい電圧で動作単位部
42を基板絶縁層10に接触動作させることが可能であ
る。
A method of manufacturing the pyroelectric infrared sensor according to the second embodiment configured as described above will be described below. Up to the formation of the third electrode portion 8, it is manufactured in the same process as in the first embodiment. Operation support unit 34 and operation unit unit 4
2 is produced as follows. First, a pattern is formed on the surface of the insulating layer 3 by a photolithography method. The insulating layer 3 is subjected to wet etching using buffered hydrofluoric acid or the like. The etched insulating layer 3 becomes the operation support portion 34.
Intermediate product, the intermediate product of the operation unit 42 and the insulating layer 3
Is separated into The first electrode portion 5, the infrared detecting element 6, and the second electrode portion 7 are sequentially laminated on the surface of the intermediate product of the operation unit 42 by a screen printing method. The intermediate portion of the operation support portion 34 and the spacer layer 9 below the operation unit portion 42 are etched and removed with a potassium hydroxide solution or a nitric acid solution to remove the operation support portion 34, the operation unit portion 42, and the gap 2. Form. The patterning shape of the operation support portion 34 and the operation unit portion 42 is different from that of the first embodiment, and has a spiral shape as shown in FIG. By increasing the length of the operation support section 34, the operation unit section 42 can be brought into contact with the substrate insulating layer 10 with a small voltage even if the operation support section thickness is large.

【0028】尚、動作単位部42は本実施の形態では1
つ形成したが複数形成してもよい。また、動作単位部4
2の第1電極部5、赤外線検出素子6、第2電極部7は
複数個に分割し、各々に配線してもよい。
The operation unit 42 is one in this embodiment.
Although one is formed, a plurality may be formed. The operation unit 4
The two first electrode portions 5, the infrared detecting element 6, and the second electrode portion 7 may be divided into a plurality of pieces and each may be wired.

【0029】(実施の形態3)図9は本発明の実施の形
態3における焦電型赤外線センサ要部平面概念図であ
り、図10は本発明の実施の形態3における焦電型赤外
線センサ要部断面概念図である。図9及び図10に示す
ように実施の形態2における焦電型赤外線センサは、p
型シリコン製の半導体基板51と、動作単位部4、上記
動作単位部4(4a、4b、4c、4d)を上記p型シ
リコン製の半導体基板51から熱的に断熱する間隙部
2、上記p型シリコン製の半導体基板51と配線(図示
せず)を絶縁する絶縁層3、赤外線検出素子6、上記赤
外線検出素子6(6a、6b、6c、6d)から信号を
取り出す第1電極部5と第2電極部7(7a、7b、7
c、7d)、上記動作単位部4を製造上必要なスペーサ
層9、シリコンの熱酸化膜よりなる基板絶縁層10と動
作単位部4と同様の形状で動作単位部4の下部方向に位
置し、基板絶縁層10で絶縁された第4電極部52で構
成されている。
(Embodiment 3) FIG. 9 is a conceptual plan view of a principal part of a pyroelectric infrared sensor according to Embodiment 3 of the present invention, and FIG. It is a partial section conceptual diagram. As shown in FIGS. 9 and 10, the pyroelectric infrared sensor according to the second embodiment
A semiconductor substrate 51 made of p-type silicon; an operation unit 4; a gap 2 that thermally insulates the operation unit 4 (4a, 4b, 4c, 4d) from the p-type silicon semiconductor substrate 51; An insulating layer 3 for insulating a wiring (not shown) from a semiconductor substrate 51 made of mold silicon, an infrared detecting element 6, a first electrode section 5 for extracting a signal from the infrared detecting element 6 (6a, 6b, 6c, 6d); The second electrode unit 7 (7a, 7b, 7
c, 7d) The operation unit 4 is located in the lower direction of the operation unit 4 in the same shape as the operation unit 4 and the spacer layer 9 necessary for manufacturing, the substrate insulating layer 10 made of a thermal oxide film of silicon, and the like. , And a fourth electrode portion 52 insulated by the substrate insulating layer 10.

【0030】以上のように構成された実施の形態3にお
ける焦電型赤外線センサについて、以下その製造方法を
図面を用いて説明する。図11(a)〜(e),図12
(f)〜(h)は本発明の実施の形態3における焦電型
赤外線センサの製造方法を示す各製造工程における要部
断面図である。図11(b)で示すように結晶方位面1
00面が上部表面であるp型シリコン製の半導体基板5
1表面に熱酸化法で酸化シリコン膜を1μmの厚みで形
成する。フォトリソグラフィ法でライン状のパターンを
形成し、酸化シリコン膜をウェットエッチング法で所定
の形状にエッチングする。この酸化シリコン膜をマスク
としてp型シリコン基板51の表面に拡散法でn型シリ
コン半導体電極52を形成し、シリコン酸化膜のマスク
をエッチングで除去する。さらに、p型シリコン製の半
導体基板51の最表面に熱酸化法で第二の絶縁膜10b
を0.5μmの厚みで形成する。
A method of manufacturing the pyroelectric infrared sensor according to the third embodiment having the above-described configuration will be described below with reference to the drawings. 11 (a) to 11 (e), FIG.
(F)-(h) is sectional drawing of the principal part in each manufacturing process which shows the manufacturing method of the pyroelectric infrared sensor in Embodiment 3 of this invention. As shown in FIG. 11B, the crystal orientation plane 1
A semiconductor substrate 5 made of p-type silicon with the 00 surface being the upper surface
A silicon oxide film having a thickness of 1 μm is formed on one surface by a thermal oxidation method. A linear pattern is formed by photolithography, and the silicon oxide film is etched into a predetermined shape by wet etching. Using this silicon oxide film as a mask, an n-type silicon semiconductor electrode 52 is formed on the surface of the p-type silicon substrate 51 by a diffusion method, and the mask of the silicon oxide film is removed by etching. Further, the second insulating film 10b is formed on the outermost surface of the p-type silicon semiconductor substrate 51 by a thermal oxidation method.
Is formed with a thickness of 0.5 μm.

