JPH10318692A - Vertical multi-plate type heat exchanger - Google Patents

Vertical multi-plate type heat exchanger

Info

Publication number
JPH10318692A
JPH10318692A JP12873197A JP12873197A JPH10318692A JP H10318692 A JPH10318692 A JP H10318692A JP 12873197 A JP12873197 A JP 12873197A JP 12873197 A JP12873197 A JP 12873197A JP H10318692 A JPH10318692 A JP H10318692A
Authority
JP
Japan
Prior art keywords
plate
heat exchanger
heat transfer
vertical multi
bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12873197A
Other languages
Japanese (ja)
Other versions
JP3829957B2 (en
Inventor
Mitsuru Ishikawa
満 石川
Toshimitsu Takaishi
敏充 高石
Naoji Isshiki
尚次 一色
Taiji Sakai
耐事 坂井
Shinji Futamura
信地 二村
Tsutomu Wada
努 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Toyo Radiator Co Ltd
Original Assignee
Honda Motor Co Ltd
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Toyo Radiator Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12873197A priority Critical patent/JP3829957B2/en
Publication of JPH10318692A publication Critical patent/JPH10318692A/en
Application granted granted Critical
Publication of JP3829957B2 publication Critical patent/JP3829957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a heat transfer efficiency by flowing down heat transfer medium while forming a uniform film thickness on the overall surface of a heat transfer wall surface. SOLUTION: The vertical multi-plate type heat exchanger comprises a plurality of elements 10 formed by superposing two slender plate-like materials formed with irregularities on both surfaces and vertically disposing them. In this case, openings are formed at both ends of the materials in a lengthwise direction. And, flat surfaces 6a, 7a are formed protruding in the same height as convexes of the shape on the surface A of the material around the openings. The shape is formed of grooves 3 and strips 2a arranged at an equal interval alternately in the lengthwise direction of the materials and extended straightly in parallel continuously or intermittently in a width direction. And, the grooves 3a are formed in a sectional shape of the groove 3a corresponding to the recess of the shape executed on the one surface A in an equal two-dimensional curvature groove shape. The element 10 is formed by superposing one surface A of the two plate-like materials 1 at outside and the other surface B at inside, and bringing a plurality of the elements 10 into contact and superposing the surfaces 6a, 7a to be connected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願の発明は、両面に凹凸加
工が施された2枚の細長い板状体を互いに重ね合わせて
形成された素子を、その長手方向を上下にして縦置に複
数個重ね合わせ、各素子の内側の空間を一方の熱伝達媒
体が通過するための通路とし、各素子間の空間を他方の
熱伝達媒体が通過するための通路とした縦置多板式熱交
換器に関し、特に吸収冷凍機における吸収器や蒸発器と
して使用するに適する縦置多板式熱交換器に関する。
BACKGROUND OF THE INVENTION The present invention relates to an element formed by stacking two long and thin plate-shaped bodies, each of which has an uneven surface on both sides, in a vertical arrangement with the longitudinal direction thereof being up and down. A stacked multiple-plate heat exchanger in which a space inside each element is a passage for one heat transfer medium to pass, and a space between each element is a passage for the other heat transfer medium to pass. More particularly, the present invention relates to a vertical multi-plate heat exchanger suitable for use as an absorber or an evaporator in an absorption refrigerator.

【0002】[0002]

【従来技術】前記形式の熱交換器として、本出願人は、
先に特願平8−312377号の発明を提案した。この
ものにおいては、図22に図示されるように、熱交換器
素子を形成する各板状体01の両面に凹凸が、該板状体01
の長手方向に交互に等間隔に配列され、かつ幅方向に延
びる平面形状波形(W形、V形もしくはM形)の凹溝03
および突条02により形成されている。
BACKGROUND OF THE INVENTION As a heat exchanger of the type described above, the applicant has
Previously, the invention of Japanese Patent Application No. 8-313377 was proposed. In this device, as shown in FIG. 22, irregularities are formed on both sides of each plate-like member 01 forming a heat exchanger element.
Grooves (W-shaped, V-shaped or M-shaped) concave grooves 03 arranged alternately at equal intervals in the longitudinal direction and extending in the width direction.
And ridges 02.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来のものにおいては、各素子間の空間を流下する熱伝達
媒体は、図22Dに示されるように、W形凹溝03の底に
集まる傾向があり、その頂部には、濡れない部分Eが生
じていた。このような現象は、V形凹溝やM形凹溝の場
合においても、同様に生ずる。そして、この濡れない部
分においては、当然に両熱伝達媒体間の熱伝達は行なわ
れていない。
However, in the prior art, the heat transfer medium flowing down in the space between the elements tends to gather at the bottom of the W-shaped groove 03 as shown in FIG. 22D. There was a non-wetting portion E on the top. Such a phenomenon similarly occurs in the case of a V-shaped groove or an M-shaped groove. In the non-wetting portion, heat transfer between the two heat transfer media is not performed.

【0004】また、前記従来のものにおいては、各板状
体01の両面に形成される凹凸が、適切な形状のものとは
いえず、例えば、図23や図24に図示される形状の場
合、熱伝達媒体である液体は、その表面張力の影響によ
り、凹溝03の底や両側の角部に偏り、液膜の均一化が図
れなかった。この結果、凹溝03の濡れない部分において
は、熱伝達が行なわれないし、液膜の厚い部分において
は、温度勾配が緩やかになるので、熱伝達効率が低下し
ていた。
Further, in the above-mentioned conventional device, the unevenness formed on both surfaces of each plate-like body 01 cannot be said to be of an appropriate shape. For example, in the case of the shape shown in FIGS. On the other hand, the liquid as the heat transfer medium was biased toward the bottom of the concave groove 03 and the corners on both sides due to the influence of the surface tension, and the liquid film could not be made uniform. As a result, heat transfer is not performed in the portion of the concave groove 03 that is not wet, and the temperature gradient is gentle in the portion where the liquid film is thick, so that the heat transfer efficiency is reduced.

【0005】[0005]

【課題を解決するための手段】本願の発明は、前記のよ
うな問題を解決した縦置多板式熱交換器に関し、その請
求項1に記載された発明は、両面に凹凸加工が施された
2枚の細長い板状体を互いに重ね合わせて形成された素
子を、その長手方向を上下にして縦置に複数個重ね合わ
せ、各素子の内側の空間を一方の熱伝達媒体が通過する
ための通路とし、各素子間の空間を他方の熱伝達媒体が
通過するための通路とした縦置多板式熱交換器におい
て、前記各板状体は、その長手方向の両端部にそれぞれ
開口が形成され、該開口の周囲に、該板状体の一方の面
においては少なくとも該面に施された前記凹凸の凸部と
同じ高さまで突出した平坦面が、他方の面においては少
なくとも該面に施された前記凹凸の凹部と同じ深さまで
凹入した平坦面が、それぞれ形成され、前記凹凸は、前
記各板状体の長手方向に交互に等間隔に配列されかつ幅
方向に連続もしくは断続して平行に真っ直ぐに延びた凹
溝と突条とにより形成され、前記凹溝は、前記各板状体
の一方の面に施された前記凹凸の凹部に対応する凹溝の
断面形状が、等二次元曲率溝形状に形成され、前記素子
は、前記2枚の板状体の各々の一方の面を外側に、他方
の面を内側にして互いに重ね合わせて形成され、前記素
子の複数個が、前記突出した平坦面同志を互いに当接さ
せて重ね合わせられて結合されたことを特徴とする縦置
多板式熱交換器である。
SUMMARY OF THE INVENTION The present invention relates to a vertical multi-plate heat exchanger which has solved the above-mentioned problems. A plurality of elements formed by stacking two elongated plate-like bodies on top of each other are vertically stacked with their longitudinal direction up and down, and one heat transfer medium passes through the space inside each element. In the vertical multi-plate heat exchanger which is a passage and a passage for the other heat transfer medium passing through the space between the elements, each plate-like body has openings formed at both ends in the longitudinal direction. Around the opening, a flat surface protruding to at least the same height as the projections of the irregularities applied to the surface on one surface of the plate-shaped body, and applied to at least the surface on the other surface. Flat surface recessed to the same depth as the concave portion of the unevenness, Respectively, the irregularities are formed by concave grooves and ridges which are arranged alternately at equal intervals in the longitudinal direction of each of the plate-like bodies and extend straight or parallel continuously or intermittently in the width direction. A cross-sectional shape of the concave groove corresponding to the concave portion of the concavo-convex formed on one surface of each of the plate-like bodies is formed into a two-dimensional curvature groove shape; Each of the plate-like bodies is formed so as to overlap each other with one surface on the outside and the other surface on the inside, and a plurality of the elements are overlapped by bringing the protruding flat surfaces into contact with each other. This is a vertical multi-plate heat exchanger characterized by being joined together.

