JPH10318684A - Dc arc furnace - Google Patents

Dc arc furnace

Info

Publication number
JPH10318684A
JPH10318684A JP9129242A JP12924297A JPH10318684A JP H10318684 A JPH10318684 A JP H10318684A JP 9129242 A JP9129242 A JP 9129242A JP 12924297 A JP12924297 A JP 12924297A JP H10318684 A JPH10318684 A JP H10318684A
Authority
JP
Japan
Prior art keywords
furnace
arc
magnetic field
electrode
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9129242A
Other languages
Japanese (ja)
Other versions
JP3533552B2 (en
Inventor
Norio Ao
範夫 青
Hirotsugu Kubo
博嗣 久保
Shinpei Yamamoto
晋平 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12924297A priority Critical patent/JP3533552B2/en
Publication of JPH10318684A publication Critical patent/JPH10318684A/en
Application granted granted Critical
Publication of JP3533552B2 publication Critical patent/JP3533552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To control the deflecting direction of an arc, reduce original electrode unit cost, prevent the damage of an equipment and improve a melting efficiency in a dc arc furnace having two upper electrodes. SOLUTION: A dc arc furnace comprises a furnace main body 1 having a furnace bottom electrode 3 on a bottom part, two upper electrodes 4 and 5 elevated and lowered in the furnace main body, upper feed conductors 10 and 11 connected to the upper electrodes 4 and 5, a lower feed conductor 9 connected to the furnace bottom electrode and dc power sources 6 and 7 provided between the ends of the upper feed conductors 10, 11 and the lower feed conductor 9. A magnetic field generator 8 for forming vertical magnetic fields 22 in arc generating positions is provided below the furnace main body. At this time, the horizontally circulating coil shaped lower feed conductor can be also used as the magnetic field generator 8. The intensity of the vertical magnetic field 22 is made larger than that of a horizontal magnetic field 21 or two systems of dc power sources are provided to control individually currents supplied to the two upper electrodes 4 and 5 with larger effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄スクラップや直
接還元鉄等の鉄源を溶解する2本の上部電極を有する直
流アーク炉に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC arc furnace having two upper electrodes for melting an iron source such as iron scrap and direct reduced iron.

【0002】[0002]

【従来の技術】鉄スクラップや直接還元鉄等を溶解する
製鋼用アーク炉において、電源のフリッカ障害が少な
く、電極原単位の少ない直流アーク炉の設置が進んでい
る。そして、生産性向上のため、大型化及び大電力化が
進み、生産能力が200トン/時以上の直流アーク炉も
稼働している。直流アーク炉は、黒鉛製の1本の上部電
極を炉の中心に設けて同心円状の溶解を行なう炉が主体
であり、この場合、炉の大型化及び大電力化に伴い負荷
電流を増大する必要があるが、上部電極の許容電流制限
により大型化の上限が決まっていた。又、過大な電流を
黒鉛製上部電極に流した場合には、上部電極の割れや折
損等の異常消耗が増加し、直流アーク炉の長所である電
極原単位の低減効果が得られないという問題も生じた。
2. Description of the Related Art In a steelmaking arc furnace for melting iron scrap, direct reduced iron, and the like, a DC arc furnace with less flicker disturbance of a power source and a smaller electrode unit has been increasingly installed. In order to improve productivity, the size and power consumption have been increased, and DC arc furnaces having a production capacity of 200 tons / hour or more have been operated. DC arc furnaces are mainly furnaces that perform concentric melting by providing one graphite upper electrode at the center of the furnace. In this case, the load current increases with the increase in the size and power of the furnace. Although it is necessary, the upper limit of the size increase is determined by the allowable current limit of the upper electrode. Also, when an excessive current is applied to the graphite upper electrode, abnormal wear such as cracking or breakage of the upper electrode increases, and the effect of reducing the basic unit of electrode which is an advantage of the DC arc furnace cannot be obtained. Also occurred.

【0003】そこで、大型の直流アーク炉において、複
数本の上部電極を有する炉が提案され、例えば、特開平
6−300467号公報には、図4の平面図に示すよう
に、炉本体1内を昇降する黒鉛製の2本の上部電極4、
5を有する直流アーク炉が開示されている。ところで、
直流アーク炉の場合、一般に、炉本体1の底部に設けた
炉底電極3を陽極、上部電極4、5を陰極とするので、
上部電極4、5を流れる電流は炉底側から上向き方向に
流れ、この電流により上部電極4、5の周囲に、電流方
向に対して右回りの水平磁場21(磁力線の方向が水平
方向の磁場)が形成される。そのため、上部電極4、5
と炉底電極3との間に発生するアーク19には、他方の
上部電極4、5の周囲に形成される水平磁場21によ
り、フレミングの左手の法則に従って電磁力(吸引力)
が作用する。その結果、アーク19は互いに他方の上部
電極4、5の方向に偏向することになる。
[0003] In view of this, a large DC arc furnace having a plurality of upper electrodes has been proposed. For example, Japanese Patent Application Laid-Open No. 6-300467 discloses a furnace as shown in the plan view of FIG. Two upper electrodes 4 made of graphite,
A DC arc furnace having 5 is disclosed. by the way,
In the case of a DC arc furnace, the bottom electrode 3 provided on the bottom of the furnace body 1 is generally used as an anode, and the upper electrodes 4 and 5 are generally used as cathodes.
The current flowing through the upper electrodes 4 and 5 flows upward from the furnace bottom side, and this current causes a horizontal magnetic field 21 (clockwise with respect to the current direction) around the upper electrodes 4 and 5 with respect to the current direction. ) Is formed. Therefore, the upper electrodes 4, 5
An arc 19 generated between the furnace electrode 3 and the bottom electrode 3 causes an electromagnetic force (attraction force) according to Fleming's left-hand rule by a horizontal magnetic field 21 formed around the other upper electrodes 4 and 5.
Works. As a result, the arcs 19 are deflected toward the other upper electrodes 4 and 5.

【0004】このため、アーク19による強大な熱負荷
が互いに他方の上部電極4、5に加わり、上部電極4、
5の消耗が過大となる。又、加熱源であるアーク熱が2
本の上部電極4、5の間に集中するため、2本の上部電
極の間のみが溶解域20となって広範囲の溶解を行なう
ことができず、溶解効率が低下すると共に、炉蓋への熱
負荷が増大して設備トラブルを招くことも多々あった。
[0004] For this reason, a large heat load due to the arc 19 is applied to the other upper electrodes 4, 5, and the upper electrodes 4, 5.
5 is excessively consumed. In addition, the arc heat as a heating source is 2
Since it concentrates between the two upper electrodes 4 and 5, only the space between the two upper electrodes becomes the melting zone 20, so that a wide range of melting cannot be performed. In many cases, an increase in heat load causes equipment trouble.