【0031】次に図11(a)で示すように結晶方位面
100面が上部表面であり、しかも片面にn型シリコン
製の半導体であるスペーサ層9を4μmの厚みで形成し
たp型シリコン半導体補助基板11を用意し、半導体基
板11の最表面に熱酸化法で第二の絶縁膜10aを0.
5μmの厚みで形成する。ここで図11(c)に示すよ
うに、これらの最表面の第二の絶縁膜10a、10bを
シリコンフュージョンボンディング法で接着し、10
a、10bを一体の層である基板絶縁層10にする。次
にp型シリコン半導体補助基板11を電気化学的エッチ
ング法である四極法で除去することにより、エッチング
はスペーサ層9の表面で自動的に停止し、図11(d)
のようにスペーサ層9が最表面に露出される。次に、図
11(e)で示すように露出したスペーサ層9表面に熱
酸化法で絶縁層3を2μmの厚みで形成する。絶縁層3
の表面にフォトソグラフィ法でパターン形成を行い、絶
縁層3をバッファードふっ酸等を用いてウエットエッチ
ングを施す。この状態では図12(f)に示されるよう
にエッチングされた絶縁層3は動作単位部4の中間形成
物と絶縁層3に分離される。次いで図12(g)で示す
ように動作単位部4の中間形成物表面に0.2μm厚み
の第1電極部5、5μm厚みの赤外線検出素子6と0.
2μm厚みの第2電極部7を順にスクリーン印刷法で積
層させる。最後に図12(h)で示すように動作単位部
4中間形成物の下部のスペーサ層9を水酸化カリウム溶
液やふっ硝酸溶液等でエッチングし除去することで動作
単位部4と間隙部2を形成する。
Next, as shown in FIG. 11A, a p-type silicon semiconductor in which a crystal orientation plane 100 is an upper surface and a spacer layer 9 made of an n-type silicon semiconductor is formed on one side with a thickness of 4 μm. An auxiliary substrate 11 is prepared and a second insulating film 10a is formed on the outermost surface of the semiconductor substrate 11 by thermal oxidation.
It is formed with a thickness of 5 μm. Here, as shown in FIG. 11C, these second insulating films 10a and 10b on the outermost surface are bonded by a silicon fusion bonding method.
a and 10b are used as the substrate insulating layer 10 which is an integrated layer. Next, by removing the p-type silicon semiconductor auxiliary substrate 11 by a quadrupole method which is an electrochemical etching method, the etching is automatically stopped at the surface of the spacer layer 9, and FIG.
The spacer layer 9 is exposed on the outermost surface as shown in FIG. Next, as shown in FIG. 11E, the insulating layer 3 is formed with a thickness of 2 μm on the exposed surface of the spacer layer 9 by a thermal oxidation method. Insulating layer 3
A pattern is formed on the surface of the insulating layer 3 by a photolithography method, and the insulating layer 3 is subjected to wet etching using buffered hydrofluoric acid or the like. In this state, the etched insulating layer 3 is separated into an intermediate product of the operation unit 4 and the insulating layer 3 as shown in FIG. Next, as shown in FIG. 12 (g), the 0.2 μm-thick first electrode portion 5 and the 5 μm-thick infrared detecting elements 6 and 0.
The second electrode portions 7 having a thickness of 2 μm are sequentially laminated by a screen printing method. Finally, as shown in FIG. 12 (h), the operation unit 4 and the gap 2 are removed by etching the spacer layer 9 below the intermediate product of the operation unit 4 using a potassium hydroxide solution or a nitric acid solution. Form.