【0006】請求項1に記載された発明は、前記のよう
に構成されているので、熱交換器素子を形成する各板状
体の両面に形成された凹凸は、幅方向に連続もしくは断
続して平行に真っ直ぐに延びた凹溝と突条とにより形成
されており、その平面形状が波形にされていないので、
各素子内および各素子間の空間を流下する熱伝達媒体が
特定の個所に集合する傾向がなくなり、その熱伝達壁面
に濡れない部分が生じることがなくなるので、熱伝達効
率が向上する。
According to the first aspect of the present invention, the unevenness formed on both surfaces of each plate-like body forming the heat exchanger element is continuous or intermittent in the width direction. It is formed by concave grooves and ridges that extend straight and parallel in parallel, and since its planar shape is not corrugated,
The heat transfer medium flowing down in the space between the elements and between the elements does not tend to gather at a specific location, and the heat transfer wall does not have a non-wetting portion, so that the heat transfer efficiency is improved.

【0007】また、各板状体の一方の面(熱交換器素子
の外側をなす面)に施された凹凸の凹部に対応する凹溝
の断面形状が、等二次元曲率溝形状に形成されているの
で、該凹溝を横切って流下する熱伝達媒体は、均一な膜
厚を形成しながら流下することとなり、その熱伝達壁面
の全面で良好な熱伝達が行なわれるので、熱伝達効率が
さらに向上する。特に、熱伝達媒体が沸点の異なる複数
成分を含む流体である場合に、その効果が顕著である。
[0007] The cross-sectional shape of the concave groove corresponding to the concave and convex concave portions formed on one surface (the surface forming the outside of the heat exchanger element) of each plate-like body is formed into a two-dimensional curvature groove shape. Therefore, the heat transfer medium flowing down across the concave groove flows down while forming a uniform film thickness, and good heat transfer is performed on the entire surface of the heat transfer wall, so that the heat transfer efficiency is reduced. Further improve. In particular, when the heat transfer medium is a fluid containing a plurality of components having different boiling points, the effect is remarkable.

【0008】さらに、請求項2記載のように請求項1記
載の発明を構成することにより、各熱交換器素子の内側
の空間に形成される熱伝達媒体の通路と、各素子間の空
間に形成される熱伝達媒体の通路とは、いずれも一方の
板状体の凹溝に他方の板状体の突条が進入する形態で通
路が形成されることとなるので、それらの通路を流下す
る熱伝達媒体は、蛇行して流れ、その攪乱効果が発生
し、死水域も大幅に減少するので、熱伝達効率がさらに
向上する。また、一方の板状体の凹溝に他方の板状体の
突条が進入する分だけ、両板状体間の距離が接近するの
で、その分だけ熱交換器の幅方向の寸法を減少させ、熱
交換器を小型化することができる。
Further, according to the first aspect of the present invention, the passage of the heat transfer medium formed in the space inside each heat exchanger element and the space between each element are formed. Each of the formed passages of the heat transfer medium is formed in such a manner that the ridges of the other plate-like member enter the concave grooves of one plate-like member, so that the passages flow down those passages. The generated heat transfer medium flows in a meandering manner, causing a disturbance effect, and the dead water area is greatly reduced, so that the heat transfer efficiency is further improved. In addition, the distance between the two plate-like bodies is reduced by the distance that the ridge of the other plate-like body enters the concave groove of one plate-like body, so the width dimension of the heat exchanger is reduced by that much. As a result, the heat exchanger can be downsized.

【0009】また、請求項3記載のように請求項2記載
の発明を構成することにより、各熱交換器素子を形成す
るに際して、同じ2枚の板状体のうちの一方の板状体を
他方の板状体に対し、その一方の面が外側になるように
して裏返し、かつその上下端を他方の板状体の上下端と
逆にして重ね合わせるだけで、各板状体の凹凸のピッチ
が1/2ピッチだけずらされて形成された熱交換器素子
を容易に得ることができる。
According to the third aspect of the present invention, when each heat exchanger element is formed, one of the same two plate-like bodies is used. The other plate-shaped body is turned upside down so that one surface is outside, and the upper and lower ends are only reversed and the upper and lower ends of the other plate-shaped body are overlapped, and the unevenness of each plate-shaped body is reduced. It is possible to easily obtain a heat exchanger element whose pitch is shifted by 1 / pitch.

【0010】また、請求項4記載のように請求項1ない
し請求項3のいずれかに記載の発明を構成することによ
り、各熱交換器素子間の空間に形成される熱伝達媒体の
通路の断面積の必要な広さを確保し、該熱伝達媒体の流
動抵抗を減少させることができる。また、熱交換器の構
造的な強度を向上させることができる。
[0010] According to the fourth aspect of the present invention, the passage of the heat transfer medium formed in the space between the heat exchanger elements is formed. The required area of the cross-sectional area can be secured, and the flow resistance of the heat transfer medium can be reduced. Further, the structural strength of the heat exchanger can be improved.

【0011】さらに、請求項5記載のように請求項4記
載の発明を構成することにより、各板状体の上下の判別
が容易になるので、熱交換器素子を形成するに際して、
2枚の板状体のうちの一方の板状体の上下端を他方の板
状体の上下端と逆にする作業が容易になる。また、各熱
交換器素子を重ね合わせて、ろう付けにより、縦置多板
式熱交換器を形成するに際して、大突起と小突起とのろ
う付け部においては、小突起の回りによくろうが回り込
ので、それらの接着が完全になされる。
Further, by constituting the invention of claim 4 as described in claim 5, it is easy to distinguish the upper and lower sides of each plate-like body, so that when forming the heat exchanger element,
The work of reversing the upper and lower ends of one of the two plate-like bodies with the upper and lower ends of the other plate-like body is facilitated. In addition, when the heat exchanger elements are overlapped and brazed to form a vertical multi-plate heat exchanger, the brazing portion around the small projections often turns around the brazing portion between the large projections and the small projections. So that their adhesion is completely achieved.

【0012】また、請求項6記載のように請求項4また
は請求項5記載の発明を構成することにより、熱交換器
素子を形成する多数の板状体を、通常のプレス加工法を
用いて、一度に容易に形成することができる。
Further, by constituting the invention of claim 4 or claim 5 as described in claim 6, a large number of plate-like members forming the heat exchanger element can be formed by a usual press working method. , Can be easily formed at once.