【0005】更に、電極に給電するための給電導体に流
れる電流が水平磁場を作り、この磁場もアークに作用す
る場合には、この水平磁場による電磁力により2つのア
ークは同一方向に偏向されるため、不均一溶解のみなら
ず、アークの偏向方向の炉壁の損傷等の問題も発生する
ことになる。
Further, when the current flowing through the power supply conductor for supplying power to the electrodes forms a horizontal magnetic field, and this magnetic field also acts on the arc, the two arcs are deflected in the same direction by the electromagnetic force due to the horizontal magnetic field. Therefore, not only non-uniform melting, but also problems such as damage to the furnace wall in the arc deflection direction occur.

【0006】又、特開平1−167571号公報には、
3相交流アーク炉と同様に、3本の上部電極を有する直
流アーク炉が開示されている。しかし、上部電極を3本
とした場合には、黒鉛製の上部電極の表面積が大きくな
るので、酸化消耗が増加して電極原単位の低減効果が得
られないばかりか、アークが上部電極による相互の電磁
力により炉の中心に向かうため、強力な熱負荷を炉蓋に
与えてしまい、2本の上部電極の場合より、更に設備の
損傷やトラブルにつながることになる。
[0006] Japanese Patent Application Laid-Open No. 1-167571 discloses that
A DC arc furnace having three upper electrodes, as well as a three-phase AC arc furnace, is disclosed. However, when the number of the upper electrodes is three, the surface area of the graphite upper electrode becomes large, so that not only the oxidation consumption is increased and the effect of reducing the electrode unit consumption is not obtained, but also the arc is formed by the upper electrode. Because the electromagnetic force of the furnace heads toward the center of the furnace, a strong thermal load is applied to the furnace lid, which further damages and troubles the equipment compared to the case of two upper electrodes.

【0007】[0007]

【発明が解決しようとする課題】このように、炉の大型
化及び大電力化と共に提案されてきた複数本の上部電極
を有する従来の直流アーク炉は、水平磁場によりアーク
が偏向するため、直流炉の特徴である電極原単位の低減
を達成できないばかりか、設備の損傷や溶解効率の低下
を招き、直流アーク炉の効果を十分に発揮しているとは
言いがたく、改善の余地が大きいのが現状である。
As described above, the conventional DC arc furnace having a plurality of upper electrodes, which has been proposed with the increase in the size and the power of the furnace, has a problem in that the DC is deflected by a horizontal magnetic field. In addition to not being able to reduce the electrode unit consumption, which is a feature of the furnace, it is not possible to say that the effects of the DC arc furnace are fully exerted, causing damage to the equipment and lowering the melting efficiency, and there is much room for improvement. is the current situation.

【0008】本発明は、上記事情に鑑みなされたもの
で、その目的とするところは、2本の上部電極を有する
大型直流アーク炉において、アークの偏向方向を制御し
て局所溶解を防止し、電極原単位を低減すると共に、設
備の損傷がなく、且つ、溶解効率の良い直流アーク炉を
提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to control the deflection direction of an arc in a large DC arc furnace having two upper electrodes to prevent local melting. An object of the present invention is to provide a DC arc furnace which has a reduced electrode unit consumption, has no damage to equipment, and has a high melting efficiency.

【0009】[0009]

【課題を解決するための手段】第1の発明による直流ア
ーク炉は、炉本体と、炉本体の底部に設けた炉底電極
と、炉本体内を昇降する2本の上部電極と、上部電極に
接続する上部給電導体と、炉底電極に接続する下部給電
導体と、上部給電導体及び下部給電導体の端間に接続す
る直流電源とを備え、上部電極と炉底電極との間でアー
クを発生させる直流アーク炉において、アーク発生位置
に鉛直磁場を形成する磁場発生装置を炉本体の下方に設
けたことを特徴とするものである。
A DC arc furnace according to a first aspect of the present invention comprises a furnace main body, a furnace bottom electrode provided at the bottom of the furnace main body, two upper electrodes moving up and down in the furnace main body, and an upper electrode. An upper power supply conductor connected to the furnace bottom electrode, a lower power supply conductor connected to the bottom electrode, and a DC power supply connected between the ends of the upper power supply conductor and the lower power supply conductor. In a DC arc furnace to be generated, a magnetic field generator for forming a vertical magnetic field at an arc generating position is provided below a furnace main body.

【0010】図1(a)は、炉底電極を陽極とし、陰極
として2本の上部電極を有する直流アーク炉において、
上部電極に発生するアークの偏向方向を概略的に示した
正面図であり、図中、4、5は上部電極、18は溶湯、
19はアーク、21は水平磁場、Iは上部電極4、5を
流れる電流、Fhは水平磁場21によりアーク19に作
用する電磁力である。図1(a)に示すように、上部電
極4と溶湯18とで発生するアーク19には、他方の上
部電極5を炉底側から上向きに流れる電流Iが形成する
水平磁場21により、フレミングの左手の法則に従っ
て、アーク19を他方の上部電極5の方向に向ける電磁
力Fhが作用する。同様に、上部電極5と溶湯18とで
発生するアーク19にも、他方の上部電極4の方向に向
ける電磁力Fhが作用するので、アーク19は互いに他
方の上部電極4、5の方向に偏向する。即ち、2つのア
ーク19、19には相互に吸引力が作用し、アーク1
9、19は互いに近寄る方向に偏向する。
FIG. 1A shows a DC arc furnace having a furnace bottom electrode as an anode and two cathodes as cathodes.
It is the front view which showed roughly the deflection direction of the arc which generate | occur | produced in an upper electrode, In the figure, 4 and 5 are upper electrodes, 18 is molten metal,
19 is an arc, 21 is a horizontal magnetic field, I is a current flowing through the upper electrodes 4 and 5, and Fh is an electromagnetic force acting on the arc 19 by the horizontal magnetic field 21. As shown in FIG. 1A, an arc 19 generated between the upper electrode 4 and the molten metal 18 is subjected to framing by a horizontal magnetic field 21 formed by a current I flowing upward from the furnace bottom side through the other upper electrode 5. According to the left-hand rule, an electromagnetic force Fh that directs the arc 19 toward the other upper electrode 5 acts. Similarly, an electromagnetic force Fh directed toward the other upper electrode 4 also acts on an arc 19 generated between the upper electrode 5 and the molten metal 18, so that the arcs 19 are deflected toward the other upper electrode 4, 5. I do. That is, the attraction force acts on the two arcs 19 and 19 mutually, and the arc 1
9 and 19 deflect in directions approaching each other.