【0032】以上のようにして作製された実施の形態3
における焦電型赤外線センサについて、以下その動作を
図面を用いて説明する。図13(a)〜(e)は実施の
形態3における焦電型赤外線センサの各動作行程を示す
要部断面図であり、図14(1)〜(3)は実施の形態
3の第4電極部52への電圧印加タイミングと第2電極
部7の出力信号の関係を示す図である。まず、第1電極
部5を接地し、第4電極部52aに正の電圧として例え
ば30Vを印加すると動作単位部4aは静電力で第4電
極部52に引きつけられ、動作単位部4aの両端である
絶縁層3との接続近傍が弾性変形し、接続近傍以外の動
作単位部4aは基板絶縁層10の上部表面に接触する。
この時、赤外線検出素子6aが赤外線入射により加熱さ
れていたならば、その熱はp型シリコン製の半導体基板
51に放熱される。次に第4電極部52aに電圧0Vに
し、第4電極部52bに正の電圧として例えば30Vを
印加すると第4電極部52a上部表面の静電力は消滅
し、動作単位部4aの中央部の復元力により初期状態に
復元し、動作単位部4bは静電力で第4電極部52bに
引きつけられ、動作単位部4bの両端である絶縁層3と
の接続近傍が弾性変形し、接続近傍以外の動作単位部4
bは基板絶縁層10の上部表面に接触する。この時、赤
外線検出素子6a,赤外線検出素子6b共に赤外線12
が入射していたならば、赤外線検出素子6aは赤外線入
射により加熱され、第1電極部5と第2電極部7aに正
の出力信号が発生し、赤外線検出素子6bは赤外線入射
により加熱されていたのでp型シリコン製の半導体基板
51に放熱され、第1電極部5と第2電極部7bに負の
出力信号が発生する。同様に図14(1)に示すように
第4電極部52a、52b、53c、52dの電圧を0
Vと30Vに順次スイッチングする事により、図14
(2)もしくは図14(3)で示されるような赤外線検
出素子6a、6b、6c、6dの出力信号を個別に検出
することが可能である。なお、第4電極部をn型シリコ
ン半導体で構成した例で示したが、その他の金属電極で
構成した場合についても同様に実施可能である。また、
赤外線検出素子6を多数化して、平面的に数多く配置し
た場合にも同様に実施可能である。
Embodiment 3 manufactured as described above
Hereinafter, the operation of the pyroelectric infrared sensor will be described with reference to the drawings. 13 (a) to 13 (e) are cross-sectional views of main parts showing respective operation steps of the pyroelectric infrared sensor according to the third embodiment. FIGS. 14 (1) to 14 (3) are fourth views of the third embodiment. FIG. 4 is a diagram illustrating a relationship between a voltage application timing to an electrode unit and an output signal of a second electrode unit. First, when the first electrode section 5 is grounded and a positive voltage of, for example, 30 V is applied to the fourth electrode section 52a, the operation unit section 4a is attracted to the fourth electrode section 52 by electrostatic force, and both ends of the operation unit section 4a The vicinity of the connection with a certain insulating layer 3 is elastically deformed, and the operation unit 4 a other than the vicinity of the connection comes into contact with the upper surface of the substrate insulating layer 10.
At this time, if the infrared detecting element 6a has been heated by the incidence of infrared light, the heat is radiated to the semiconductor substrate 51 made of p-type silicon. Next, when a voltage of 0 V is applied to the fourth electrode portion 52a and a positive voltage of, for example, 30 V is applied to the fourth electrode portion 52b, the electrostatic force on the upper surface of the fourth electrode portion 52a disappears, and the central portion of the operation unit 4a is restored. The operation unit 4b is restored to the initial state by a force, and is attracted to the fourth electrode unit 52b by electrostatic force. Unit 4
b contacts the upper surface of the substrate insulating layer 10. At this time, both the infrared detecting elements 6a and 6b
Is incident, the infrared detecting element 6a is heated by the incident infrared light, a positive output signal is generated at the first electrode unit 5 and the second electrode unit 7a, and the infrared detecting element 6b is heated by the incident infrared light. Therefore, heat is radiated to the semiconductor substrate 51 made of p-type silicon, and a negative output signal is generated at the first electrode unit 5 and the second electrode unit 7b. Similarly, as shown in FIG. 14A, the voltages of the fourth electrode portions 52a, 52b, 53c, and 52d are set to 0.
By switching to V and 30V sequentially,
(2) Or it is possible to individually detect the output signals of the infrared detecting elements 6a, 6b, 6c, 6d as shown in FIG. Although the fourth electrode portion is shown as an example made up of an n-type silicon semiconductor, the same can be applied to a case where it is made up of other metal electrodes. Also,
The present invention can be similarly implemented when the number of the infrared detecting elements 6 is increased and the number is arranged in a large number in a plane.

【0033】(実施の形態4)図15は本発明の実施の
形態4における赤外線カメラの斜視概念図であり、図1
6は本発明の実施の形態4における赤外線カメラの断面
斜視概念図である。図15及び図16に示すように、実
施の形態4における赤外線カメラはレンズ55、本体5
6、赤外線検出素子57、及び図示しない検出回路、増
幅回路、電源回路等で構成される。赤外線検出素子57
は上記の赤外線センサを多素子化した検出素子で構成さ
れている。
(Embodiment 4) FIG. 15 is a perspective conceptual view of an infrared camera according to Embodiment 4 of the present invention.
FIG. 6 is a conceptual sectional perspective view of an infrared camera according to Embodiment 4 of the present invention. As shown in FIGS. 15 and 16, the infrared camera according to the fourth embodiment has a lens 55 and a main body 5.
6, an infrared detecting element 57, a detecting circuit (not shown), an amplifying circuit, a power supply circuit and the like. Infrared detector 57
Is composed of a detection element in which the above-mentioned infrared sensor is multi-element.