【0013】また、請求項7記載のように請求項1ない
し請求項6のいずれかに記載の発明を構成することによ
り、各熱交換器素子の内側の空間に形成される熱伝達媒
体の通路を、各素子間の空間に形成される熱伝達媒体の
通路から確実に区画することができるので、一方の熱伝
達媒体が他方の熱伝達媒体の側に漏洩するのを確実に防
止することができる。さらに、熱交換器の構造的な強度
を向上させることができる。
[0013] According to the seventh aspect of the present invention, the heat transfer medium passage formed in the space inside each heat exchanger element. Can be reliably separated from the passage of the heat transfer medium formed in the space between the elements, so that it is possible to reliably prevent one heat transfer medium from leaking to the other heat transfer medium. it can. Further, the structural strength of the heat exchanger can be improved.

【0014】[0014]

【発明の実施の形態】以下、図1ないし図21に図示さ
れる、本願の請求項1ないし請求項7に記載された発明
の一実施形態について説明する。先ず、図1ないし図1
2に図示される、本実施形態の縦置多板式熱交換器の基
本的構成部材である板状体について説明する。本実施形
態の縦置多板式熱交換器、その構成単位である熱交換器
素子は、この単一種類の板状体により形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the invention described in claims 1 to 7 of the present application, shown in FIGS. 1 to 21, will be described below. First, FIGS. 1 to 1
A plate-like body, which is shown in FIG. 2 and is a basic component of the vertical multi-plate heat exchanger of the present embodiment, will be described. The vertical multi-plate heat exchanger of the present embodiment and the heat exchanger element as a constituent unit thereof are formed of this single kind of plate-like body.

【0015】これらの図において、1は板状体であり、
細長い両端中央がやや突出したアルミ材もしくは鋼材か
らなる板素材に、プレス加工により、所定の形状が付与
されて形成されている。2a は、該板状体1の表面であ
るA面に、このようにして形成された突条であり、該突
条は、図4、図6および図7に図示されるように、後述
する凹溝3a に比し、やや尖った形状に形成されてい
る。3a は、同様にしてこれらの突条2a に挟まれて形
成された凹溝である。そして、これらの突条2aと凹溝
3a とが、板状体1の長手方向の全長にわたって、交互
に等間隔に配列されている。
In these figures, 1 is a plate-like body,
The plate is formed by pressing a plate material made of aluminum or steel, whose center at both ends is slightly protruded, by pressing. Reference numeral 2a denotes a ridge formed in this way on the surface A, which is the surface of the plate-like body 1, and the ridge is described later as shown in FIGS. 4, 6, and 7. It is formed in a slightly sharper shape than the concave groove 3a. Reference numeral 3a designates a concave groove formed between the ridges 2a in the same manner. The ridges 2a and the concave grooves 3a are alternately arranged at equal intervals over the entire length of the plate-like body 1 in the longitudinal direction.

【0016】これらの突条2a と凹溝3a との交互配列
の全幅(板状体1の長手方向の全長)の中心線WCL
は、該板状体1の長手方向の中心線CLに対して、これ
らの突条2a と凹溝3a との等間隔配列のピッチの1/
4ピッチだけずらされて位置させられている。
The center line WCL of the total width (the total length in the longitudinal direction of the plate-like body 1) of the alternating arrangement of the ridges 2a and the concave grooves 3a.
Is 1/1 of the pitch of the equidistant arrangement of the ridges 2a and the concave grooves 3a with respect to the longitudinal center line CL of the plate-like body 1.
They are shifted by four pitches.

【0017】このように、両中心線を1/4ピッチだけ
ずらして位置させることにより、後述する熱交換器素子
10を形成するに際して、同じ2枚の板状体1のうちの一
方の板状体1を他方の板状体1に対し、その一方の面
(A面)が外側になるようにして裏返し、かつその上下
端を他方の板状体1の上下端と逆にして重ね合わせるだ
けで、各板状体1の凹凸(凹溝3a と突条2a )のピッ
チが1/2ピッチだけずらされて形成された熱交換器素
子10を容易に得ることができる。
As described above, by displacing both center lines by 1 / pitch, a heat exchanger element described later can be formed.
When forming 10, one plate-like body 1 of the same two plate-like bodies 1 is turned over with respect to the other plate-like body 1 so that one surface (A surface) is outside, In addition, simply by superposing the upper and lower ends thereof on the opposite sides of the upper and lower ends of the other plate-like body 1, the pitch of the unevenness (the concave groove 3a and the ridge 2a) of each plate-like body 1 is shifted by ピ ッ チ pitch. The formed heat exchanger element 10 can be easily obtained.

【0018】前記突条2a は、大小2種の突条要素4個
に分断されつつ(図1、図10、図12参照)、板状体
1の幅方向に真っ直ぐに延びて形成されている。また、
前記凹溝3a は、後述する大突起4により3個ないし5
個の凹溝要素に分断されるか、もしくは分断されること
なく連続して(図1、図11参照)、板状体1の幅方向
に前記突条2a と平行に真っ直ぐに延びて形成されてい
る。
The ridge 2a is formed so as to extend straight in the width direction of the plate-like body 1 while being divided into four large and small ridge elements (see FIGS. 1, 10 and 12). . Also,
The concave grooves 3a are formed by three to five large projections 4 described later.
It is formed so as to be divided into a plurality of concave groove elements or continuously without being divided (see FIGS. 1 and 11) and to extend straight in the width direction of the plate-like body 1 in parallel with the ridge 2a. ing.

【0019】前記凹溝3a の断面形状は、各点における
曲率が等しくされた等二次元曲率溝形状に形成されてお
り、これにより、該凹溝3a に接触して流れる熱伝達媒
体は、均一な膜厚を形成しながら流れるので、その熱伝
達壁面の全面で良好な熱伝達が行なわれ、熱伝達効率が
大きく改善される。特に、熱伝達媒体が沸点の異なる2
種類以上の成分を含む多成分流体である場合に、その効
果が著しい。この点については、特開昭63−1239
96号公報に詳しく述べられている。
The cross-sectional shape of the concave groove 3a is formed in an equal two-dimensional curvature groove shape in which the curvature at each point is equalized, so that the heat transfer medium flowing in contact with the concave groove 3a is uniform. Since it flows while forming an appropriate film thickness, good heat transfer is performed on the entire surface of the heat transfer wall surface, and the heat transfer efficiency is greatly improved. In particular, the heat transfer medium has a different boiling point.
The effect is remarkable in the case of a multi-component fluid containing more than one type of component. Regarding this point, JP-A-63-1239
No. 96 describes this in detail.