【0011】本発明では、鉛直磁場(磁力線の方向が鉛
直方向の磁場)を形成する磁場発生装置を炉本体の下方
に設け、この鉛直磁場を上記の水平磁場と共に、両方の
アークに印加する。図1(b)は、磁場発生装置を水平
方向に周回するコイル形状とし、水平磁場と、炉底側か
ら上方に向かう鉛直磁場とが印加された時のアークの偏
向方向を概略的に示した平面図であり、図中、8はコイ
ル形状の磁場発生装置、19aは水平磁場のみ作用した
時のアークの偏向方向、iは磁場発生装置8のコイルに
流れる電流とその方向、Fvは鉛直磁場によりアーク1
9に作用する電磁力、θは偏向角度であり、図1(a)
と同じものは説明を省略する。図1(b)に示すよう
に、炉底側から上方に向かう鉛直磁場がアーク19に印
加されると、アーク19にはアーク19を旋回させる電
磁力Fvが作用する。尚、この旋回方向は、図1(b)
の場合には、磁場発生装置8のコイルに流れる電流iと
同一方向となる。図1(b)では磁場発生装置8のコイ
ルに流れる電流iは、炉の上方から見た場合、反時計廻
りであるので、反時計廻りにアーク19を旋回させる電
磁力Fvが作用し、アーク19は他方の上部電極4、5
に対してそれぞれ左側へ、偏向角度θだけ偏向し、最終
的には、水平磁場21による電磁力Fhと鉛直磁場によ
る電磁力Fvとが平衡する方向に偏向する。
In the present invention, a magnetic field generator for generating a vertical magnetic field (the direction of the lines of magnetic force is a vertical magnetic field) is provided below the furnace main body, and this vertical magnetic field is applied to both arcs together with the horizontal magnetic field. FIG. 1B schematically shows the deflection direction of the arc when a horizontal magnetic field and a vertical magnetic field that is directed upward from the bottom of the furnace are applied to the magnetic field generator in the form of a coil that circulates in the horizontal direction. 8 is a plan view, in which 8 is a coil-shaped magnetic field generator, 19a is the deflection direction of the arc when only a horizontal magnetic field is applied, i is the current and its direction flowing through the coil of the magnetic field generator 8, and Fv is the vertical magnetic field. By arc 1
9 is a deflection angle, and the electromagnetic force acting on 9 is shown in FIG.
The description of the same components as described above is omitted. As shown in FIG. 1B, when a vertical magnetic field that is directed upward from the furnace bottom is applied to the arc 19, an electromagnetic force Fv that turns the arc 19 acts on the arc 19. This turning direction is shown in FIG.
In this case, the direction is the same as the current i flowing through the coil of the magnetic field generator 8. In FIG. 1 (b), the current i flowing through the coil of the magnetic field generator 8 is counterclockwise when viewed from above the furnace, so that the electromagnetic force Fv for turning the arc 19 counterclockwise acts, 19 is the other upper electrode 4, 5
Respectively, and is deflected to the left by a deflection angle θ, and finally is deflected in a direction in which the electromagnetic force Fh by the horizontal magnetic field 21 and the electromagnetic force Fv by the vertical magnetic field are balanced.

【0012】アーク発生位置での水平磁場強度をBh、
又、アーク発生位置での鉛直磁場強度をBvとして、水
平磁場強度(Bh)と鉛直磁場強度(Bv)と上部電極
に流れる電流(I)とから、水平磁場によりアークを偏
向させる電磁力(Fh)及び鉛直磁場によりアークを旋
回させる電磁力(Fv)を求める。アークの発生状況を
上部電極先端の片減り角度の調査から判断すると、アー
クは上部電極軸心に対して約20〜30度の角度を持っ
て発生しているので、各々の単位長さ当たりの電磁力
は、以下の(1)式、及び(2)式で表される。 Fh=(I×cos20°)×Bh ……(1) Fv=(I×sin20°)×Bv ……(2)
The horizontal magnetic field strength at the arc generating position is Bh,
Also, assuming that the vertical magnetic field strength at the arc generating position is Bv, the electromagnetic force (Fh) for deflecting the arc by the horizontal magnetic field is obtained from the horizontal magnetic field strength (Bh), the vertical magnetic field strength (Bv), and the current (I) flowing through the upper electrode. ) And the electromagnetic force (Fv) for rotating the arc by the vertical magnetic field is determined. Judgment of the occurrence of the arc based on the investigation of the angle of decrease of the tip of the upper electrode indicates that the arc is generated at an angle of about 20 to 30 degrees with respect to the axis of the upper electrode. The electromagnetic force is represented by the following equations (1) and (2). Fh = (I × cos20 °) × Bh (1) Fv = (I × sin20 °) × Bv (2)

【0013】又、アークの他方の上部電極方向からの偏
向角度(θ)は、(3)式で表される。 sinθ=Fv/Fh ≒0.36×(Bv/Bh) ……(3)
Further, the deflection angle (θ) of the arc from the direction of the other upper electrode is expressed by the following equation (3). sinθ = Fv / Fh ≒ 0.36 × (Bv / Bh) …… (3)

【0014】即ち、アーク発生位置における鉛直磁場強
度(Bv)を大きくすればする程、アークの偏向角度
(θ)は大きくなり、例えば、アーク発生位置における
鉛直磁場強度(Bv)を水平磁場強度(Bh)と同一と
すれば、偏向角度(θ)は約20度となる。更に、鉛直
磁場強度(Bv)を水平磁場強度(Bh)以上とすれ
ば、それに応じて偏向角度(θ)は20度以上になる。
That is, the larger the vertical magnetic field strength (Bv) at the arc generating position, the larger the deflection angle (θ) of the arc becomes. For example, the vertical magnetic field strength (Bv) at the arc generating position is changed to the horizontal magnetic field strength (B). If it is the same as Bh), the deflection angle (θ) is about 20 degrees. Furthermore, if the vertical magnetic field strength (Bv) is equal to or greater than the horizontal magnetic field strength (Bh), the deflection angle (θ) is correspondingly equal to or greater than 20 degrees.

【0015】このように、本発明ではアークを他方の上
部電極の方向から偏向させることができるため、上部電
極への直接的な熱影響が防止されて電極原単位が低減
し、又、2つのアークが離れる方向に偏向されるので、
溶解域が広がり局所溶解が防止されて溶解効率が向上す
る。
As described above, in the present invention, since the arc can be deflected from the direction of the other upper electrode, a direct thermal effect on the upper electrode is prevented, and the basic unit of the electrode is reduced. Since the arc is deflected away,
The dissolution area is widened, local dissolution is prevented, and dissolution efficiency is improved.

【0016】第2の発明による直流アーク炉は、第1の
発明による直流アーク炉において、磁場発生装置が、水
平方向に周回するコイル形状とした下部給電導体である
ことを特徴とするものである。
A DC arc furnace according to a second aspect of the present invention is the DC arc furnace according to the first aspect, wherein the magnetic field generator is a lower power supply conductor having a coil shape orbiting in a horizontal direction. .