【0034】赤外線カメラの動作は赤外線がレンズ55
を通して赤外線検出素子57に結像され赤外線検出部の
各赤外線センサに検出される。信号は配線を通して検出
回路で検出され、増幅回路で増幅される。赤外線検出部
や検出回路、増幅回路への電源供給は電源回路で行われ
る。
The operation of the infrared camera is as follows.
The image is formed on the infrared detecting element 57 through the sensor and detected by each infrared sensor of the infrared detecting section. The signal is detected by the detection circuit through the wiring, and is amplified by the amplification circuit. Power is supplied to the infrared detection unit, the detection circuit, and the amplification circuit by a power supply circuit.

【0035】[0035]

【発明の効果】本発明の請求項1に記載の焦電型赤外線
センサによれば、動作部の弾性により、動作部が基板絶
縁層への接触動作により、強度変化のない赤外線入射で
あっても検出できるため、赤外線を断絶するチョッパ用
の遮蔽板及び駆動用モータが不要で焦電型赤外線センサ
を小型化できる。センサ全体を薄膜で構成できるため焦
電型赤外線センサをコンパクトに形成できる。部品点数
が少ないので作業工数が少なく生産性に優れる。駆動モ
ータ等の発熱体を有しないので赤外線検出部のノイズ成
分を著しく低減でき精度の高い焦電型赤外線センサを得
ることができる。
According to the pyroelectric infrared sensor of the first aspect of the present invention, due to the elasticity of the operating section, the operating section receives infrared light with no change in intensity due to the contact operation with the substrate insulating layer. Therefore, a shield plate for a chopper for cutting off infrared rays and a driving motor are not required, and the pyroelectric infrared sensor can be downsized. Since the whole sensor can be constituted by a thin film, the pyroelectric infrared sensor can be formed compactly. Since the number of parts is small, the number of work steps is small and the productivity is excellent. Since there is no heating element such as a drive motor, a noise component of the infrared detection unit can be significantly reduced, and a highly accurate pyroelectric infrared sensor can be obtained.

【0036】本発明の請求項2に記載の焦電型赤外線セ
ンサによれば、請求項1において、動作部が絶縁層の中
央部を平行に切り欠いて形成された複数の短冊状の動作
単位部と、各動作単位部の第1電極部と第2電極部に各
々独立して結線された結線部と、を備えているので、更
に、複数の各動作単位部と基板絶縁層の接触動作を独立
にすることにより、随時各赤外線検出素子の放熱を行う
ことができるため、その組み合わせにより、強度変化の
ない赤外線入射であっても検出でき、検出効率を著しく
高めることができる。また、構造が簡単なので生産性を
高めることができる。
According to the pyroelectric infrared sensor according to the second aspect of the present invention, in the first aspect, a plurality of strip-shaped operation units formed by cutting out the central portion of the insulating layer in parallel at the operation portion. And a connection part independently connected to the first electrode part and the second electrode part of each operation unit part, so that a plurality of operation units and the contact operation of the substrate insulating layer are further provided. Is independent, heat can be radiated from each infrared detecting element at any time. Therefore, even if infrared light having no intensity change can be detected by the combination, the detection efficiency can be significantly increased. Further, since the structure is simple, productivity can be improved.

【0037】本発明の請求項3に記載の焦電型赤外線セ
ンサーは、請求項1において、動作部が絶縁層の中央部
を除く周縁部をくの字状や円弧状に切り欠かれて形成さ
れた複数の動作支持部と、各動作支持部の他端部に連設
された方形等の多角形や円,楕円等に形成された1乃至
複数の平板状の動作単位部と、各動作単位部の第1電極
部と第2電極部に各々独立して結線された結線部と、を
備えているので、動作単位部の基板絶縁層への接触動作
により、強度変化のない赤外線入射であっても検出でき
るため、検出効率を著しく高めることができる。
According to a third aspect of the present invention, there is provided a pyroelectric infrared sensor according to the first aspect, wherein the operating portion is formed by cutting a peripheral portion of the insulating layer except for a central portion into a V-shape or an arc shape. A plurality of operation support portions, one or more plate-like operation unit portions formed in a polygon, such as a square, a circle, an ellipse, etc., connected to the other end of each operation support portion; Since the unit has a connection portion which is independently connected to the first electrode portion and the second electrode portion of the unit portion, the contact operation of the operation unit portion with the substrate insulating layer makes it possible to receive infrared light with no change in intensity. Even if there is, detection can be performed, so that the detection efficiency can be significantly increased.