【0020】前記板状体1の長手方向の中心線CLより
図において上側の凹溝3a には、連続的に、もしくは1
列ないし2列おきに、該凹溝3a を中心にして該凹溝3
a に隣接する突条2a 、2a に跨がり、2個ないし4個
の大突起4が形成されており、これらの大突起4が形成
された凹溝3a は、前記のとおり、これらの大突起4に
より3個ないし5個の凹溝要素に分断されつつ、板状体
1の幅方向に延びている。(図1、図4、図5、図11
参照)
The groove 3a, which is above the center line CL in the longitudinal direction of the plate-like body 1 in FIG.
In every other row or every two rows, the groove 3a is centered on the groove 3a.
a, two to four large projections 4 are formed straddling the ridges 2a, 2a adjacent to the large projections 2a, and the concave grooves 3a on which these large projections 4 are formed are, as described above, these large projections. 4 extend in the width direction of the plate-like body 1 while being divided into three to five concave groove elements. (FIGS. 1, 4, 5, and 11
reference)

【0021】また、前記板状体1の長手方向の中心線C
Lより図において下側の突条2a には、連続的に、もし
くは1列ないし2列おきに、2個ないし4個の小突起5
が形成されている。これらの小突起5は、分断された突
条2a の4個の突条要素のいずれかの上に1個ずつ形成
されている(図1、図4、図6、図12参照)。
Further, a center line C in the longitudinal direction of the plate-like body 1 is provided.
The two or four small protrusions 5 are continuously or alternately arranged in every other row or every other row on the lower ridge 2a in FIG.
Are formed. These small projections 5 are formed one by one on any of the four ridge elements of the divided ridge 2a (see FIGS. 1, 4, 6, and 12).

【0022】そして、これらの大突起4と小突起5と
は、断面円形で、同じ高さに、かつ板状体1の長手方向
の中心線CLに対して対称の位置に、それぞれ形成され
ている。また、いずれも板状体1の幅方向の中心線(II
−II線)に対して、対称に形成されている。これらの大
突起4と小突起5とは、後述するように、複数個の熱交
換器素子10を重ね合わせて縦置多板式熱交換器20を形成
するに際して、各熱交換器素子10間の間隔を保持するた
めの手段として使用される。
The large projections 4 and the small projections 5 are formed in a circular cross section, at the same height, and at positions symmetrical with respect to the longitudinal center line CL of the plate-like body 1. I have. Also, in each case, the center line (II
-II line). As described later, the large projections 4 and the small projections 5 are used to form a plurality of heat exchanger elements 10 to form a vertical multi-plate heat exchanger 20. Used as a means to maintain spacing.

【0023】以上のようにして板状体1のA面に突条2
a と凹溝3a とが形成されることにより、該板状体1の
裏面であるB面には、同時に突条2a に対応して凹溝3
b が、凹溝3a に対応して突条2b が、それぞれ形成さ
れている。
As described above, the ridge 2 is formed on the surface A of the plate-like body 1.
a and the groove 3a are formed, so that the surface B, which is the back surface of the plate-like body 1, is simultaneously formed with the groove 3a corresponding to the ridge 2a.
b is formed with a ridge 2b corresponding to the concave groove 3a.

【0024】さらに、板状体1の長手方向両端の中央の
やや突出した部分には、該板状体1の長手方向の中心線
CLに対して対称の位置に、図において上側に開口6、
同下側に開口7が、それぞれ円形に形成されている。そ
して、これらの開口6および開口7の周囲には、該板状
体1のA面においては、該A面に形成された前記大突起
4および小突起5と同じ高さまで突出した平坦面6a 、
7a が、該板状体1のB面においては、A面に形成され
た前記大突起4および小突起5がB面に生じさせた穴底
と同じ深さ(凹溝3b より深い)まで凹入した平坦面6
b 、7b が、それぞれ形成されている(図3、図4、図
8、図9参照)。
Further, in the slightly protruding portion at the center of both ends in the longitudinal direction of the plate-like body 1, an opening 6 is provided at a position symmetrical with respect to the longitudinal center line CL of the plate-like body 1,
Openings 7 are respectively formed in a circular shape on the lower side. Around these openings 6 and 7, on the A surface of the plate-like body 1, flat surfaces 6 a protruding to the same height as the large projections 4 and small projections 5 formed on the A surface,
7a, the large projections 4 and the small projections 5 formed on the surface A of the plate-like body 1 are recessed to the same depth (deeper than the groove 3b) as the bottom of the hole formed on the surface B. Flat surface 6
b and 7b are formed respectively (see FIGS. 3, 4, 8, and 9).

【0025】なお、前記のようにして板状体1に形成さ
れた突条2a 、凹溝3a 、突条2b、凹溝3b 、大突起
4、小突起5の規則的な配列は、該板状体1の両端部に
おいては、該板状体1の両端中央に向かって傾斜して延
びる両側縁と、前記した開口6、開口7の周囲の平坦面
6a 、7a 、6b 、7b とにより切り欠かれている(図
1、図3参照)。
The regular arrangement of the ridges 2a, the concave grooves 3a, the ridges 2b, the concave grooves 3b, the large projections 4 and the small projections 5 formed on the plate-like body 1 as described above depends on the plate. At both ends of the plate-like body 1, the plate-like body 1 is cut by both side edges extending inclining toward the center of both ends thereof and the flat surfaces 6 a, 7 a, 6 b, and 7 b around the openings 6 and 7. It is missing (see FIGS. 1 and 3).

【0026】前記のようにして板状体1に形成される突
条2a 、凹溝3a 、突条2b 、凹溝3b 、大突起4、小
突起5、開口6、開口7、平坦面6a 、7a 、6b 、7
b 等は、板状体1の素材板にプレス加工を施すことによ
り、一度に形成される。これにより、多数の板状体1を
容易に形成することができる。なお、プレス加工が施さ
れなかった素材板の周縁部には、当初通りの平坦面8が
残されており、前記のプレス加工は、全てこの平坦面8
を基準にして、これより図2、図4において左方に向け
て施されている。
The ridge 2a, the groove 3a, the ridge 2b, the groove 3b, the large protrusion 4, the small protrusion 5, the opening 6, the opening 7, the flat surface 6a, 7a, 6b, 7
b and the like are formed at once by subjecting the material plate of the plate-shaped body 1 to press working. Thereby, many plate-like bodies 1 can be easily formed. In addition, the flat surface 8 as before is left in the peripheral part of the raw material plate which has not been subjected to the press working.
2 and FIG. 4 from left to right.

【0027】次に、図13に図示される、本実施形態の
縦置多板式熱交換器の構成単位である熱交換器素子につ
いて説明する。該熱交換器素子10は、前記のとおり、前
記のようにして形成された単一種類の板状体1の2枚を
用いて形成されている。
Next, a description will be given of a heat exchanger element shown in FIG. 13, which is a structural unit of the vertical multi-plate heat exchanger of the present embodiment. As described above, the heat exchanger element 10 is formed using two pieces of the single type plate-like body 1 formed as described above.

【0028】先ず、同じ姿勢に重ねて置かれた2枚の板
状体1のうちの一方の板状体1を他方の板状体1に対
し、その一方の面(A面)が外側になるようにして裏返
し、かつその上下端を他方の板状体1の上下端と逆にし
て重ね合わせる。そして、両板状体1の各周縁の平坦面
8同志、各凹溝3a の背面部や各突条2a の不連続部の
背面部であって、当接する部分同志(図19参照)をろ
う付け等により固着すれば、熱交換器素子10が得られ
る。
First, one of the two plate-like members 1 placed in the same posture is placed on the other plate-like member 1 with one surface (A-side) facing outward. It is turned over, and the upper and lower ends thereof are reversed with the upper and lower ends of the other plate-shaped body 1 to be overlapped. Then, the flat surfaces 8 of each peripheral edge of both plate-like bodies 1, the back surface of each groove 3 a and the back surface of the discontinuous portion of each ridge 2 a, which are in contact with each other (see FIG. 19). When the heat exchanger element 10 is fixed by attachment or the like, the heat exchanger element 10 is obtained.