【0017】炉底電極への下部給電導体の一部を、炉底
を水平方向に周回するコイル形状として炉本体下方に配
置した後、炉底電極に接続させる。そして、上部電極と
炉底電極との間に加熱・溶解用の直流電流を流すと、下
部給電導体のコイル形状部において、強力な鉛直方向の
磁場が形成されるので、下部給電導体が磁場発生装置を
兼用することができる。この場合には、専用の磁場発生
装置を配置する必要もなく、又、磁場発生装置の電源も
併用することができるので、設備費を軽減することがで
きる。
A part of the lower power supply conductor to the furnace bottom electrode is disposed below the furnace main body in a coil shape that circulates the furnace bottom in the horizontal direction, and is then connected to the furnace bottom electrode. When a DC current for heating and melting is passed between the upper electrode and the furnace bottom electrode, a strong vertical magnetic field is formed in the coil-shaped portion of the lower power supply conductor. The device can also be used. In this case, there is no need to arrange a dedicated magnetic field generator, and the power source of the magnetic field generator can be used together, so that the equipment cost can be reduced.

【0018】第3の発明による直流アーク炉は、第1の
発明又は第2の発明による直流アーク炉において、磁場
発生装置が、アーク発生位置において水平磁場強度より
大きい磁場強度の鉛直磁場を形成することを特徴とする
ものである。
In a DC arc furnace according to a third aspect of the present invention, in the DC arc furnace according to the first or second aspect, the magnetic field generator forms a vertical magnetic field having a magnetic field strength greater than the horizontal magnetic field strength at the arc generating position. It is characterized by the following.

【0019】アーク発生位置での鉛直磁場強度を水平磁
場強度より大きくすれば、アークの偏向角度(θ)は常
に20度以上となり、上部電極への直接的な熱影響が防
止されて電極原単位が低減する。又、2つのアークが離
れる方向に偏向されるので、溶解域が広がり局所溶解が
防止されて溶解効率が向上する。
If the vertical magnetic field strength at the arc generating position is larger than the horizontal magnetic field strength, the deflection angle (θ) of the arc will always be 20 degrees or more, and the direct thermal influence on the upper electrode will be prevented, and the basic unit of the electrode will be reduced. Is reduced. In addition, since the two arcs are deflected in a direction away from each other, a melting region is widened, local melting is prevented, and melting efficiency is improved.

【0020】第4の発明による直流アーク炉は、第1の
発明ないし第3の発明の何れか1つの発明による直流ア
ーク炉において、炉本体が、炉本体の中心を通る直線上
に出鋼口と作業口とを有し、2本の上部電極の間隔が炉
本体内径の1/4〜1/2で、且つ、2本の上部電極の
中心を結ぶ直線が出鋼口と作業口とを結ぶ炉の中心線に
対して45度以上90度未満傾斜していると共に、出鋼
口に近い上部電極のアークが作業口方向に偏向し、作業
口に近い上部電極のアークが出鋼口方向に偏向するよう
に磁場発生装置を配置したことを特徴とするものであ
る。
A DC arc furnace according to a fourth aspect of the present invention is the DC arc furnace according to any one of the first to third aspects of the invention, wherein the furnace main body has a tapping port on a straight line passing through the center of the furnace main body. And a working port, the interval between the two upper electrodes is 1 / to 1 / of the inner diameter of the furnace main body, and a straight line connecting the centers of the two upper electrodes defines the tapping port and the working port. The arc of the upper electrode near the tap hole is deflected toward the working port while the arc of the upper electrode near the tap port is inclined at 45 degrees or more and less than 90 degrees with respect to the center line of the furnace. The magnetic field generator is arranged so as to be deflected to the right.

【0021】2本の上部電極の間隔が炉本体内径の1/
4未満では、間隔が狭過ぎるために、広域溶解ができな
いと同時に、アークを偏向させても他方の上部電極への
熱影響が発生して、電極原単位の改善効果が少ない。
又、2本の上部電極の間隔が炉本体内径の1/2を超え
ると、炉壁に電極が近くなり、片方の上部電極にのみ通
電した場合には、炉壁への熱負荷が過大となって、炉壁
の損傷が発生する。
The distance between the two upper electrodes is 1/1 / the inner diameter of the furnace body.
If the distance is less than 4, the interval is too narrow to perform melting in a wide area, and at the same time, even if the arc is deflected, a thermal effect occurs on the other upper electrode, so that the effect of improving the basic unit of the electrode is small.
Also, if the distance between the two upper electrodes exceeds half the inner diameter of the furnace body, the electrodes will be closer to the furnace wall, and if only one upper electrode is energized, the heat load on the furnace wall will be excessive. As a result, damage to the furnace wall occurs.

【0022】2本の上部電極の中心を結ぶ直線が出鋼口
と作業口とを結ぶ炉の中心線に対して45度未満では、
作業口と作業口に近い上部電極との距離が短くなるた
め、操業中に作業口から炉本体内に吹き込む昇温用又は
脱炭用酸素によって、作業口に近い上部電極が酸化され
易くなり、電極原単位の増大を招き、好ましくない。尚
本発明では、2本の上部電極の中心を結ぶ直線が炉の中
心線となす角度は、小さい方の角度即ち鋭角の方の角度
で示したものである。又、90度の場合には、電源と上
部給電導体との配置が複雑となるので、好ましくない。
If the straight line connecting the centers of the two upper electrodes is less than 45 degrees with respect to the center line of the furnace connecting the tapping port and the working port,
Since the distance between the working port and the upper electrode near the working port is shortened, the upper electrode near the working port is easily oxidized by oxygen for heating or decarburization blown into the furnace body from the working port during operation, This results in an increase in electrode unit consumption, which is not preferable. In the present invention, the angle formed by the straight line connecting the centers of the two upper electrodes with the center line of the furnace is represented by a smaller angle, that is, an acute angle. On the other hand, an angle of 90 degrees is not preferable because the arrangement of the power supply and the upper power supply conductor is complicated.

【0023】そして、出鋼口に近い上部電極のアークを
作業口方向に偏向させ、又、作業口に近い上部電極のア
ークが出鋼口方向に偏向させるので、溶解域が広くな
り、溶解効率が向上する。
Since the arc of the upper electrode near the tapping port is deflected toward the working port and the arc of the upper electrode near the working port is deflected toward the tapping port, the melting area is widened and the melting efficiency is increased. Is improved.

【0024】第5の発明による直流アーク炉は、第1の
発明ないし第4の発明の何れか1つの発明による直流ア
ーク炉において、直流電源を2系列配置し、2本の上部
電極に流れる電流を個別に制御可能としたことを特徴と
するものである。
A DC arc furnace according to a fifth aspect of the present invention is the DC arc furnace according to any one of the first to fourth aspects of the invention, wherein two series of DC power supplies are arranged, and a current flowing through two upper electrodes is provided. Are individually controllable.