【0038】本発明の請求項4に記載の焦電型赤外線セ
ンサーは、請求項1乃至3の内いずれか1において、前
記基板が、シリコン半導体で形成されているので、簡単
な製造方法で製造でき生産性を向上でき低原価で量産で
きる。また、結晶性を有するシリコンであるため動作部
の機械的強度に優れ高い信頼性を得ることができる。
According to a fourth aspect of the present invention, there is provided a pyroelectric infrared sensor according to any one of the first to third aspects, wherein the substrate is formed of a silicon semiconductor. It can improve productivity and can be mass-produced at low cost. In addition, since the silicon is crystalline, the operating portion has excellent mechanical strength and high reliability can be obtained.

【0039】本発明の請求項5に記載の焦電型赤外線セ
ンサーは、請求項1乃至4の内いずれか1において、前
記基板がP型のシリコン半導体で形成され、前記スペー
サー層がn型半導体で形成されているので、簡単な製造
方法で製造でき生産性を向上でき低原価で量産できる。
また、動作部と間隙部の厚みを精度よく制御できる。
According to a fifth aspect of the present invention, there is provided a pyroelectric infrared sensor according to any one of the first to fourth aspects, wherein the substrate is formed of a P-type silicon semiconductor, and the spacer layer is formed of an n-type semiconductor. Therefore, it can be manufactured by a simple manufacturing method, productivity can be improved, and mass production can be performed at low cost.
In addition, the thickness of the operating section and the gap can be accurately controlled.

【0040】本発明の請求項6に記載の焦電型赤外線セ
ンサーは、請求項1又は2において、前記基板の前記動
作部の各対向面に形成された第4電極部を備えているの
で、更に、強度変化のない赤外線入射であっても検出す
るための動作部が基板絶縁層への独立な接触動作を行う
ことができ検出効果を高めることができる。
According to a sixth aspect of the present invention, the pyroelectric infrared sensor according to the first or second aspect further includes a fourth electrode portion formed on each of the opposing surfaces of the operating portion of the substrate. Furthermore, even if the infrared ray having no change in intensity is detected, the operation section for detecting can perform an independent contact operation to the substrate insulating layer, and the detection effect can be enhanced.

【0041】本発明の請求項7に記載の焦電型赤外線セ
ンサーは、請求項6において、前記第4電極部に電圧を
印加し、各前記動作単位部を各々独立に前記基板絶縁層
に接触させる結線部を備えているので、更に、強度変化
のない赤外線入射であっても検出できるための動作が基
板動作部が基板絶縁層への独立な接触動作を行うことが
でき検出効果を高めることができる。
According to a seventh aspect of the present invention, in the pyroelectric infrared sensor according to the sixth aspect, a voltage is applied to the fourth electrode portion, and each of the operation units is independently contacted with the substrate insulating layer. In addition, since a connection portion is provided, even if infrared rays having no intensity change can be detected, the operation of the substrate operation portion can perform an independent contact operation with the substrate insulating layer, thereby improving the detection effect. Can be.

【0042】本発明の請求項8に記載の赤外線カメラ
は、レンズと、前記レンズの焦点域に配設された請求項
1乃至7に記載の焦電型赤外線センサーと、を備えてい
るので、更に、センサを非冷却で赤外線画像を検出でき
る。また、焦電型赤外線センサーが小型でコンパクトな
ので、赤外線カメラを小型でコンパクトに形成できる。
The infrared camera according to the eighth aspect of the present invention includes a lens, and the pyroelectric infrared sensor according to any one of the first to seventh aspects, which is disposed in a focal region of the lens. Further, the infrared image can be detected without cooling the sensor. Also, since the pyroelectric infrared sensor is small and compact, the infrared camera can be formed small and compact.

【0043】赤外線受光素子前面に設置すべきチョッパ
用の遮蔽板及び駆動用モータが不要なので取り付け作業
等が削減でき生産性を高めることができる。
Since a chopper shield plate and a driving motor to be installed on the front surface of the infrared light receiving element are not required, the mounting work and the like can be reduced and the productivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の焦電型赤外線センサの
要部破断斜視概念図
FIG. 1 is a schematic perspective view of a principal part cutaway of a pyroelectric infrared sensor according to a first embodiment of the present invention.

【図2】本発明の実施の形態1の焦電型赤外線センサの
要部断面概念図
FIG. 2 is a conceptual cross-sectional view of a main part of the pyroelectric infrared sensor according to the first embodiment of the present invention;

【図3】(a)は本発明の実施の形態1における焦電型
赤外線センサの製造方法を示す工程での要部断面図 (b)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (c)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (d)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (e)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図
FIG. 3A is a cross-sectional view of a main part in a process showing a method for manufacturing a pyroelectric infrared sensor according to the first embodiment of the present invention; FIG. 3B is a pyroelectric infrared sensor according to the first embodiment of the present invention; (C) is a cross-sectional view of a main part in a step showing a method for manufacturing a pyroelectric infrared sensor according to the first embodiment of the present invention. (D) is a cross-sectional view of a main part in the step of the present invention. Section (e) is an essential part cross-sectional view in a step showing the method for manufacturing the pyroelectric infrared sensor in the first embodiment. (E) is a part cross-sectional view in the step showing the method for manufacturing the pyroelectric infrared sensor in the first embodiment of the present invention.