【0029】換言すれば、2枚の板状体1のB面同志を
向かい合わせにし、それらの各上下端を逆にして、両板
状体1を重ね合わせ、前記の当接する部分同志をろう付
け等により固着すれば、熱交換器素子10が得られる。な
お、この固着は、本実施形態においては、後述する縦置
多板式熱交換器20の仮組立て後、ろう付けにより本組立
てを行なう時に、同時に行なわれる。
In other words, the two B-shaped bodies 1 face each other, the upper and lower ends thereof are reversed, the two B-shaped bodies 1 are overlapped, and the abutting parts are joined together. When the heat exchanger element 10 is fixed by attachment or the like, the heat exchanger element 10 is obtained. Note that, in the present embodiment, this fixation is performed simultaneously with the temporary assembling by a brazing after the temporary assembling of the vertical multiple-plate heat exchanger 20 described later.

【0030】このようにして得られた熱交換器素子10
は、その2枚の板状体1の凹凸(凹溝3a と突条2a )
のピッチが、前記のとおり、丁度1/2ピッチだけずら
されている。このため、図13からも明らかなように、
両板状体1の各凹溝3a 、突条2a は、背中合わせに向
かい合うことがなくなるとともに、一方の板状体1の凹
溝3b (突条2a の背面)に他方の板状体1の突条2b
(凹溝3a の背面)が進入して、両板状体1は接近す
る。
The heat exchanger element 10 thus obtained
Are the irregularities of the two plate-like bodies 1 (a concave groove 3a and a ridge 2a).
Are just shifted by ピ ッ チ pitch as described above. Therefore, as is clear from FIG.
The grooves 3a and the ridges 2a of the two plate-shaped members 1 no longer face back to back, and the grooves 3b (the back surface of the ridges 2a) of one plate-shaped member 1 project from the other plate-shaped member 1. Article 2b
(The back surface of the concave groove 3a) enters, and the two plate-shaped members 1 approach each other.

【0031】この結果、両板状体1により形成される通
路(熱交換器素子10の内側の空間)11を流れる熱伝達媒
体は、全て蛇行して流れることとなり、その攪乱効果が
発生して、死水域も大幅に減少するので、熱伝達効率が
向上する。また、両板状体1が接近する分だけ、熱交換
器素子10の幅方向の寸法を減少させることができ、その
小型化、さらには縦置多板式熱交換器20の小型化を図る
ことができる。該寸法の減少量は、該通路を流下させる
熱伝達媒体量によって決定される。
As a result, the heat transfer medium flowing through the passage (the space inside the heat exchanger element 10) 11 formed by the two plate-like bodies 1 flows in a meandering manner, and the disturbance effect occurs. In addition, since the dead water area is greatly reduced, the heat transfer efficiency is improved. Further, the widthwise dimension of the heat exchanger element 10 can be reduced as much as the two plate-like members 1 approach, thereby reducing the size of the heat exchanger element 10 and the size of the vertical multi-plate heat exchanger 20. Can be. The amount of the size reduction is determined by the amount of heat transfer medium flowing down the passage.

【0032】また、前記のようにして得られた熱交換器
素子10においては、その一方の板状体1の大突起4と他
方の板状体1の小突起5とは、丁度対応する位置にあっ
て、背中合わせに向かい合っている。このため、両板状
体1により形成される通路11中に、比較的大径の空間12
が多数形成されることになり、これによっても、前記熱
伝達媒体の攪乱効果が促進される。
In the heat exchanger element 10 obtained as described above, the large projections 4 of one plate-like body 1 and the small projections 5 of the other plate-like body 1 are located at exactly corresponding positions. And face each other back to back. For this reason, the relatively large-diameter space 12 is formed in the passage 11 formed by the two plate-like bodies 1.
Are formed, which also promotes the disturbing effect of the heat transfer medium.

【0033】さらに次に、図14ないし図21に図示さ
れる、本実施形態の縦置多板式熱交換器について説明す
る。本実施形態の縦置多板式熱交換器20は、前記のよう
にして得られた熱交換器素子10の複数個を同じ姿勢に置
いて重ね合わせ、結合することにより形成される。
Next, the vertical multi-plate heat exchanger of the present embodiment shown in FIGS. 14 to 21 will be described. The vertical multiple-plate heat exchanger 20 of the present embodiment is formed by placing a plurality of the heat exchanger elements 10 obtained as described above in the same posture, overlapping them, and joining them.

【0034】複数個の熱交換器素子10が同じ姿勢に置か
れて重ね合わせられたとき、各隣接する熱交換器素子10
同志は、そのうちの一方の熱交換器素子10を形成する板
状体1の両端の開口6、7の周囲の平坦面6a 、7a
と、他方の熱交換器素子10を形成する板状体1の両端の
開口7、6の周囲の平坦面7a 、6a とが、それぞれ当
接させられるとともに、一方の熱交換器素子10を形成す
る板状体1の大突起4、小突起5と、他方の熱交換器素
子10を形成する板状体1の小突起5、大突起4とが、そ
れぞれ当接させられて(図17、図18、図20参
照)、重ね合わせられている。
When a plurality of heat exchanger elements 10 are placed in the same position and superimposed, each adjacent heat exchanger element 10
The competitors form flat surfaces 6a, 7a around the openings 6, 7 at both ends of the plate 1 forming one of the heat exchanger elements 10.
The flat surfaces 7a, 6a around the openings 7, 6 at both ends of the plate-shaped body 1 forming the other heat exchanger element 10 are brought into contact with each other, and the one heat exchanger element 10 is formed. The large projections 4 and small projections 5 of the plate-shaped body 1 to be contacted are respectively brought into contact with the small projections 5 and large projections 4 of the plate-shaped body 1 forming the other heat exchanger element 10 (FIG. 17, FIG. 18 and 20) are superimposed.

【0035】このようにして隣接する2個の熱交換器素
子10同志が重ね合わせられ、熱交換器全体が仮組立てさ
れた状態において、次いで、ろう付けが施されることに
より、前記各当接部が固着されて、縦置多板式熱交換器
20が完成される。
In the state where the two adjacent heat exchanger elements 10 are overlapped in this way and the entire heat exchanger is temporarily assembled, the brazing is performed, and then, each of the abutting portions is contacted. The part is fixed, the vertical multi-plate heat exchanger
20 is completed.

【0036】このようにして完成された縦置多板式熱交
換器20においても、隣接する2個の熱交換器素子10の対
面する2個の板状体1の各凹凸(凹溝3a と突条2a )
のピッチは、丁度1/2ピッチだけずらされている(図
17、図18参照)。このため、該両板状体1、1の各
凹溝3a 、突条2a は、向かい合うことがなくなるとと
もに、一方の板状体1の凹溝3a に他方の板状体1の突
条2a が進入して、両板状体1、1は接近している。
In the vertical multi-plate heat exchanger 20 completed in this manner, each of the concavities and convexities (the concave grooves 3a and the protruding grooves 3a) of the two plate-like bodies 1 facing the two adjacent heat exchanger elements 10 is also provided. Article 2a)
Are shifted by exactly 1/2 pitch (see FIGS. 17 and 18). For this reason, the concave grooves 3a and the ridges 2a of the two plate-shaped members 1 and 1 no longer face each other, and the ridges 2a of the other plate-shaped member 1 are connected to the concave grooves 3a of the one plate-shaped member 1. After entering, both plate-like bodies 1, 1 are approaching.