【0025】直流電源を2系列配置し、2本の上部電極
に流れる電流を個別に制御可能としているので、一方の
上部電極のみの電流を変更して、2本の上部電極に流れ
る電流値に差をつけることができる。すると、例えば一
方の上部電極の電流を低減すれば、その上部電極が形成
する水平磁場が弱くなるので、鉛直磁場による電磁力の
割合が増加し、偏向角度(θ)が大きくなる。これによ
りアークの偏向角度を任意に制御できると共に、更に広
範囲の溶解域を形成することができる。
Since two DC power supplies are arranged and the current flowing through the two upper electrodes can be individually controlled, the current flowing through only one of the upper electrodes is changed to reduce the current flowing through the two upper electrodes. You can make a difference. Then, for example, if the current of one upper electrode is reduced, the horizontal magnetic field formed by the upper electrode is weakened, so that the ratio of the electromagnetic force due to the vertical magnetic field increases, and the deflection angle (θ) increases. Thereby, the deflection angle of the arc can be arbitrarily controlled, and a wider melting zone can be formed.

【0026】[0026]

【発明の実施の形態】本発明を図面に基づき説明する。
図2は、本発明の1つの実施の形態である直流アーク炉
の正面断面の概略図であり、図3は、炉体部の平面断面
の概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 2 is a schematic cross-sectional front view of a DC arc furnace according to one embodiment of the present invention, and FIG. 3 is a schematic cross-sectional plan view of a furnace body.

【0027】図において、平面形状が長円状の炉本体1
は、底部に炉底電極3、長円の先端部に出鋼口15、出
鋼口15と炉本体1の中心とを通る中心線p上で且つ出
鋼口15の反対側に作業口16を備えている。炉本体1
の上部開口部には炉蓋2が配置され、この炉蓋2を貫通
して上部電極4、5が設けられている。上部電極4、5
の水平方向の位置関係は、炉本体1の中心に対して、上
部電極4が作業口16側に、又、上部電極5が出鋼口側
15にずらして配置されている。その際に、出鋼口15
と作業口16とを結ぶ炉本体1の中心線pに対して、上
部電極4の中心と上部電極5の中心とを結ぶ直線がなす
角度ψを45度以上90度未満とし、更に、上部電極4
と上部電極5の間隔が、炉本体1の内径の1/4〜1/
2とすることが好ましい。そして、上部電極4、5は、
電極支腕13、13aの先端に設けた電極クランプ1
4、14aを介して電極支腕13、13aに支持され、
電極支腕13、13aの他端は昇降装置12、12aに
連結されており、こうして、上部電極4、5は昇降装置
12、12aにて炉本体1内へ独立して昇降される。電
極クランプ14、14aには、他端を直流電源6、7の
陰極に接続された上部給電導体10、11が接続され、
又、炉底電極3には、他端を直流電源6、7の陽極に接
続された下部給電導体9が接続されて電源回路が形成さ
れる。この下部給電導体9を、炉本体1の底部におい
て、水平方向に炉底電極3の周囲を周回するコイル形状
として配置した後、炉底電極3に接続した。こうして、
コイル形状の下部給電導体9を、鉛直磁場を発生する磁
場発生装置8として機能させた。尚、磁場発生装置8の
コイルに流れる電流iは、炉の上方から見た場合、反時
計廻りとなる。
In the drawing, a furnace main body 1 having an oblong planar shape is shown.
Is a work bottom 16 on the center line p passing through the tapping hole 15 and the center of the furnace main body 1 and on the opposite side of the tapping hole 15. It has. Furnace body 1
A furnace lid 2 is disposed in the upper opening of the furnace, and upper electrodes 4 and 5 are provided through the furnace lid 2. Upper electrodes 4, 5
The horizontal positional relationship is such that, with respect to the center of the furnace main body 1, the upper electrode 4 is shifted toward the working port 16 and the upper electrode 5 is shifted toward the tapping outlet 15. At that time, the tap hole 15
The angle ψ formed by a straight line connecting the center of the upper electrode 4 and the center of the upper electrode 5 with respect to the center line p of the furnace main body 1 connecting the 4
And the distance between the upper electrode 5 and the inner diameter of the furnace body 1 are 1/4 to 1 /
It is preferably 2. And the upper electrodes 4 and 5
Electrode clamp 1 provided at tip of electrode support arm 13, 13a
Supported by the electrode support arms 13 and 13a via 4, 14a,
The other ends of the electrode support arms 13 and 13a are connected to the lifting devices 12 and 12a, and thus the upper electrodes 4 and 5 are independently raised and lowered into the furnace main body 1 by the lifting devices 12 and 12a. The upper power supply conductors 10 and 11 whose other ends are connected to the cathodes of the DC power supplies 6 and 7 are connected to the electrode clamps 14 and 14a,
Further, a lower power supply conductor 9 having the other end connected to the anodes of the DC power supplies 6 and 7 is connected to the furnace bottom electrode 3 to form a power supply circuit. The lower power supply conductor 9 was arranged on the bottom of the furnace main body 1 in a coil shape orbiting around the bottom electrode 3 in the horizontal direction, and then connected to the bottom electrode 3. Thus,
The coil-shaped lower power supply conductor 9 functioned as a magnetic field generator 8 for generating a vertical magnetic field. The current i flowing through the coil of the magnetic field generator 8 is counterclockwise when viewed from above the furnace.

【0028】直流アーク炉の溶解・精錬は、炉蓋2を外
して鉄スクラップ17を炉本体1内に装入し、直流電源
6、7より給電しつつ、上部電極4、5を昇降させて上
部電極4、5と炉底電極3及び鉄スクラップ17との間
でアーク19を発生させる。このアーク熱により鉄スク
ラップ17を溶解し、溶湯18を生成させる。溶湯18
の生成後は、上部電極4、5と溶湯18との間でアーク
19を発生させ、溶解を継続する。
The melting and refining of the DC arc furnace is performed by removing the furnace lid 2 and loading the iron scrap 17 into the furnace main body 1 and raising and lowering the upper electrodes 4 and 5 while supplying power from the DC power supplies 6 and 7. An arc 19 is generated between the upper electrodes 4 and 5, the furnace bottom electrode 3 and the iron scrap 17. The arc heat dissolves the iron scrap 17 to generate the molten metal 18. Molten 18
Is generated between the upper electrodes 4 and 5 and the molten metal 18 to continue the melting.