【図4】(f)は本発明の実施の形態1における焦電型
赤外線センサの製造方法を示す工程での要部断面図 (g)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (h)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (i)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図 (j)は本発明の実施の形態1における焦電型赤外線セ
ンサの製造方法を示す工程での要部断面図
FIG. 4 (f) is a cross-sectional view of a main part in a step showing a method of manufacturing the pyroelectric infrared sensor according to the first embodiment of the present invention. FIG. 4 (g) is a pyroelectric infrared sensor according to the first embodiment of the present invention. (H) is a cross-sectional view of a main part in a step of a method for manufacturing a pyroelectric infrared sensor according to the first embodiment of the present invention. (I) is a cross-sectional view of a main part in a step of the present invention. Section (j) of a principal part in a step showing a method of manufacturing the pyroelectric infrared sensor according to the first embodiment (j) is a sectional view of a main part in a step showing the method of manufacturing the pyroelectric infrared sensor according to the first embodiment of the present invention.

【図5】(a)は実施の形態1における焦電型赤外線セ
ンサの動作を示す要部断面図 (b)は実施の形態1における焦電型赤外線センサの動
作を示す要部断面図
5A is a sectional view of a main part showing an operation of the pyroelectric infrared sensor according to the first embodiment; FIG. 5B is a sectional view of a main part showing an operation of the pyroelectric infrared sensor according to the first embodiment;

【図6】本発明の実施の形態2における焦電型赤外線セ
ンサ要部破断斜視概念図
FIG. 6 is a cutaway perspective view of a principal part of a pyroelectric infrared sensor according to a second embodiment of the present invention.

【図7】本発明の実施の形態2における焦電型赤外線セ
ンサ要部断面概念図
FIG. 7 is a conceptual sectional view of a principal part of a pyroelectric infrared sensor according to a second embodiment of the present invention.

【図8】本発明の実施の形態2における焦電型赤外線セ
ンサ要部平面概念図
FIG. 8 is a schematic plan view of a main part of a pyroelectric infrared sensor according to a second embodiment of the present invention.

【図9】本発明の実施の形態3における焦電型赤外線セ
ンサ要部平面概念図
FIG. 9 is a conceptual plan view of a main part of a pyroelectric infrared sensor according to a third embodiment of the present invention.

【図10】本発明の実施の形態3における焦電型赤外線
センサ要部断面概念図
FIG. 10 is a conceptual cross-sectional view of a main part of a pyroelectric infrared sensor according to a third embodiment of the present invention.

【図11】(a)は本発明の実施の形態3における焦電
型赤外線センサの製造方法を示す各工程における要部断
面図 (b)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図 (c)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図 (d)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図 (e)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図
11A is a sectional view of a main part in each step showing a method of manufacturing a pyroelectric infrared sensor according to Embodiment 3 of the present invention. FIG. 11B is a pyroelectric infrared sensor according to Embodiment 3 of the present invention. (C) is a cross-sectional view of a main part in each step showing a method of manufacturing a pyroelectric infrared sensor according to the third embodiment of the present invention. (D) is a cross-sectional view of a main part of the present invention. Sectional cross-sectional view of a principal part in each step showing a method for manufacturing a pyroelectric infrared sensor according to Embodiment 3 (e) is a cross-sectional view of a main part in each step showing a method for manufacturing a pyroelectric infrared sensor according to Embodiment 3 of the present invention.

【図12】(f)は本発明の実施の形態3における焦電
型赤外線センサの製造方法を示す各工程における要部断
面図 (g)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図 (h)は本発明の実施の形態3における焦電型赤外線セ
ンサの製造方法を示す各工程における要部断面図
12 (f) is a cross-sectional view of a principal part in each step showing a method for manufacturing a pyroelectric infrared sensor according to Embodiment 3 of the present invention. FIG. 12 (g) is a pyroelectric infrared sensor according to Embodiment 3 of the present invention. (H) is a cross-sectional view of a main part in each step of the method for manufacturing a pyroelectric infrared sensor according to the third embodiment of the present invention;

【図13】(a)は実施の形態3における焦電型赤外線
センサの各動作行程を示す要部断面図 (b)は実施の形態3における焦電型赤外線センサの各
動作行程を示す要部断面図 (c)は実施の形態3における焦電型赤外線センサの各
動作行程を示す要部断面図 (d)は実施の形態3における焦電型赤外線センサの各
動作行程を示す要部断面図 (e)は実施の形態3における焦電型赤外線センサの各
動作行程を示す要部断面図
13A is a sectional view of a main part showing each operation process of the pyroelectric infrared sensor according to the third embodiment. FIG. 13B is a main part showing each operation process of the pyroelectric infrared sensor according to the third embodiment. Sectional view (c) is a main part cross-sectional view showing each operation process of the pyroelectric infrared sensor according to the third embodiment. (D) is a main part cross-sectional view showing each operation process of the pyroelectric infrared sensor according to the third embodiment. (E) is a fragmentary cross-sectional view showing each operation step of the pyroelectric infrared sensor in Embodiment 3.