【0037】この結果、両板状体1、1により形成され
る通路、すなわち、隣接する2個の熱交換器素子10間の
空間(熱交換器素子10の外側の空間)21を流れる熱伝達
媒体は、そのほとんどの部分が蛇行して流れ、その攪乱
効果が発生して、死水域も大幅に減少するので、熱伝達
効率が向上する。
As a result, the heat transfer flowing through the passage formed by the two plate-like bodies 1, that is, the space (space outside the heat exchanger element 10) 21 between two adjacent heat exchanger elements 10. Most of the medium flows in a meandering manner, and its disturbing effect occurs, and the dead water area is greatly reduced, so that the heat transfer efficiency is improved.

【0038】また、両板状体1、1が接近する分だけ、
両熱交換器素子10、10間の幅方向の寸法を減少させるこ
とができ、この面からも、縦置多板式熱交換器20の小型
化を図ることができる。該寸法の減少量は、該通路を流
下させる熱伝達媒体量によって決定される。
Also, as much as the two plate-like bodies 1, 1 approach,
The dimension in the width direction between the two heat exchanger elements 10, 10 can be reduced, and from this aspect as well, the vertical multi-plate heat exchanger 20 can be downsized. The amount of the size reduction is determined by the amount of heat transfer medium flowing down the passage.

【0039】前記両熱交換器素子10、10間の幅方向の寸
法の調節は、大突起4、小突起5、平坦面6a 、7a の
各突出長の調節により行なうことができる。これによ
り、熱伝達媒体の流動抵抗を減少させることができる両
熱交換器素子10、10間の幅方向の寸法の設定が可能とな
る。また、前記のような両熱交換器素子10、10間での大
突起4と小突起5との当接、固着により、熱交換器20の
構造的な強度を向上させることができる。
The dimension in the width direction between the two heat exchanger elements 10, 10 can be adjusted by adjusting the length of each of the large projection 4, the small projection 5, and the flat surfaces 6a, 7a. Thereby, it is possible to set the dimension in the width direction between the two heat exchanger elements 10, which can reduce the flow resistance of the heat transfer medium. Further, the structural strength of the heat exchanger 20 can be improved by the contact and fixation of the large projection 4 and the small projection 5 between the two heat exchanger elements 10 and 10 as described above.

【0040】前記のようにして完成された縦置多板式熱
交換器20は、例えば、吸収冷凍機における吸収器や蒸発
器として使用される。特に、熱伝達媒体が沸点の異なる
複数成分を含む流体である場合の、該流体の蒸発、凝
縮、再生、分溜、濃縮、吸収等の伝熱操作用の熱交換器
として、好適に使用される。
The vertical multiple plate heat exchanger 20 completed as described above is used, for example, as an absorber or an evaporator in an absorption refrigerator. In particular, when the heat transfer medium is a fluid containing a plurality of components having different boiling points, it is suitably used as a heat exchanger for heat transfer operations such as evaporation, condensation, regeneration, fractionation, concentration, and absorption of the fluid. You.

【0041】吸収器として使用される場合、吸収液は、
隣接する熱交換器素子10間の空間21を流下させるように
する。このようにすると、吸収液は、該空間21を画成し
ている各熱交換器素子10の板状体1に形成された凹溝3
a を横切って流下することになるので、それが冷媒蒸気
を吸収して2成分流体になったとしても、凹溝3a の等
二次元曲率溝形状により、均一な膜厚が形成されて、そ
の熱伝達壁面の全面で良好な熱伝達が行なわれるので、
熱伝達効率が向上する。
When used as an absorber, the absorbing liquid
The space 21 between the adjacent heat exchanger elements 10 is caused to flow down. In this way, the absorbing liquid is transferred to the grooves 3 formed in the plate-like body 1 of each heat exchanger element 10 defining the space 21.
Therefore, even if it absorbs the refrigerant vapor and becomes a two-component fluid, a uniform film thickness is formed by the two-dimensional curvature groove shape of the concave groove 3a. Since good heat transfer is performed on the entire surface of the heat transfer wall,
Heat transfer efficiency is improved.

【0042】なお、この場合、冷却水は、板状体1の開
口6、開口7を連ねて下部および上部に形成された入口
通路22および出口通路23、熱交換器素子10内の通路11を
通して流される。蒸発器として使用される場合は、冷媒
液を、隣接する熱交換器素子10間の空間21に流して流下
させ、ブラインを、各熱交換器素子10間の通路11に通流
させる。
In this case, the cooling water flows through the inlet passage 22 and the outlet passage 23 formed at the lower and upper portions by connecting the openings 6 and 7 of the plate-like body 1 and the passage 11 in the heat exchanger element 10. Swept away. When used as an evaporator, the refrigerant liquid flows into the space 21 between the adjacent heat exchanger elements 10 and flows down, and the brine flows through the passage 11 between the heat exchanger elements 10.

【0043】本実施形態は、前記のように構成されてい
るので、さらに、次のような効果を奏することができ
る。熱交換器素子10を形成する各板状体1の両面に形成
された凹凸は、該板状体1の幅方向に連続もしくは断続
して平行に真っ直ぐに延びた突条2a 、凹溝3a 、突条
2b 、凹溝3b により形成されており、その平面形状が
波形にされていないので、各素子10間の空間を流下する
熱伝達媒体が特定の個所に集まる傾向がなくなり(図1
6C参照)、その熱伝達壁面に濡れない部分が生じるこ
とがなくなるので、熱伝達効率が向上する。
Since the present embodiment is configured as described above, the following effects can be further obtained. The irregularities formed on both surfaces of each plate 1 forming the heat exchanger element 10 are continuous or intermittent in the width direction of the plate 1 and extend straight and parallel to the ridges 2a, the grooves 3a, Since the ridges 2b and the grooves 3b are formed and the planar shape is not corrugated, the heat transfer medium flowing down the space between the respective elements 10 does not tend to gather at a specific location (FIG. 1).
6C), the heat transfer wall surface does not have a non-wetting portion, thereby improving heat transfer efficiency.

【0044】また、板状体1の長手方向の中心線CLの
両側に、大突起4と小突起5との2種類の突起が設けら
れているので、各板状体1の上下の判別が容易になる。
この結果、熱交換器素子10を形成するに際して、2枚の
板状体1のうちの一方の板状体1の上下端を他方の板状
体1の上下端と逆にする作業が容易になる。また、各熱
交換器素子10を重ね合わせて、ろう付けにより、縦置多
板式熱交換器20を形成するに際して、大突起4と小突起
5とのろう付け部においては、小突起5の回りによくろ
うが回り込ので、それらの接着がより強固になされる。
Further, since two types of projections, large projections 4 and small projections 5, are provided on both sides of the center line CL in the longitudinal direction of the plate-like body 1, it is possible to distinguish the upper and lower sides of each plate-like body 1. It will be easier.
As a result, when forming the heat exchanger element 10, it is easy to reverse the upper and lower ends of one of the two plate-like bodies 1 with the upper and lower ends of the other plate-like body 1. Become. Further, when the heat exchanger elements 10 are overlapped and brazed to form the vertical multiple-plate heat exchanger 20, the brazing portion between the large projection 4 and the small projection 5 Since the wax is easily wrapped around, their adhesion is made stronger.