【0029】鉄スクラップ17の溶解用直流電流iが流
れると、磁場発生装置8では鉛直磁場22が、又、上部
電極4、5の周囲には水平磁場21が形成される。尚、
水平磁場21及び鉛直磁場22の矢印は、磁力線の方向
であり、本実施の形態では、水平磁場21は炉本体1を
上から見た場合に反時計廻りに、鉛直磁場22は磁場発
生装置8のコイル内を炉底側から上方に抜けるように形
成される。この鉛直磁場22による電磁力で、上部電極
5に発生するアーク19は、上部電極4と結ぶ直線に対
して、炉本体1を上から見た場合に反時計廻りに偏向角
度(θ)だけずれて発生する。同様に上部電極4に発生
アーク19も反時計廻りに偏向角度(θ)だけずれて発
生する。このように、出鋼口15側の上部電極5のアー
ク19の偏向方向は作業口16方向に、又、作業口16
側の上部電極4のアーク19の偏向方向は出鋼口15方
向になるので、アーク19が互いに他方の上部電極4、
5に直接的な熱影響を与えることがなく、又、広い溶解
域20を形成することができる。
When a direct current i for melting the iron scrap 17 flows, a vertical magnetic field 22 is generated in the magnetic field generator 8, and a horizontal magnetic field 21 is formed around the upper electrodes 4 and 5. still,
Arrows of the horizontal magnetic field 21 and the vertical magnetic field 22 indicate the directions of the lines of magnetic force. In the present embodiment, the horizontal magnetic field 21 is counterclockwise when the furnace body 1 is viewed from above, and the vertical magnetic field 22 is the magnetic field generator 8. Is formed so as to pass through the inside of the coil upward from the furnace bottom side. The arc 19 generated in the upper electrode 5 by the electromagnetic force generated by the vertical magnetic field 22 shifts by a deflection angle (θ) counterclockwise when viewed from above the furnace body 1 with respect to a straight line connected to the upper electrode 4. Occur. Similarly, the arc 19 generated on the upper electrode 4 is generated counterclockwise and shifted by the deflection angle (θ). In this way, the deflection direction of the arc 19 of the upper electrode 5 on the tapping port 15 side is in the direction of the working port 16,
Since the deflection direction of the arc 19 of the upper electrode 4 on the side is in the direction of the tapping outlet 15, the arcs 19 are mutually opposite.
5 has no direct thermal effect, and a wide melting zone 20 can be formed.

【0030】偏向角度(θ)が小さいと、他方の上部電
極4、5への熱影響が防止できないと共に溶解域20が
狭くなるので、アーク発生位置における鉛直磁場強度を
アーク発生位置における水平磁場強度より大きくして、
偏向角度(θ)を20度以上とすることが望ましい。
又、逆に偏向角度(θ)が大き過ぎると、アーク19が
炉本体1の炉壁に向かい、炉壁の溶損が発生するので、
偏向角度(θ)は90度以下とすることが望ましい。偏
向角度(θ)は、前述の(3)式に示したように、アー
ク19発生位置における鉛直磁場強度と水平磁場強度の
比で決まるので、最適範囲の偏向角度(θ)を得るため
に、常用の溶解電流値による水平磁場強度を算出し、こ
の水平磁場強度に対して必要な鉛直磁場強度を求め、磁
場発生装置8のコイルの周回数、即ち鉛直磁場強度を決
めることができる。又、電源6、7を個別に備えている
ので、各々の上部電極4、5に流れる電流値を個別に制
御することで、偏向角度(θ)を任意に制御可能とな
り、操業中に適宜溶解域20の面積を制御することがで
きる。
If the deflection angle (θ) is small, the influence of heat on the other upper electrodes 4 and 5 cannot be prevented, and the melting region 20 becomes narrow. Therefore, the vertical magnetic field intensity at the arc generating position is reduced by the horizontal magnetic field intensity at the arc generating position. Bigger,
It is desirable that the deflection angle (θ) be 20 degrees or more.
On the other hand, if the deflection angle (θ) is too large, the arc 19 is directed to the furnace wall of the furnace body 1 and the furnace wall is melted.
It is desirable that the deflection angle (θ) be 90 degrees or less. Since the deflection angle (θ) is determined by the ratio between the vertical magnetic field strength and the horizontal magnetic field strength at the arc 19 generating position as shown in the above equation (3), in order to obtain the optimum range of the deflection angle (θ), The horizontal magnetic field strength based on the normal melting current value is calculated, the required vertical magnetic field strength is obtained for the horizontal magnetic field strength, and the number of turns of the coil of the magnetic field generator 8, that is, the vertical magnetic field strength can be determined. In addition, since the power supplies 6 and 7 are separately provided, the deflection angle (θ) can be arbitrarily controlled by individually controlling the current value flowing through each of the upper electrodes 4 and 5, and the melting is appropriately performed during operation. The area of the area 20 can be controlled.

【0031】尚、本発明は上記に限るものではなく、例
えば、磁場発生装置8のコイルの周回方向を逆にして
も、アークの偏向角度(θ)が、炉本体1を上から見た
場合に時計廻りになるのみで、上記と同一の効果を得る
ことができ、又、出鋼口15と作業口16との位置関係
は、炉本体1の中心に対して90度の位置であっても、
本発明に全く支障とならない。更に、直流電源は1つで
も良く、又、コイル形状の下部給電導体9に代わり専用
の磁場発生装置8を配置すれば、鉛直磁場強度を溶解速
度を保持したまま任意に変更することができるので、ア
ーク19の偏向制御がより容易となるが、この場合設備
費は増加する。
Note that the present invention is not limited to the above. For example, even if the winding direction of the coil of the magnetic field generator 8 is reversed, the arc deflection angle (θ) is Only clockwise, the same effect as described above can be obtained, and the positional relationship between the tapping port 15 and the working port 16 is 90 degrees with respect to the center of the furnace body 1. Also,
It does not hinder the present invention at all. Further, a single DC power supply may be used, and if a dedicated magnetic field generator 8 is arranged instead of the coil-shaped lower power supply conductor 9, the vertical magnetic field strength can be arbitrarily changed while maintaining the melting speed. , The deflection control of the arc 19 becomes easier, but in this case the equipment cost increases.

【0032】[0032]

【実施例】図2及び図3に示す直流アークにおける実施
例を以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the DC arc shown in FIGS. 2 and 3 will be described below.