【図14】(1)は実施の形態3における第4電極部へ
の電圧印加タイミングと第2電極部の出力信号の関係を
示す図 (2)は実施の形態3における第4電極部への電圧印加
タイミングと第2電極部の出力信号の関係を示す図 (3)は実施の形態3における第4電極部への電圧印加
タイミングと第2電極部の出力信号の関係を示す図
14A is a diagram illustrating a relationship between a voltage application timing to a fourth electrode unit and an output signal of the second electrode unit according to the third embodiment. FIG. 14B is a diagram illustrating a relationship between a voltage application timing and a fourth electrode unit according to the third embodiment. The figure which shows the relationship between the voltage application timing and the output signal of a 2nd electrode part in FIG. 3 (3) The figure which shows the relationship between the voltage application timing to a 4th electrode part in Embodiment 3, and the output signal of a 2nd electrode part.

【図15】本発明の実施の形態4における赤外線カメラ
の斜視概念図
FIG. 15 is a schematic perspective view of an infrared camera according to Embodiment 4 of the present invention.

【図16】本発明の実施の形態4における赤外線カメラ
の断面斜視概念図
FIG. 16 is a schematic sectional perspective view of an infrared camera according to Embodiment 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 n型シリコン製の半導体基板 2 間隙部 3 絶縁層 4、4a、4b、4c、4d 動作部 5、5a、5b、5c、5d 第1電極部 6、6a、6b、6c、6d 赤外線検出素子 7、7a、7b、7c、7d 第2電極部 8 第3電極部 9 スペーサ層 10 基板絶縁層 11 p型シリコン半導体補助基板 12 赤外線 13 シリコン酸化膜 14 シリコン窓材 34 動作支持部 42 動作単位部 51 P型シリコン製の半導体基板 52、52a、52b、52c、52d 第4電極部 55 レンズ 56 本体 57 赤外線検出素子 Reference Signs List 1 semiconductor substrate made of n-type silicon 2 gap 3 insulating layer 4, 4a, 4b, 4c, 4d operating unit 5, 5a, 5b, 5c, 5d first electrode unit 6, 6a, 6b, 6c, 6d infrared detecting element 7, 7a, 7b, 7c, 7d Second electrode unit 8 Third electrode unit 9 Spacer layer 10 Substrate insulating layer 11 P-type silicon semiconductor auxiliary substrate 12 Infrared ray 13 Silicon oxide film 14 Silicon window material 34 Operation support unit 42 Operation unit unit 51 P-type silicon semiconductor substrate 52, 52a, 52b, 52c, 52d Fourth electrode part 55 Lens 56 Body 57 Infrared detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 高広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Takahiro Omori 1006 Ojidoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】導電性の基板と、前記基板上に積層された
基板絶縁層と、前記基板絶縁層の周囲等の所定部に形成
されたスペーサー層と、前記スペーサー層上に固定され
た絶縁層と、前記絶縁層を切り欠いて形成され両端部で
前記絶縁層に連接された動作部と、前記動作部と前記基
板絶縁層との間に形成された間隙部と、前記動作部の上
面に形成された第1電極部と前記第1電極部の上面に形
成された赤外線検出素子と、前記赤外線検出素子上に形
成された第2電極部と、前記基板の裏面に積層された第
3電極部と、を備えたことを特徴とする焦電型赤外線セ
ンサー。
1. A conductive substrate, a substrate insulating layer laminated on the substrate, a spacer layer formed in a predetermined portion such as a periphery of the substrate insulating layer, and an insulating layer fixed on the spacer layer. A layer, a working part formed by cutting out the insulating layer and connected to the insulating layer at both ends, a gap formed between the working part and the substrate insulating layer, and an upper surface of the working part A first electrode portion formed on the first electrode portion, an infrared detecting element formed on the upper surface of the first electrode portion, a second electrode portion formed on the infrared detecting device, and a third electrode portion laminated on the back surface of the substrate. An pyroelectric infrared sensor comprising: an electrode unit.
【請求項2】前記動作部が前記絶縁層の中央部を平行に
切り欠いて形成された複数の短冊状の動作単位部と、各
前記動作単位部の前記第1電極部と前記第2電極部、又
は、各前記動作単位部の複数の前記第1電極部と複数の
前記第2電極部に各々独立して結線された結線部と、を
備えたことを特徴とする請求項1に記載の焦電型赤外線
センサー。
2. A plurality of strip-shaped operation units formed by cutting out the center of the insulating layer in parallel with the operation unit, and the first electrode unit and the second electrode of each operation unit. 2. The device according to claim 1, further comprising: a plurality of first electrode portions of each of the operation unit portions; and connection portions independently connected to the plurality of second electrode portions of each of the operation unit portions. 3. Pyroelectric infrared sensor.
【請求項3】前記動作部が前記絶縁層の中央部を除く周
縁部をくの字状や円弧状に切り欠かれて形成された複数
の動作支持部と、前記各動作支持部の他端部に連設され
た方形等の多角形や円,楕円等に形成された1乃至複数
の平板状の動作単位部と、各前記動作単位部の前記第1
電極部と前記第2電極部、又は、各前記動作単位部の複
数の前記第1電極部と複数の前記第2電極部に各々独立
して結線された結線部と、を備えたことを特徴とする請
求項1に記載の焦電型赤外線センサー。
3. A plurality of operation supporting portions, each of which is formed by cutting a peripheral portion of the insulating layer except a central portion of the insulating layer into a U shape or an arc shape, and the other end of each of the operation supporting portions. A plurality of plate-like operation units formed in a polygon such as a square, a circle, an ellipse, etc., connected to the unit, and the first unit of each operation unit
An electrode part and the second electrode part, or a plurality of the first electrode parts of each of the operation unit parts and a connection part independently connected to the plurality of the second electrode parts. The pyroelectric infrared sensor according to claim 1, wherein
【請求項4】前記基板が、シリコン半導体で形成されて
いることを特徴とする請求項1乃至3の内いずれか1に
記載の焦電型赤外線センサー。
4. The pyroelectric infrared sensor according to claim 1, wherein said substrate is formed of a silicon semiconductor.
【請求項5】前記基板がP型のシリコン半導体で形成さ
れ、前記スペーサー層がn型半導体で形成されているこ
とを特徴とする請求項1乃至4の内いずれか1に記載の
焦電型赤外線センサー。
5. The pyroelectric device according to claim 1, wherein said substrate is formed of a P-type silicon semiconductor, and said spacer layer is formed of an n-type semiconductor. Infrared sensor.
【請求項6】前記基板の前記動作部の各対向面に形成さ
れた第4電極部を備えたことを特徴とする請求項1又は
2に記載の焦電型赤外線センサー。
6. The pyroelectric infrared sensor according to claim 1, further comprising: a fourth electrode portion formed on each of the opposing surfaces of the operation portion of the substrate.
【請求項7】前記第4電極部に電圧を印加し、各前記動
作単位部を各々独立に前記基板絶縁層に接触させる結線
部を備えたことを特徴とする請求項6に記載の焦電型赤
外線センサー。
7. A pyroelectric device according to claim 6, further comprising a connection portion for applying a voltage to said fourth electrode portion and bringing each of said operation unit portions into contact with said substrate insulating layer independently. Type infrared sensor.
【請求項8】レンズと、前記レンズの焦点域に配設され
た請求項1乃至7に記載の焦電型赤外線センサーと、を
備えたことを特徴とする赤外線カメラ。
8. An infrared camera, comprising: a lens; and the pyroelectric infrared sensor according to claim 1 disposed in a focal area of said lens.
JP9130768A 1997-05-21 1997-05-21 Pyroelectric infrared sensor and infrared camera provided therewith Pending JPH10318831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9130768A JPH10318831A (en) 1997-05-21 1997-05-21 Pyroelectric infrared sensor and infrared camera provided therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9130768A JPH10318831A (en) 1997-05-21 1997-05-21 Pyroelectric infrared sensor and infrared camera provided therewith

Publications (1)

Publication Number Publication Date
JPH10318831A true JPH10318831A (en) 1998-12-04

Family

ID=15042205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9130768A Pending JPH10318831A (en) 1997-05-21 1997-05-21 Pyroelectric infrared sensor and infrared camera provided therewith

Country Status (1)

Country Link
JP (1) JPH10318831A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112869A (en) * 2004-10-13 2006-04-27 Hamamatsu Photonics Kk Infrared detection system and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112869A (en) * 2004-10-13 2006-04-27 Hamamatsu Photonics Kk Infrared detection system and its manufacturing method

Similar Documents

Publication Publication Date Title
US6737648B2 (en) Micromachined infrared sensitive pixel and infrared imager including same
US6586738B2 (en) Electromagnetic radiation detectors having a micromachined electrostatic chopper device
US7026602B2 (en) Electromagnetic radiation detectors having a microelectromechanical shutter device
JP2004235638A (en) Micro-fabricated device and its manufacturing method
JPH0743215A (en) Infrared detecting element
JPH08271344A (en) Monolithic thermal detector having pyroelectric film and manufacture thereof
JP2009068863A (en) Infrared detecting element and infrared image sensor using it
JP2926158B2 (en) Method of manufacturing conductive microbridge
JP3258066B2 (en) Manufacturing method of thermopile type infrared sensor
JPH11258038A (en) Infrared ray sensor
JPH10318831A (en) Pyroelectric infrared sensor and infrared camera provided therewith
JPH10104062A (en) Thin-film electrode and method
JPH10160538A (en) Heat sensor and its manufacture
JPH1082695A (en) Pyroelectric infrared sensor element
JP3217533B2 (en) Infrared sensor
JPH06281503A (en) Pyroelectric infrared sensor and its production method
JP2003344155A (en) Infrared sensor
JPH09126895A (en) Pyroelectric infrared detector
JPH11118606A (en) Pyroelectric infrared sensor and its manufacture
JP2002014070A (en) Thermal type sensor
JP2013019857A (en) Pyroelectric sensor element
JP2000230858A (en) Image pick-up element
JP2006035374A (en) Micromachine device
JPS61244563A (en) Photo thermal head
JPH02206733A (en) Infrared ray sensor