【0045】さらに、熱交換器素子10を形成する2枚の
板状体1は、その周縁の平坦面8に沿って互いに密封さ
れているので、各熱交換器素子10の内側の空間に形成さ
れる熱伝達媒体の通路11を、各熱交換器素子10間の空間
に形成される熱伝達媒体の通路21から確実に区画するこ
とができ、一方の熱伝達媒体が他方の熱伝達媒体の側に
漏洩するのを確実に防止することができる。また、これ
により、熱交換器20の構造的な強度を向上させることが
できる。
Furthermore, since the two plate-like members 1 forming the heat exchanger elements 10 are sealed together along the flat surface 8 on the peripheral edge thereof, they are formed in the space inside each heat exchanger element 10. Can be reliably separated from the heat transfer medium passage 21 formed in the space between the heat exchanger elements 10, and one heat transfer medium can be separated from the other heat transfer medium. Leakage to the side can be reliably prevented. Further, thereby, the structural strength of the heat exchanger 20 can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願の請求項1ないし請求項7に記載された発
明の一実施形態における縦置多板式熱交換器の基本的構
成部材である板状体の正面図である。
FIG. 1 is a front view of a plate-like body which is a basic constituent member of a vertical multi-plate heat exchanger according to an embodiment of the present invention described in claims 1 to 7 of the present application.

【図2】図1のII−II線で截断した縦断側面図である。FIG. 2 is a longitudinal sectional side view taken along line II-II of FIG.

【図3】図1の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 1;

【図4】図3のIV−IV線で截断した縦断側面図である。FIG. 4 is a vertical sectional side view taken along line IV-IV of FIG. 3;

【図5】図1のV−V線で截断した縦断側面図である。FIG. 5 is a vertical sectional side view taken along line VV in FIG. 1;

【図6】図1のVI−VI線で截断した縦断側面図である。FIG. 6 is a vertical sectional side view taken along the line VI-VI of FIG. 1;

【図7】図1のVII −VII 線で截断した縦断側面図であ
る。
FIG. 7 is a longitudinal sectional side view taken along line VII-VII of FIG. 1;

【図8】図1のVIII−VIII線で截断した縦断側面図であ
る。
FIG. 8 is a longitudinal sectional side view taken along line VIII-VIII of FIG. 1;

【図9】図1のIX−IX線で截断した縦断側面図である。FIG. 9 is a vertical sectional side view taken along line IX-IX of FIG. 1;

【図10】図1のX−X線で截断した横断面図である。FIG. 10 is a cross-sectional view taken along line XX of FIG.

【図11】図1のXI−XI線で截断した横断面図であ
る。
FIG. 11 is a cross-sectional view taken along line XI-XI in FIG.

【図12】図1のXII−XII線で截断した横断面図であ
る。
FIG. 12 is a cross-sectional view taken along line XII-XII of FIG. 1;

【図13】図1の実施形態における縦置多板式熱交換器
の素子の部分縦断側面図であって、図4と同じ位置で見
た図である。
FIG. 13 is a partial vertical sectional side view of an element of the vertical multi-plate heat exchanger in the embodiment of FIG. 1, viewed from the same position as in FIG. 4;

【図14】図1の実施形態における縦置多板式熱交換器
の正面図であって、手前から2枚目の板状体の正面を透
視した図である。
14 is a front view of the vertical multi-plate heat exchanger in the embodiment of FIG. 1, which is a perspective view of a front surface of a second plate-like body from the near side.

【図15】図14のXV−XV線で截断した縦断側面図
である。
FIG. 15 is a vertical sectional side view taken along line XV-XV of FIG. 14;

【図16】図14の部分拡大図である。FIG. 16 is a partially enlarged view of FIG. 14;

【図17】図16のXVII −XVII 線で截断した縦断側
面図である。
FIG. 17 is a vertical sectional side view taken along line XVII-XVII in FIG. 16;

【図18】図14のXVIII−XVIII線で截断した部分縦
断側面図である。
FIG. 18 is a partial vertical sectional side view taken along line XVIII-XVIII in FIG. 14;

【図19】図14のXIX−XIX線で截断した部分縦断側
面図である。
FIG. 19 is a partial vertical sectional side view taken along line XIX-XIX in FIG. 14;

【図20】図14のXX−XX線で截断した部分横断側
面図である。
FIG. 20 is a partial cross-sectional side view taken along line XX-XX in FIG. 14;

【図21】図14のXXI−XXI線で截断した部分横
断側面図である。
21 is a partial cross-sectional side view cut along the line XXI-XXI in FIG. 14;

【図22】従来例を示す図である。FIG. 22 is a diagram showing a conventional example.

【図23】他の従来例を示す図である。FIG. 23 is a diagram showing another conventional example.

【図24】さらに他の従来例を示す図である。FIG. 24 is a view showing still another conventional example.

【符号の説明】[Explanation of symbols]

1…板状体、2a 、2b …突条、3a 、3b …凹溝、4
…大突起、5…小突起、6…開口、6a 、6b …平坦
面、7…開口、7a 、7b …平坦面、8…平坦面、10…
熱交換器素子、11…通路、12…空間、20…縦置多板式熱
交換器、21…空間(通路)、22…入口通路、23…出口通
路、A、B…面。
DESCRIPTION OF SYMBOLS 1 ... Plate-like body, 2a, 2b ... Protrusion, 3a, 3b ... Concave groove, 4
... Large protrusion, 5 ... Small protrusion, 6 ... Opening, 6a, 6b ... Flat surface, 7 ... Opening, 7a, 7b ... Flat surface, 8 ... Flat surface, 10 ...
Heat exchanger element, 11 passage, 12 space, 20 vertical multi-plate heat exchanger, 21 space (passage), 22 inlet passage, 23 outlet passage, A, B surface.

フロントページの続き (72)発明者 高石 敏充 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 一色 尚次 東京都世田谷区経堂2丁目29番6号 (72)発明者 坂井 耐事 東京都渋谷区代々木3丁目25番3号 東洋 ラジエーター株式会社内 (72)発明者 二村 信地 東京都渋谷区代々木3丁目25番3号 東洋 ラジエーター株式会社内 (72)発明者 和田 努 東京都渋谷区代々木3丁目25番3号 東洋 ラジエーター株式会社内Continuing from the front page (72) Inventor Toshimitsu Takaishi 1-4-1 Chuo, Wako-shi, Saitama Prefecture Inside Honda R & D Co., Ltd. (72) Inventor Shoji Isshiki 2-29-6 Keido, Setagaya-ku, Tokyo (72 ) Inventor Sakai Taiyo 3-25-3 Yoyogi, Shibuya-ku, Tokyo Toyo Radiator Co., Ltd. (72) Inventor Shinchi Nimura 3-25-3 Yoyogi, Shibuya-ku, Tokyo Toyo Radiator Co., Ltd. (72) Invention Toshi Wada Tsutomu 3-25-3 Yoyogi, Shibuya-ku, Tokyo Toyo Radiator Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 両面に凹凸加工が施された2枚の細長い
板状体を互いに重ね合わせて形成された素子を、その長
手方向を上下にして縦置に複数個重ね合わせ、各素子の
内側の空間を一方の熱伝達媒体が通過するための通路と
し、各素子間の空間を他方の熱伝達媒体が通過するため
の通路とした縦置多板式熱交換器において、 前記各板状体は、その長手方向の両端部にそれぞれ開口
が形成され、該開口の周囲に、該板状体の一方の面にお
いては少なくとも該面に施された前記凹凸の凸部と同じ
高さまで突出した平坦面が、他方の面においては少なく
とも該面に施された前記凹凸の凹部と同じ深さまで凹入
した平坦面が、それぞれ形成され、 前記凹凸は、前記各板状体の長手方向に交互に等間隔に
配列されかつ幅方向に連続もしくは断続して平行に真っ
直ぐに延びた凹溝と突条とにより形成され、 前記凹溝は、前記各板状体の一方の面に施された前記凹
凸の凹部に対応する凹溝の断面形状が、等二次元曲率溝
形状に形成され、 前記素子は、前記2枚の板状体の各々の一方の面を外側
に、他方の面を内側にして互いに重ね合わせて形成さ
れ、 前記素子の複数個が、前記突出した平坦面同志を互いに
当接させて重ね合わせられて結合されたことを特徴とす
る縦置多板式熱交換器。
1. A plurality of elements formed by superposing two elongated plate-like bodies each having an uneven surface on both sides are vertically stacked with their longitudinal direction being up and down. In a vertical multi-plate heat exchanger in which a space is a passage through which one heat transfer medium passes and a space between the elements is a passage through which the other heat transfer medium passes, An opening is formed at each of both ends in the longitudinal direction, and a flat surface is formed around the opening, and on one surface of the plate-like body, at least as high as the projections of the irregularities provided on the surface. However, on the other surface, flat surfaces recessed to the same depth as at least the concave portions of the irregularities applied to the surface are respectively formed, and the irregularities are equally spaced alternately in the longitudinal direction of each plate-like body. Arranged in parallel and continuous or intermittent in the width direction The concave groove is formed by a straight groove and a ridge, and the concave groove has a cross-sectional shape of a concave groove corresponding to the concave and convex concave portion formed on one surface of each of the plate-like bodies, and has an equal two-dimensional curvature. The device is formed in a groove shape, and the elements are formed so as to overlap each other with one surface of each of the two plate-shaped members facing outward and the other surface facing inward. A vertical multi-plate heat exchanger characterized in that the flat surfaces that have been made to contact each other are overlapped and connected.
【請求項2】 前記2枚の板状体は、各板状体の凹凸の
ピッチが1/2ピッチだけずらされて互いに重ね合わせ
られたことを特徴とする請求項1記載の縦置多板式熱交
換器。
2. The vertical multi-plate system according to claim 1, wherein the two plate-like bodies are overlapped with each other with the pitch of the unevenness of each plate-like body shifted by 1 / pitch. Heat exchanger.
【請求項3】 前記各板状体の長手方向に配列された凹
凸は、その配列の全幅の中心線が、該板状体の長手方向
の中心線に対し、該凹凸のピッチの1/4ピッチだけず
らされて配列されたことを特徴とする請求項2記載の縦
置多板式熱交換器。
3. The unevenness arranged in the longitudinal direction of each plate-like body is such that the center line of the entire width of the arrangement is 1/4 of the pitch of the unevenness with respect to the longitudinal center line of the plate-like body. 3. The vertical multiple plate heat exchanger according to claim 2, wherein the heat exchangers are arranged shifted by a pitch.
【請求項4】 前記各板状体の一方の面上に、間隔保持
用突起が設けられたことを特徴とする請求項1ないし請
求項3のいずれかに記載の縦置多板式熱交換器。
4. The vertical multi-plate heat exchanger according to claim 1, wherein a spacing holding projection is provided on one surface of each of said plate-like bodies. .
【請求項5】 前記間隔保持用突起は、前記板状体の長
手方向の中心線より該長手方向の一方側における大突起
と、他方側における小突起との2種類の突起からなり、
これらの大突起と小突起とが、該板状体の長手方向の中
心線に対して対称の位置に設けられたことを特徴とする
請求項4記載の縦置多板式熱交換器。
5. The projection for maintaining spacing includes two types of projections: a large projection on one side in the longitudinal direction from a longitudinal center line of the plate-like body and a small projection on the other side.
The vertical multi-plate heat exchanger according to claim 4, wherein the large projections and the small projections are provided at positions symmetrical with respect to a longitudinal center line of the plate-shaped body.
【請求項6】 前記各板状体に形成されもしくは設けら
れる凹凸、開口、突出した平坦面、凹入した平坦面およ
び間隔保持用突起は、いずれもプレス加工により同時に
形成されたことを特徴とする請求項4または請求項5記
載の縦置多板式熱交換器。
6. The method according to claim 1, wherein the irregularities, openings, protruding flat surfaces, recessed flat surfaces, and spacing maintaining projections formed or provided on each of the plate-like bodies are simultaneously formed by press working. The vertical multi-plate heat exchanger according to claim 4 or 5, wherein
【請求項7】 前記素子を形成する2枚の板状体は、そ
の周縁に沿って互いに密封されていることを特徴とする
請求項1ないし請求項6のいずれかに記載の縦置多板式
熱交換器。
7. The vertical multi-plate type according to claim 1, wherein the two plate-like members forming the element are sealed from each other along the periphery thereof. Heat exchanger.
JP12873197A 1997-05-19 1997-05-19 Vertical multi-plate heat exchanger Expired - Fee Related JP3829957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12873197A JP3829957B2 (en) 1997-05-19 1997-05-19 Vertical multi-plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12873197A JP3829957B2 (en) 1997-05-19 1997-05-19 Vertical multi-plate heat exchanger

Publications (2)

Publication Number Publication Date
JPH10318692A true JPH10318692A (en) 1998-12-04
JP3829957B2 JP3829957B2 (en) 2006-10-04

Family

ID=14992066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12873197A Expired - Fee Related JP3829957B2 (en) 1997-05-19 1997-05-19 Vertical multi-plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3829957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929662B1 (en) 2008-04-04 2009-12-03 장한기술 주식회사 Double Dimple Plate Hot Plate and Heat Exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100929662B1 (en) 2008-04-04 2009-12-03 장한기술 주식회사 Double Dimple Plate Hot Plate and Heat Exchanger

Also Published As

Publication number Publication date
JP3829957B2 (en) 2006-10-04

Similar Documents

Publication Publication Date Title
JP5307252B2 (en) Plates and gaskets for plate heat exchangers
CN100401002C (en) Brazing-sheet type heat exchanger capable of using three kinds of medium to exchange heat
WO2000052411A1 (en) Plate type heat exchanger
JPS63197986U (en)
JP2007205634A (en) Plate type heat exchanger
EP0423275A1 (en) Heat exchanger wall assembly
KR20010015811A (en) Heat exchanger
JPH10318692A (en) Vertical multi-plate type heat exchanger
RU98100247A (en) LAMINATED HEAT EXCHANGER CONTAINING PLASTIC ELEMENTS PLACED IN A Bundle, WHERE THE DIAGONALLY OPPOSITE ANGLES OF EACH PLATE CONTAINS A DEEPER CORNER AREAS
JP4519437B2 (en) Joined plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
JP3423549B2 (en) Multi-plate heat exchanger
JPH01106768U (en)
JPH0335989Y2 (en)
JP3976418B2 (en) Multi-plate heat exchanger
JPS5924195A (en) Member for heat exchanger and heat exchanger
JP4018280B2 (en) Flat tube for heat exchanger
JPH07260384A (en) Plate type heat exchanger
KR20180131026A (en) Method for manufacturing heat panel of 4-side opend multi-pass heat exchanger
JPS61186794A (en) Plate type heat exchanger
JP2519964Y2 (en) Plate heat exchanger
SU638835A1 (en) Plate-type heat-exchanger stack
JPS5842793Y2 (en) Heat exchanger
JPS6347742Y2 (en)
JPH074481B2 (en) Heat transfer plate element for plate type falling film evaporator

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Written amendment

Effective date: 20060616

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060705

A61 First payment of annual fees (during grant procedure)

Effective date: 20060705

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120721

LAPS Cancellation because of no payment of annual fees