【0033】炉本体の内径は7.2mで、150トン容
量である。直径24インチの黒鉛製上部電極を2.5m
の距離を離し、そして、一方の上部電極を炉本体の中心
から作業口側に0.7mずらし、又、他方の上部電極を
炉本体の中心から出鋼口側に0.7mずらして配置し
た。この場合、2つの上部電極の中心を結ぶ直線と、炉
本体の中心線とがなす角度ψは約56度である。この上
部電極には個別の直流電源から各々最大70kAの電流
が供給される。一方、炉本体底部には直径3mの炉底電
極を設け、そして、下部給電導体は、2つの直流電源に
共通となっており、炉底電極の周囲を1周半するコイル
形状とした後、炉底電極に接続されている。2つの直流
電源に共通としたので、下部給電導体には最大140k
Aの電流が流れる。
The furnace body has an inner diameter of 7.2 m and a capacity of 150 tons. 2.5m graphite top electrode with 24 inch diameter
And one upper electrode was displaced by 0.7 m from the center of the furnace main body to the working port side, and the other upper electrode was displaced by 0.7 m from the center of the furnace main body to the steel outlet side. . In this case, the angle ψ between the straight line connecting the centers of the two upper electrodes and the center line of the furnace main body is about 56 degrees. A current of up to 70 kA is supplied to each of the upper electrodes from an individual DC power supply. On the other hand, a furnace bottom electrode having a diameter of 3 m is provided on the bottom of the furnace body, and the lower power supply conductor is common to the two DC power supplies, and is formed into a coil shape that makes a circumference of the furnace bottom electrode one and a half turns. It is connected to the furnace bottom electrode. Since it is common to the two DC power supplies, the lower feed conductor has a maximum of 140k
A current flows.

【0034】この結果、アーク発生位置における水平磁
場強度は約80ガウス、鉛直磁場強度は150ガウスと
なり、溶解後の上部電極先端の片減り方向の調査及び溶
解途中の炉内観察から、アークは、偏向角度(θ)を反
時計方向に約45度として偏向したことが分かった。
又、他方の上部電極の電流値を半分にすると、アークは
更に旋回して、偏向角度は約60度となり、溶解域が広
がった。
As a result, the horizontal magnetic field strength at the arc generating position was about 80 gauss and the vertical magnetic field strength was 150 gauss. From the investigation of the declining direction of the tip of the upper electrode after melting and the observation in the furnace during melting, the arc was It was found that the deflection was performed with the deflection angle (θ) set to about 45 degrees in the counterclockwise direction.
When the current value of the other upper electrode was halved, the arc further turned, the deflection angle became about 60 degrees, and the melting range was widened.

【0035】アークの方向が他方の上部電極の方向から
外れているので、アーク熱による他方の上部電極への損
傷や消耗はなく、電極原単位は1本の上部電極の場合に
推定される純消耗に対して1割程度の増加にとどまっ
た。仮に、1本の上部電極で140kAを流した場合に
は、上部電極先端の欠落や割れ等の異常消耗により、は
るかに悪い電極原単位になるが、良好な電極原単位を維
持できた。
Since the direction of the arc is deviated from the direction of the other upper electrode, there is no damage or wear to the other upper electrode due to the arc heat, and the unit energy of the electrode is estimated to be a single upper electrode. The increase was only about 10% against exhaustion. If a current of 140 kA was applied to one upper electrode, the electrode unit consumption would be much worse due to abnormal wear such as chipping or cracking at the tip of the upper electrode, but a good electrode unit amount could be maintained.

【0036】又、アークが相互に炉本体の中心からずれ
て外側を向き、作業口に近い上部電極のアークが出鋼口
までを溶解し、出鋼口に近い上部電極のアークが作業口
側までを溶解することにより、同心円に近い広範囲な溶
解が実現できた。そして、炉蓋への熱負荷も全く問題と
ならなかった。更に、アークからの距離が離れているた
めに炉壁への熱負荷も軽く、炉壁が損傷を受けることは
なかった。
The arcs are mutually offset from the center of the furnace body and face outward, and the arc of the upper electrode close to the working port melts up to the tapping port, and the arc of the upper electrode near the tapping port is close to the working port side. By dissolving up to, a wide range of dissolution close to concentric circles was realized. And the heat load on the furnace lid did not matter at all. Further, since the distance from the arc was large, the heat load on the furnace wall was light, and the furnace wall was not damaged.

【0037】[0037]

【発明の効果】本発明によれば、アークの偏向方向を他
方の上部電極の方向から外すことが可能となり、アーク
の過大な熱負荷を他方の上部電極に直接かけることを防
止できるので、黒鉛製上部電極の酸化消耗や異常消耗が
少なくなり、良好な電極原単位を得ることができる。
又、アーク熱を広範囲に広げることができるので、同心
円に近い広範囲な溶解域が実現でき、熱損失が少ない効
率の良い溶解が可能となる。そして、同時にアーク熱を
分散させたことにより、炉蓋や炉壁への熱負荷が低減
し、設備の損傷等のトラブルも防止される。
According to the present invention, the deflection direction of the arc can be deviated from the direction of the other upper electrode, and it is possible to prevent an excessive heat load of the arc from being directly applied to the other upper electrode. Oxidation wear and abnormal wear of the upper electrode are reduced, and a good electrode unit can be obtained.
Further, since the arc heat can be spread over a wide range, a wide melting range close to concentric circles can be realized, and efficient melting with little heat loss can be achieved. At the same time, by dispersing the arc heat, the heat load on the furnace lid and the furnace wall is reduced, and troubles such as damage to equipment are prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁場によるアークの偏向方向を概略的に示した
図であり、(a)は水平磁場による偏向方向を示す正面
図、(b)は水平磁場と鉛直磁場とによる偏向方向を示
す平面図である。
1A and 1B are diagrams schematically showing a deflection direction of an arc by a magnetic field, wherein FIG. 1A is a front view showing a deflection direction by a horizontal magnetic field, and FIG. 1B is a plane showing a deflection direction by a horizontal magnetic field and a vertical magnetic field. FIG.

【図2】本発明の1つの実施の形態である直流アーク炉
の正面断面の概略図である。
FIG. 2 is a schematic front sectional view of a DC arc furnace according to one embodiment of the present invention.

【図3】本発明の1つの実施の形態である直流アーク炉
の炉体部の平面断面の概略図である。
FIG. 3 is a schematic plan view of a furnace body of a DC arc furnace according to one embodiment of the present invention.

【図4】従来の2本の上部電極を有する直流アーク炉に
おけるアークの偏向方向と溶解域とを概略的に示した平
面図である。
FIG. 4 is a plan view schematically showing an arc deflection direction and a melting zone in a conventional DC arc furnace having two upper electrodes.

【符号の説明】[Explanation of symbols]

1 炉本体 2 炉蓋 3 炉底電極 4 上部電極 5 上部電極 6 直流電源 7 直流電源 8 磁場発生装置 9 下部給電導体 10 上部給電導体 11 上部給電導体 12 昇降装置 13 電極支腕 14 電極クランプ 15 出鋼口 16 作業口 17 鉄スクラップ 18 溶湯 19 アーク 20 溶解域 21 水平磁場 22 鉛直磁場 DESCRIPTION OF SYMBOLS 1 Furnace main body 2 Furnace lid 3 Furnace bottom electrode 4 Upper electrode 5 Upper electrode 6 DC power supply 7 DC power supply 8 Magnetic field generator 9 Lower power supply conductor 10 Upper power supply conductor 11 Upper power supply conductor 12 Elevating device 13 Electrode arm 14 Electrode clamp 15 Exit Steel port 16 Working port 17 Iron scrap 18 Molten metal 19 Arc 20 Melting zone 21 Horizontal magnetic field 22 Vertical magnetic field

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炉本体と、炉本体の底部に設けた炉底電
極と、炉本体内を昇降する2本の上部電極と、上部電極
に接続する上部給電導体と、炉底電極に接続する下部給
電導体と、上部給電導体及び下部給電導体の端間に接続
する直流電源とを備え、上部電極と炉底電極との間でア
ークを発生させる直流アーク炉において、アーク発生位
置に鉛直磁場を形成する磁場発生装置を炉本体の下方に
設けたことを特徴とする直流アーク炉。
1. A furnace body, a furnace bottom electrode provided at the bottom of the furnace body, two upper electrodes which move up and down in the furnace body, an upper power supply conductor connected to the upper electrode, and a connection to the furnace bottom electrode. In a DC arc furnace that includes a lower power supply conductor and a DC power supply connected between ends of the upper power supply conductor and the lower power supply conductor, and generates an arc between the upper electrode and the furnace bottom electrode, a vertical magnetic field is generated at an arc generation position. A DC arc furnace, wherein a magnetic field generator to be formed is provided below a furnace body.
【請求項2】 前記磁場発生装置は、水平方向に周回す
るコイル形状とした下部給電導体であることを特徴とす
る請求項1に記載の直流アーク炉。
2. The direct current arc furnace according to claim 1, wherein the magnetic field generator is a lower power supply conductor in the form of a coil circling in a horizontal direction.
【請求項3】 前記磁場発生装置は、アーク発生位置に
おいて、水平磁場強度より大きい磁場強度の鉛直磁場を
形成することを特徴とする請求項1又は請求項2に記載
の直流アーク炉。
3. The DC arc furnace according to claim 1, wherein the magnetic field generating device forms a vertical magnetic field having a magnetic field strength greater than a horizontal magnetic field strength at an arc generating position.
【請求項4】 前記炉本体は、炉本体の中心を通る直線
上に出鋼口と作業口とを有し、2本の上部電極の間隔は
炉本体内径の1/4〜1/2で、且つ、2本の上部電極
の中心を結ぶ直線は出鋼口と作業口とを結ぶ炉の中心線
に対して45度以上90度未満傾斜していると共に、出
鋼口に近い上部電極のアークは作業口方向に偏向し、作
業口に近い上部電極のアークは出鋼口方向に偏向するよ
うに前記磁場発生装置を配置したことを特徴とする請求
項1ないし請求項3の何れか1つに記載の直流アーク
炉。
4. The furnace body has a tapping port and a working port on a straight line passing through the center of the furnace body, and a distance between two upper electrodes is 1 / to 1 / of an inner diameter of the furnace body. And, the straight line connecting the centers of the two upper electrodes is inclined at 45 ° or more and less than 90 ° with respect to the center line of the furnace connecting the tap hole and the working port, and the upper electrode near the tap hole is 4. The magnetic field generating device according to claim 1, wherein the arc is deflected in a direction toward the working port, and the arc of the upper electrode close to the working port is deflected in a direction toward the tapping port. A DC arc furnace according to any one of the above.
【請求項5】 前記直流電源を2系列配置し、2本の上
部電極に流れる電流を個別に制御可能としたことを特徴
とする請求項1ないし請求項4の何れか1つに記載の直
流アーク炉。
5. The DC power supply according to claim 1, wherein the DC power supplies are arranged in two lines, and currents flowing through two upper electrodes can be individually controlled. Arc furnace.
JP12924297A 1997-05-20 1997-05-20 DC arc furnace Expired - Fee Related JP3533552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12924297A JP3533552B2 (en) 1997-05-20 1997-05-20 DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12924297A JP3533552B2 (en) 1997-05-20 1997-05-20 DC arc furnace

Publications (2)

Publication Number Publication Date
JPH10318684A true JPH10318684A (en) 1998-12-04
JP3533552B2 JP3533552B2 (en) 2004-05-31

Family

ID=15004716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12924297A Expired - Fee Related JP3533552B2 (en) 1997-05-20 1997-05-20 DC arc furnace

Country Status (1)

Country Link
JP (1) JP3533552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2309A (en) * 2005-12-20 2011-10-31 Frederik Petrus Greyling Compensation system and method for arc skewing fora DC arc furnace.
JP2013228169A (en) * 2012-04-26 2013-11-07 Toshiba Corp Arc deflection device, incineration apparatus, and incineration method using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942850A (en) * 1995-07-28 1997-02-14 Ishikawajima Harima Heavy Ind Co Ltd Direct current arc furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942850A (en) * 1995-07-28 1997-02-14 Ishikawajima Harima Heavy Ind Co Ltd Direct current arc furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2309A (en) * 2005-12-20 2011-10-31 Frederik Petrus Greyling Compensation system and method for arc skewing fora DC arc furnace.
JP2013228169A (en) * 2012-04-26 2013-11-07 Toshiba Corp Arc deflection device, incineration apparatus, and incineration method using the same

Also Published As

Publication number Publication date
JP3533552B2 (en) 2004-05-31

Similar Documents

Publication Publication Date Title
US3949151A (en) Arc furnaces
US4821284A (en) Scrap-melting process and electric furnace for carrying out the process
KR940001766B1 (en) Direct current electric arc furance
US5410564A (en) Direct current electric furnace for melting metal
US4856021A (en) Electric direct-current scrap-melting furnace
EP0657710B1 (en) Dc arc furnace
JPH10318684A (en) Dc arc furnace
JP3209845B2 (en) DC arc furnace
US4805186A (en) Process for the continuous melting of scrap in an electric direct-current furnace and electric furnace for carrying out the process
US4550413A (en) Symmetrical current conductor system for a DC arc furnace
JP2940134B2 (en) Dc arc furnace
US5191592A (en) D.c. electric arc furnace with consumable and fixed electrode geometry
US5844933A (en) Electrode arrangement for direct current and furnace
US5189682A (en) Method for increasing the efficiency of a direct current electric arc furnace
JP2613805B2 (en) DC arc furnace
JP2599331B2 (en) DC arc furnace
RU2097947C1 (en) Dc electric arc furnace and its functioning
RU2227881C2 (en) Electric-arc melting furnace (versions)
US20240138038A1 (en) Dc brush-arc furnace with arc deflection compensation
JPH05332679A (en) Dc electric furnace
JPH03181786A (en) Dc arc furnace
JPH10134957A (en) Electrode support beam and electrod elevating mast for electric arc furnace
JPH04313682A (en) Arc deflection prevention method for dc electric furnace
JPH1151567A (en) Dc electric furnace
JPH03267686A (en) Electrode position adjusting device of dc electric furnace

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees