JPH10316445A - Treatment of optical fiber before use - Google Patents

Treatment of optical fiber before use

Info

Publication number
JPH10316445A
JPH10316445A JP12728697A JP12728697A JPH10316445A JP H10316445 A JPH10316445 A JP H10316445A JP 12728697 A JP12728697 A JP 12728697A JP 12728697 A JP12728697 A JP 12728697A JP H10316445 A JPH10316445 A JP H10316445A
Authority
JP
Japan
Prior art keywords
optical fiber
electromagnetic waves
electromagnetic wave
rays
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12728697A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Saito
達彦 齋藤
Akira Urano
章 浦野
Tsunehisa Kyodo
倫久 京藤
Masaharu Mogi
昌春 茂木
Sukehiko Shishido
資彦 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12728697A priority Critical patent/JPH10316445A/en
Publication of JPH10316445A publication Critical patent/JPH10316445A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/60Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface
    • C03C25/607Surface treatment of fibres or filaments made from glass, minerals or slags by diffusing ions or metals into the surface in the gaseous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/62Surface treatment of fibres or filaments made from glass, minerals or slags by application of electric or wave energy; by particle radiation or ion implantation
    • C03C25/6206Electromagnetic waves

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an optical fiber having improved electromagnetic wave resistant characteristics. SOLUTION: This method for treating an optical fiber used under a condition exposed to the irradiation with electromagnetic waves including a light transmitted in the core, before using the optical fiber comprises a step for previously measuring the strength of the electromagnetic wave suffering at the condition to be used, a step for irradiating the optical fiber with electromagnetic waves for previous treatment, having a strength higher than the previously measured strength, and a step for immersing in the atmosphere comprising hydrogen gas. The electromagnetic waves for the previous treatment can be radiated so that the electromagnetic waves for the previous treatment may have the total amount of the converted energy larger than the calculated total amount of the converted energy by calculating the total amount of the electromagnetic waves converted into the energy. The electromagnetic waves are γ-rays, X-rays, laser rays, etc.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光ファイバの処理方
法に関し、特にコアを伝播する光を含む電磁波照射環境
下での光を伝送する光ファイバにおいて、初期透過特性
に優れ、かつ伝送損失の増加を抑えることができる、光
ファイバの使用前の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating an optical fiber, and more particularly, to an optical fiber for transmitting light in an electromagnetic wave irradiation environment including light propagating through a core, which has excellent initial transmission characteristics and increases transmission loss. And a method for treating an optical fiber before use.

【0002】[0002]

【従来の技術】光ファイバは低損失、軽量、細径、無誘
導といった利点から、通信、画像伝送、エネルギ伝送等
各種分野において近時その使用が増大している。その一
つとして例えば原子力関連分野、医療分野、微細加工分
野等の電磁波の被爆環境下での利用があり、石英ガラス
(SiO2 )を主成分とする光ファイバが最も好適であ
るとされているが、電磁波照射環境下では石英ガラス系
ファイバであってもガラスが劣化して伝送損失増加が起
きるという問題があり、耐電磁波被爆性向上に関し種々
の報告がある。
2. Description of the Related Art The use of optical fibers has recently increased in various fields such as communication, image transmission, and energy transmission because of their advantages such as low loss, light weight, small diameter, and non-induction. As one of them, for example, there is a use in an environment exposed to electromagnetic waves such as a nuclear field, a medical field, a fine processing field, etc., and an optical fiber mainly composed of quartz glass (SiO 2 ) is considered to be most suitable. However, even in the case of a silica glass fiber, there is a problem that glass deteriorates and transmission loss increases under an electromagnetic wave irradiation environment, and various reports have been made on improvement of electromagnetic wave exposure resistance.

【0003】例えば、石英系ガラスの紫外線照射劣化を
低減する技術として、特開平5−147966号公報
(文献という)には、純粋石英コア中のOH基含有量
を10〜1000ppm、F(フッ素)含有量を50〜
5000ppm、Cl(塩素)含有量を実質的に零に調
節することにより、紫外線に対する初期透過特性に優
れ、且つ特定量のフッ素含有により紫外線照射劣化を低
減した光ファイバを得ることが提案されている。
For example, Japanese Patent Application Laid-Open No. 5-147966 (referred to as a document) discloses a technique for reducing the deterioration of quartz-based glass by ultraviolet irradiation, when the OH group content in a pure quartz core is 10 to 1000 ppm, and F (fluorine) is used. 50 to 50%
It has been proposed to obtain an optical fiber having excellent initial transmission characteristics with respect to ultraviolet light by adjusting the Cl (chlorine) content to 5000 ppm and substantially zero, and having reduced ultraviolet irradiation deterioration by containing a specific amount of fluorine. .

【0004】また、紫外線照射劣化の改善を直接対象と
したものではないが、可視光、近赤外光伝送用ファイバ
の耐放射線特性の改善に関する技術がいくつか知られて
いる。例えば特開昭60−90853号公報(文献と
いう)には、ガラススート成形体、透明ガラス母材、ガ
ラス成形体(光ファイバ)のいずれかを水素雰囲気で処
理し、ガラス中の欠陥を解消させて光ファイバの耐放射
線性を向上する処理方法が提案されている。
[0004] Further, although not directly aimed at improving the deterioration of ultraviolet irradiation, there are known several techniques for improving the radiation resistance of a fiber for transmitting visible light and near infrared light. For example, Japanese Unexamined Patent Publication No. Sho 60-90853 (referred to as a document) discloses that any one of a glass soot molding, a transparent glass preform, and a glass molding (optical fiber) is treated in a hydrogen atmosphere to eliminate defects in the glass. Thus, a processing method for improving the radiation resistance of an optical fiber has been proposed.

【0005】これに対し、東門,長沢等、「水素処理と
γ線照射による光ファイバの耐放射線性の改善」、昭和
60年度電子通信学会半導体・材料部門全国大会講演論文
集、分冊1、第1−213頁、(社)電子通信学会発
行、1985年(文献という)には、純粋石英コア光ファ
イバのγ線照射による波長630nm(可視光)におけ
る光吸収増加を抑制する方法として、第1工程として光
ファイバに水素処理を施した後、第2工程としてγ線を
照射することにより、ガラス中の欠陥のシード(プリカ
ーサー)を2eV帯の原因となる欠陥に変化させ、前工
程においてファイバ中に予め拡散させておいた水素と該
欠陥とを化学結合させることにより可視光域での耐放射
線性を改善することが報告されている。
On the other hand, Eastmon, Nagasawa, et al., "Improvement of radiation resistance of optical fiber by hydrogen treatment and gamma irradiation", Showa
Proceedings of the IEICE National Conference on Semiconductors and Materials Division, Vol. 1, pp. 1-213, published by The Institute of Electronics, Communication and Engineers in 1985. As a method for suppressing an increase in light absorption at a wavelength of 630 nm (visible light), a hydrogen treatment is performed on an optical fiber as a first step, and then a gamma ray is irradiated as a second step, thereby seeding defects in glass ( (Precursor) into a defect causing the 2 eV band, and by chemically bonding hydrogen and the defect previously diffused into the fiber in the previous process to improve the radiation resistance in the visible light region. It has been reported.

【0006】米国特許明細書第5574820号( 文献
という) には、可視光を伝送するイメージファイバと
して純粋石英コアファイバを放射線環境で使用する際
の、可視光領域での損失増加を低減する手段として、純
粋石英コアファイバに、予め105 Gy以上の大線量の
放射線を照射することにより、その後放射線を照射して
も波長400〜700nmの可視光線領域での損失増加
が30dB/kmを超えない光ファイバ及びその製法が提案
されている。
[0006] US Pat. No. 5,574,820 (reference) discloses a means for reducing an increase in loss in a visible light region when a pure silica core fiber is used in a radiation environment as an image fiber for transmitting visible light. By irradiating a pure silica core fiber with a large dose of radiation of 10 5 Gy or more in advance, even if the radiation is subsequently irradiated, light whose loss increase in the visible light region of a wavelength of 400 to 700 nm does not exceed 30 dB / km. Fibers and their production have been proposed.

【0007】さらに特開平5−288942号公報(文
献という)には、文献と同様に可視光を伝送するイ
メージファイバの耐放射線性を向上する方法として、溶
融紡糸したイメージファイバに107 〜109 レントゲ
ン(105 〜107 Gy)という大線量のγ線を照射し
た後、水素雰囲気で加熱することが提案されている。
[0007] Further JP-A-5-288942 discloses (referred document), the image as a way to improve the radiation resistance of the fibers, melt-spun 107 to the image fiber 9 for transmitting visible light as well as the literature It has been proposed to irradiate a large dose of γ-ray called X-ray (10 5 to 10 7 Gy) and then heat it in a hydrogen atmosphere.

【0008】[0008]

【発明が解決しようとする課題】前記文献の方法によ
れば紫外線の初期透過特性に優れた光ファイバとなる
が、この方法で紫外線透過特性を改善するには限界があ
り、紫外線照射劣化に対してはあまり大きな効果は見ら
れない。また逆に、紫外吸収端に由来する吸収を増加し
てしまう場合もあり、最適な添加量の調整はかなり困難
であった。一方、可視光、近赤外光の伝送における耐放
射線特性改善に関する文献〜には、例えば紫外線に
よる照射劣化には有効でなかったり、光伝送用ファイバ
に適用すると光ファイバ被覆を劣化させてしまうため実
用が困難なものがあった。
According to the method of the above-mentioned document, an optical fiber having excellent initial transmission characteristics of ultraviolet light is obtained. However, there is a limit in improving the ultraviolet light transmission characteristics by this method. Not much effect. Conversely, in some cases, the absorption derived from the ultraviolet absorption end is increased, and it has been quite difficult to adjust the optimum amount of addition. On the other hand, the literature on improvement of radiation resistance characteristics in transmission of visible light and near-infrared light, for example, is not effective for irradiation deterioration due to ultraviolet rays, or when applied to optical transmission fibers, will deteriorate the optical fiber coating. Some were difficult to put into practical use.

【0009】このような現状に鑑み、本発明は電磁波被
爆環境で用いる光ファイバを使用前に処理することによ
り、初期透過特性に優れるとともに、長時間使用によっ
ても伝送損失増加のない優れた耐電磁波被爆性の光ファ
イバとすることのできる光ファイバの使用前の処理方法
を課題とする。さらに本発明は、光ファイバに適用した
場合にガラスファイバのみならずその被覆についても電
磁波照射による劣化がない光ファイバの使用前の処理方
法を課題とする。
In view of the above-mentioned situation, the present invention provides an excellent electromagnetic wave resistant material which has excellent initial transmission characteristics and has no increase in transmission loss even when used for a long time by treating an optical fiber used in an electromagnetic wave exposure environment before use. It is an object of the present invention to provide a method for treating an optical fiber which can be used as an explosive optical fiber before use. Another object of the present invention is to provide a method for treating an optical fiber before use, in which not only the glass fiber but also its coating when applied to an optical fiber is not deteriorated by irradiation with electromagnetic waves.

【0010】[0010]

【課題を解決するための手段】上記課題を解決する手段
として本発明は、(1)コア中を伝播する光を含め電磁波
の被爆を受ける環境下で使用する光ファイバの使用前の
処理方法であって、予め使用環境下で受ける電磁波の強
度を求めておき、前記光ファイバに前記強度より大きな
強度の前処理用の電磁波を照射し、その後水素ガスから
なる雰囲気に浸漬することを特徴とする前記処理方法、
(2) コア中を伝播する光を含め電磁波の被爆を受ける環
境下で使用する光ファイバの使用前の処理方法であっ
て、予め使用環境下で受ける電磁波をエネルギーに換算
した総量を求めておき、前記光ファイバに前記総量より
大きなエネルギー換算総量となるように前処理用の電磁
波を照射し、その後水素ガスからなる雰囲気に浸漬する
ことを特徴とする上記(1)記載の処理方法、(3) 前記前
処理用の電磁波としてγ線を用いることを特徴とする上
記(1) 又は(2) 記載の処理方法、(4) 前記前処理用の電
磁波としてX線を用いることを特徴とする請求項1又は
請求項2記載の処理方法。(5) 前記前処理用の電磁波と
して波長400nm以下のレーザー光を用いることを特
徴とする上記(1) 又は(2) 記載の処理方法、及び(6) 前
記処理用の電磁波を線量10〜104 Gyの範囲内で照
射することを特徴とする上記(3) 又は(4) 記載の処理方
法、を提供する。
According to the present invention, there is provided a method for treating an optical fiber before use, which is used in an environment which is exposed to electromagnetic waves including light propagating in a core. Then, the intensity of the electromagnetic wave received in the use environment is determined in advance, and the optical fiber is irradiated with an electromagnetic wave for pretreatment having an intensity greater than the intensity, and then immersed in an atmosphere made of hydrogen gas. The processing method,
(2) This is a processing method before using an optical fiber used in an environment that is exposed to electromagnetic waves including light propagating in the core, and the total amount of electromagnetic waves received in the operating environment converted to energy is calculated in advance. The method according to the above (1), wherein the optical fiber is irradiated with an electromagnetic wave for pretreatment so as to have a total energy conversion amount larger than the total amount, and then immersed in an atmosphere composed of hydrogen gas. The method according to the above (1) or (2), wherein γ-rays are used as the pretreatment electromagnetic waves, and (4) X-rays are used as the pretreatment electromagnetic waves. The processing method according to claim 1 or 2. (5) The processing method according to (1) or (2), wherein a laser beam having a wavelength of 400 nm or less is used as the pretreatment electromagnetic wave, and (6) the treatment electromagnetic wave is applied at a dose of 10 to 10. The treatment method according to the above (3) or (4), wherein the irradiation is performed within a range of 4 Gy.

【0011】[0011]

【発明の実施の形態】本発明は、まず光ファイバに前処
理の電磁波を照射して、後に水素処理を行なうが、前処
理の電磁波照射条件を、後の照射環境で受ける電磁波強
度より大きい強度〔W/m2 〕とすることを特徴とす
る。更に、後の照射環境で受ける電磁波のエネルギー総
量〔J/m2 〕よりも大きなエネルギー総量となるよう
にすることが好ましい。これによりその後の電磁波照射
環境下ではもはや劣化しない光ファイバとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an optical fiber is first irradiated with an electromagnetic wave for pretreatment and then subjected to a hydrogen treatment. [W / m 2 ]. Further, it is preferable to make the total energy amount larger than the total energy amount [J / m 2 ] of the electromagnetic wave received in the irradiation environment later. As a result, the optical fiber is no longer deteriorated in the environment where the electromagnetic wave is subsequently irradiated.

【0012】このような処理により、使用環境での電磁
波照射による照射劣化が発生しない理由については、目
下検討中であるが、本発明者らの考察によれば、損失増
加の原因となるのは、図1に模式的に示すE′センター
等のようなガラス欠陥である。このガラス欠陥は最初か
ら存在するものと、エネルギーの高い電磁波の照射によ
り切れやすい結合が切れてできるものとの、2種類があ
る。水素処理をすると、このような欠陥には水素原子が
結合して損失増加を防いでくれる。初期状態〔図1の
(a) 〕のものに従来法のように最初から水素処理をした
場合、水素処理直後には図1の(d) に示すように欠陥が
なくなるが、その後の電磁波の被爆により 切れやすい
結合が切断されて新たに欠陥が発生し〔図1の(e) 〕、
損失が増加する。これに対して、本発明のように後の使
用環境下での被爆量以上の電磁波に被爆させて切れやす
い結合を切断した〔図1の(b) 〕後に水素処理を行う
と、図1の(c) に示すように潜在的に欠陥になりやすい
結合も水素原子で置換されるので、その後の電磁波の被
爆(例えば使用中に照射される電磁波等)によっても新
たな欠陥は発生しなくなると考えられる。
The reason why irradiation does not cause deterioration due to electromagnetic wave irradiation in the use environment due to such processing is currently under study. However, according to the present inventors, the cause of the increase in loss is as follows. And glass defects such as the E 'center schematically shown in FIG. There are two types of glass defects: those that are present from the beginning and those that are formed by breaking a bond that is easily broken by irradiation of high-energy electromagnetic waves. When hydrogen treatment is performed, hydrogen atoms are bonded to such defects to prevent an increase in loss. Initial state (Fig. 1
When (a)] is subjected to hydrogen treatment from the beginning as in the conventional method, the defect disappears immediately after the hydrogen treatment as shown in (d) of Fig. 1, but the bond that is easily broken by the subsequent exposure to electromagnetic waves A new defect is generated by cutting (Fig. 1 (e)),
Loss increases. On the other hand, when the hydrogen treatment is performed after the bond which is easily exposed and broken by being exposed to an electromagnetic wave exceeding the exposure amount in the later use environment [FIG. 1 (b)] as shown in FIG. As shown in (c), the bonds that are potentially susceptible to defects are also replaced by hydrogen atoms, so if new defects do not occur even after subsequent exposure to electromagnetic waves (for example, electromagnetic waves irradiated during use). Conceivable.

【0013】本発明の方法を具体的に説明する。まず、
本発明において電磁波被爆環境とは、紫外光、真空紫外
光、X線、γ線等を被爆する環境を意味し、紫外光、真
空紫外光に関してはこれらがコア中を伝送される場合も
本発明の電磁波被爆環境に含まれる。本発明の光ファイ
バが伝送する電磁波は特に限定されるところはなく、赤
外光、近赤外光、可視光、紫外光、真空紫外光までが含
まれる。
The method of the present invention will be specifically described. First,
In the present invention, the electromagnetic radiation exposure environment means an environment exposed to ultraviolet light, vacuum ultraviolet light, X-rays, γ-rays, and the like. Included in the environment exposed to electromagnetic waves. The electromagnetic wave transmitted by the optical fiber of the present invention is not particularly limited, and includes infrared light, near infrared light, visible light, ultraviolet light, and vacuum ultraviolet light.

【0014】本発明の方法が対象とする光ファイバと
は、石英ガラス製の光ファイバをいう。本発明の工程に
付す前の原料としての石英ガラス材料自体の製法につい
ては特に限定されるところはない。なお、本発明におい
て高純度石英ガラスとは、Fe、Cu、Niなどの遷移
金属やアルカリ、アルカリ土類金属などの不純物を含ま
ない石英ガラスをを意味し、上記のいずれの元素もPP
Bオーダー以下である必要がある。具体的な材料として
は、石英(SiO2 )を主成分とし、特に紫外線が透過
する領域はOH基を100ppm以上、2000ppm
以下含むものが好ましい。OH基含有量2000ppm
とは、スート法、直接法等の一般的な石英ガラスの製造
方法でガラスに添加することのできるOH基濃度のほぼ
上限値である。さらに、フッ素(F)を1重量%程度含
むと良い場合もある。F以外の屈折率を変化させるドー
パントは含まない。また、コアにはClは1ppm以上
は含まないことが特に好ましい。一方、光ファイバのク
ラッドのように紫外線が透過しない領域の材料は前述の
限りではなく、屈折率を低下させるドーパントが添加さ
れていてもよい。光ファイバとしてはモノコア、マルチ
コア、シングルモード、マルチモードのいずれでもよ
く、さらにはバンドルファイバであってもよい。
The optical fiber targeted by the method of the present invention is an optical fiber made of quartz glass. There is no particular limitation on the method for producing the quartz glass material itself as a raw material before the step of the present invention. In the present invention, high-purity quartz glass means quartz glass containing no transition metals such as Fe, Cu, and Ni, and impurities such as alkalis and alkaline earth metals.
It must be less than B order. As a specific material, quartz (SiO 2 ) is a main component.
The following are preferred. OH group content 2000ppm
The term “approximately” means an almost upper limit of the OH group concentration that can be added to glass by a general method for producing quartz glass such as a soot method or a direct method. In some cases, it may be preferable to contain about 1% by weight of fluorine (F). No dopant other than F that changes the refractive index is included. It is particularly preferable that the core contains no more than 1 ppm of Cl. On the other hand, the material of the region through which ultraviolet rays do not pass, such as the cladding of an optical fiber, is not limited to the above-described material, and a dopant that reduces the refractive index may be added. The optical fiber may be any of mono-core, multi-core, single mode, and multi-mode, and may be a bundle fiber.

【0015】光ファイバにまず前処理の電磁波照射を施
すが、本発明の前処理の電磁波としては3.5eV〜
1.33MeVの量子エネルギーを有する電磁波が挙げ
られ、上限値はγ線源として工業的に広く利用されてい
60Coのγ線エネルギーの値に等しく、実用的に決め
た値である。また3.5eV未満の電磁波では効果を得
るために多大な時間を要するため実用的ではない。本発
明の電磁波としては、紫外線(400〜160nm)及
び真空紫外線(160未満〜1nm)例えばエキシマレ
ーザ等のレーザー光、X線(数十〜0.01nm)又は
γ線(0.01nm以下)等を用いる。
First, the optical fiber is irradiated with a pre-treatment electromagnetic wave, and the pre-treatment electromagnetic wave of the present invention is 3.5 eV to 3.5 eV.
Electromagnetic wave can be mentioned having a quantum energy of 1.33 MeV, the upper limit value is equal to the value of the industrially widely utilized 60 Co of γ-ray energy as γ-ray source, a practical value determined. An electromagnetic wave of less than 3.5 eV is not practical because it takes a long time to obtain an effect. The electromagnetic waves of the present invention include ultraviolet rays (400 to 160 nm) and vacuum ultraviolet rays (less than 160 to 1 nm) such as laser light such as an excimer laser, X-rays (several tens to 0.01 nm), and γ rays (0.01 nm or less). Is used.

【0016】本発明の特徴は、後の使用環境で照射され
る電磁波の強度A1 を求めておき、前処理の電磁波の強
度をA0 とするとき、A0 >A1 となるように前処理照
射し、その後に水素処理することにある。また、本発明
においては、後の使用環境で照射される電磁波のエネル
ギー換算総量E1 を求めておき、前処理の電磁波のエネ
ルギー換算総量をE0 とするとき、E0 >E1 となるよ
うに前処理の電磁波照射することが特に好ましい。な
お、上記強度、総量の単位は、レーザ光に関しては強度
として〔W/m2 〕、総量として〔J/m2 〕を用い、
γ線及びX線に関しては強度として吸収線量率〔Gy/
s〕、総量として〔Gy〕を用いることができる。照射
する線量は、γ線等の場合吸収線量として10〜104
Gy、好ましくは102 〜103 Gyであり、このよう
な低い線量で十分な耐電磁波特性を得ることができる。
具体的な照射手段としては、γ線の場合は60Co,137
Cs等、X線の場合はW(タングステン),Cu等をタ
ーゲットとするX線管、紫外線,真空紫外線の場合は重
水素ランプ,KrFエキシマレーザ光(248nm),
ArFエキシマレーザー光(193nm),シンクロト
ロン軌道放射光等を用いる。
A feature of the present invention is that the intensity A 1 of an electromagnetic wave irradiated in a later use environment is obtained in advance, and when the intensity of the electromagnetic wave in the pre-processing is set to A 0 , the intensity A 1 is set so that A 0 > A 1. Treatment irradiation, followed by hydrogen treatment. In the present invention, to previously obtain the energy conversion amount E 1 of the electromagnetic wave used is emitted in the environment after, when the energy conversion amount of the electromagnetic wave of the pretreatment and E 0, E 0> E 1 become as It is particularly preferable to irradiate the pretreatment with an electromagnetic wave. The unit of the intensity and the total amount is [W / m 2 ] as the intensity and [J / m 2 ] as the total amount with respect to the laser beam.
For γ-rays and X-rays, the absorbed dose rate [Gy /
s], [Gy] can be used as the total amount. The irradiation dose is 10 to 10 4 as the absorbed dose in the case of gamma rays or the like.
Gy, preferably 10 2 to 10 3 Gy, and sufficient electromagnetic wave resistance can be obtained with such a low dose.
As a specific irradiation means, in the case of γ-ray, 60 Co, 137
An X-ray tube targeting W (tungsten), Cu or the like in the case of Cs or X-ray, a deuterium lamp in the case of ultraviolet or vacuum ultraviolet, a KrF excimer laser beam (248 nm),
ArF excimer laser light (193 nm), synchrotron orbital radiation, or the like is used.

【0017】光ファイバの1次被覆には熱硬化性シリコ
ン又は紫外線硬化性ウレタンアクリレートが用いられ、
2次被覆にはナイロンが使用されることが多いが、本発
明においては1次被覆に放射線照射後の伸び残率の高い
紫外線硬化性ウレタンアクリレートを用いることが好ま
しい。図2に放射線の吸収線量(Gy)と樹脂の伸び残
率(照射前の破断伸びに対する照射後の破断伸びの割
合)の関係を示すが、同図から線量が105 Gyを超え
ると劣化が始まること、本発明の照射条件の10 4 Gy
以下では被覆劣化が実質的にないことが明らかに判る。
The thermosetting silicone is used for the primary coating of the optical fiber.
Or UV-curable urethane acrylate is used,
Nylon is often used for the secondary coating.
Higher elongation after irradiation on primary coating
It is preferable to use UV-curable urethane acrylate.
New Fig. 2 shows the absorbed dose of radiation (Gy) and the residual resin extension.
Ratio (fraction of elongation at break after irradiation to elongation at break before irradiation)
In the figure, the dose is 10FiveBeyond Gy
When the irradiation condition of the present invention is 10 FourGy
The following clearly shows that there is substantially no coating deterioration.

【0018】電磁波照射処理の後、水素処理を行う。本
発明の「水素ガスからなる雰囲気」とは、水素ガスの分
圧が0.1気圧〜10気圧程度、好ましくは0.5〜1
0気圧の、純粋な水素ガス又は水素ガスと窒素ガス及び
/又は不活性ガスの混合雰囲気をいう。気圧範囲の限定
の根拠は、0.5〜10気圧範囲では、水素のガラス中
での拡散速度としてほぼ同等の効果が得られること、ま
たこの程度のガス圧が実生産の上で用いやすく、10気
圧を超えると高圧ガスの取扱いになり法的規制が厳しく
なり、経済的でないからである。また0.1気圧程度で
も効果として差異はないがかえって取扱い易くないとい
う現実的な理由による。なお、水素ガスとして重水素ガ
スを用いても同様の効果を得ることができる。水素処理
時の温度は特に限定されるところはないが、1気圧の水
素ではファイバ中心に到達するのに、室温で7日程度、
80℃では1日、200℃で2時間程度であるので、室
温以上でよく、光ファイバの場合にはファイバ被覆の耐
熱性により実質的に上限温度が決定され、好ましくは8
0〜200℃程度である。なお、80℃は紫外線硬化型
アクリレート樹脂の耐熱上限温度近傍、200℃はシリ
コン樹脂の耐熱上限温度である。処理時間は、処理温度
により異なるが、80℃以上であれば概ね2〜3日以内
で光ファイバ中に水素が拡散し、処理が終了する。
After the electromagnetic wave irradiation treatment, a hydrogen treatment is performed. The “atmosphere made of hydrogen gas” of the present invention means that the partial pressure of hydrogen gas is about 0.1 to 10 atm, preferably 0.5 to 1 atm.
0 atmosphere of pure hydrogen gas or a mixed atmosphere of hydrogen gas and nitrogen gas and / or inert gas. The basis of the limitation of the atmospheric pressure range is that in the range of 0.5 to 10 atmospheric pressures, it is possible to obtain almost the same effect as the diffusion rate of hydrogen in the glass, and this gas pressure is easy to use in actual production, If the pressure exceeds 10 atm, high pressure gas will be handled, legal regulations will be strict, and it will not be economical. Although there is no difference in effect even at about 0.1 atm, it is practically difficult to handle. Note that the same effect can be obtained by using deuterium gas as the hydrogen gas. The temperature at the time of the hydrogen treatment is not particularly limited, but it takes about 7 days at room temperature to reach the center of the fiber with 1 atm of hydrogen.
Since the temperature is 80 ° C. for one day and 200 ° C. for about 2 hours, the temperature may be higher than room temperature. In the case of optical fiber, the upper limit temperature is substantially determined by the heat resistance of the fiber coating,
It is about 0 to 200 ° C. Note that 80 ° C. is near the upper limit temperature of heat resistance of the ultraviolet curable acrylate resin, and 200 ° C. is the upper limit temperature of heat resistance of the silicone resin. The processing time varies depending on the processing temperature, but if it is 80 ° C. or higher, hydrogen diffuses into the optical fiber within about 2 to 3 days, and the processing is completed.

【0019】[0019]

【実施例】以下に実施例を挙げて本発明を説明するが、
各実施例及び比較例中での透過量の測定方法は次のとお
りである。なお、光源、受光器の波長依存性は補正され
ていることを前提とする。 波長0.85μm又は1.5μmにおける透過量測
定:ファイバに信号光を入射させた状態で出射側の光量
を測定する。入射側を固定した状態で入射側から1m付
近でファイバをカットし、再度出射側(1m付近)の光
量を測定する。この2つの測定の差がカットされたファ
イバによる損失である。測定に使用したファイバの長さ
は約1kmである。 波長248μmにおける透過量測定:248μmでは
バンドルファイバを使用したので、カットバックを行わ
ない。測定光をバンドルファイバに入射し、ファイバの
出射側で光量を測定する。最初の測定において、波長特
性から吸収の見られない領域(光量が波長に依存せずフ
ラットになっている領域)の透過率を100%と仮定
し、その他の波長域の透過率と2回目以降の測定の透過
率を計算する。従ってカットバックより誤差は大きくな
る。測定に使用したファイバの長さは2mである。
EXAMPLES The present invention will be described below with reference to examples.
The method of measuring the amount of transmission in each of the examples and comparative examples is as follows. It is assumed that the wavelength dependency of the light source and the light receiver has been corrected. Measurement of the amount of transmission at a wavelength of 0.85 μm or 1.5 μm: The amount of light on the emission side is measured with the signal light incident on the fiber. With the incident side fixed, the fiber is cut at about 1 m from the incident side, and the light amount on the exit side (about 1 m) is measured again. The difference between the two measurements is the loss due to the cut fiber. The length of the fiber used for the measurement is about 1 km. Measurement of transmission amount at a wavelength of 248 μm: Cutback is not performed at 248 μm because a bundle fiber was used. The measurement light is incident on the bundle fiber, and the light quantity is measured on the emission side of the fiber. In the first measurement, it is assumed that the transmittance in a region where absorption is not seen from the wavelength characteristics (the region where the light amount is flat without depending on the wavelength) is 100%, and the transmittance in the other wavelength region and the second and subsequent times are assumed. Calculate the transmittance of the measurement. Therefore, the error is larger than the cutback. The length of the fiber used for the measurement is 2 m.

【0020】〔実施例1〕純石英コアの光ファイバ(バ
ンドルファイバ)に出力200mW/cm2 のKrFエ
キシマレーザー光(波長248nm)を10時間照射
し、その後、80℃、3気圧のH2 雰囲気中に24時間
放置した。処理後の光ファイバ2mの波長248nmに
おける透過量は90%であった。その後、2mW/cm
2 のエキシマレーザー光(波長248nm)を照射し続
けたところ、1000時間までは透過量は88%と殆ど
変化せず、1000時間を超えると徐々に透過量が減少
し、1500時間では50%になった。
Example 1 A pure silica core optical fiber (bundle fiber) was irradiated with a KrF excimer laser beam (wavelength: 248 nm) having an output of 200 mW / cm 2 for 10 hours, and thereafter, a H 2 atmosphere at 80 ° C. and 3 atm was used. Left for 24 hours. The transmission amount at a wavelength of 248 nm of the optical fiber 2 m after the treatment was 90%. Then, 2mW / cm
When irradiation with the excimer laser light (wavelength 248 nm) of No. 2 was continued, the transmission amount hardly changed to 88% until 1000 hours, and the transmission amount gradually decreased after 1000 hours, and decreased to 50% after 1500 hours. became.

【0021】〔実施例2〕純石英コアの光ファイバに60
Coのγ線を3×10-1Gy/sで1時間照射し、その
後、80℃、3気圧のH2 雰囲気中に24時間放置し
た。処理後の光ファイバの透過損失は、波長1.55μ
mで0.20dB/kmであった。その後、3×10-4
Gy/sのγ線被曝環境下で、この光ファイバの透過損
失(波長1.55μmにおける)を測定したところ、1
000時間までは0.30dB/kmと余り増加せず、
1000時間を超えると損失増加が大きくなり、150
0時間では0.85dB/kmとなった。
[0021] Example 2 60 to the optical fiber of the silica core
Irradiation with Co γ-rays was performed at 3 × 10 −1 Gy / s for 1 hour, and then left standing at 80 ° C. in an H 2 atmosphere at 3 atm for 24 hours. The transmission loss of the treated optical fiber is 1.55 μm.
m was 0.20 dB / km. Then 3 × 10 -4
When the transmission loss (at a wavelength of 1.55 μm) of this optical fiber was measured under a Gy / s gamma ray exposure environment,
It does not increase so much to 0.30dB / km until 000 hours,
If the time exceeds 1000 hours, the loss increase becomes large, and
At 0 hours, it was 0.85 dB / km.

【0022】〔比較例1〕純石英コアの光ファイバに60
Coのγ線を3×10-3Gy/sで1時間照射し、その
後、80℃、3気圧のH2 雰囲気中に24時間放置し
た。処理後の光ファイバの透過損失は波長1.55μm
で0.20dB/kmであった。その後、6×10-3
y/sのγ線被曝環境下で、この光ファイバの透過損失
(波長1.55μmにおける)を測定したところ、最初
から損失増加が起こり、15分の照射では透過損失0.
90dB/kmまで劣化してしまった。
[0022] Comparative Example 1 60 to the optical fiber of the silica core
Irradiation with Co γ-rays was performed at 3 × 10 −3 Gy / s for 1 hour, and then allowed to stand at 80 ° C. and 3 atm in a H 2 atmosphere for 24 hours. The transmission loss of the treated optical fiber is 1.55 μm.
Was 0.20 dB / km. Then, 6 × 10 -3 G
When the transmission loss (at a wavelength of 1.55 μm) of this optical fiber was measured in an environment exposed to y / s gamma rays, the loss increased from the beginning.
It has deteriorated to 90 dB / km.

【0023】〔実施例3〕純石英コアの光ファイバに60
Coのγ線を3×10-1Gy/sで1時間照射し、その
後、80℃、3気圧の水素雰囲気中に24時間放置し
た。処理後の光ファイバの透過損失は波長0.85μm
で2.50dB/kmであった。その後、3×10-4
y/sのγ線被爆環境下で、このファイバの透過損失を
測定したところ、100時間までは2.60dB/km
とあまり増加せず、100時間を超えると損失増加が大
きくなり、200時間では3.95dB/kmとなっ
た。
[Embodiment 3] A 60 % pure silica core optical fiber was used.
Irradiation with Co γ-rays was performed at 3 × 10 −1 Gy / s for 1 hour, and then left at 80 ° C. in a hydrogen atmosphere at 3 atm for 24 hours. The transmission loss of the treated optical fiber is 0.85 μm.
Was 2.50 dB / km. Then, 3 × 10 -4 G
When the transmission loss of this fiber was measured in a y / s gamma ray exposure environment, it was 2.60 dB / km up to 100 hours.
After 100 hours, the increase in loss became large, and after 200 hours, the loss was 3.95 dB / km.

【0024】〔比較例2〕純石英コアの光ファイバに60
Coのγ線を3×10-4Gy/sで1時間照射し、その
後、80℃、3気圧の水素雰囲気中に24時間放置し
た。処理後の光ファイバの透過損失は波長0.85μm
で2.50dB/kmであった。その後、6×10-4
y/sのγ線被爆環境下で、このファイバの透過損失
(0.85μm)を測定したところ、最初から損失増加
が起こり、15分の照射で4.15dB/kmとなっ
た。
[0024] Comparative Example 2 60 to the optical fiber of the silica core
Irradiated with Co γ-ray at 3 × 10 −4 Gy / s for 1 hour, then left at 80 ° C. in a hydrogen atmosphere at 3 atm for 24 hours. The transmission loss of the treated optical fiber is 0.85 μm.
Was 2.50 dB / km. Then, 6 × 10 -4 G
When the transmission loss (0.85 μm) of this fiber was measured in a y / s gamma-ray exposure environment, the loss increased from the beginning, and it became 4.15 dB / km by irradiation for 15 minutes.

【0025】以上の各実施例,比較例の結果を表1にま
とめて示す。
Table 1 summarizes the results of the above examples and comparative examples.

【0026】[0026]

【表1】 [Table 1]

【0027】〔比較例3〕純石英コアの光ファイバ(バ
ンドルファイバ)を80℃、3気圧の水素雰囲気中に2
4時間放置した。次いで24時間以内に60Coのγ線を
3×10-1Gy/sで1時間照射した。以上の工程を経
た光ファイバ(2m)の波長248nmにおける透過率
は85%と、この時点では損失増加が抑えられていた。
その後2mW/cm2 のエキシマレーザー光(波長24
8nm)を照射し続けたところ、100時間で50%、
2000時間で20%と透過量の減少が激しかった。
Comparative Example 3 An optical fiber (bundle fiber) having a pure silica core was placed in a hydrogen atmosphere at 80 ° C. and 3 atm.
Left for 4 hours. Then, within 24 hours, gamma rays of 60 Co were irradiated at 3 × 10 -1 Gy / s for 1 hour. The transmittance at a wavelength of 248 nm of the optical fiber (2 m) having undergone the above steps was 85%, and the increase in loss was suppressed at this time.
Thereafter, an excimer laser beam of 2 mW / cm 2 (wavelength 24
8 nm), 50% in 100 hours,
In 2000 hours, the transmission amount decreased to 20%, which was remarkable.

【0028】[0028]

【発明の効果】本発明は、光ファイバ(バンドルファイ
バを含む)がその使用環境で被爆する電磁波量(強度又
はエネルギー総量)を予め計算しておき、この量より大
きい強度又はエネルギー総量となるように予め電磁波照
射した後に水素処理することにより、当該光ファイバは
後の使用環境ではもはや電磁波照射劣化を起こさなくな
るので、耐電磁波特性の非常に向上した光ファイバを提
供することができる。処理工程も簡単であり、例えばγ
線照射では一度に大量のファイバを処理できる。さらに
本発明を比較的低い線量で実施すれば、光ファイバの被
覆劣化の問題もないので、実用上に有利である。従来の
紫外領域用ファイバは波長160nm〜200nmでは
真空条件で光を伝送する必要があった(このためにこの
領域を真空紫外域という)上に、紫外線照射劣化が大き
く、実用は困難であったが、本発明によれば、300〜
160nmの紫外域は勿論のこと、真空紫外線域でも真
空にせずに使用できる。また、真空紫外域では本発明に
よる光ファイバは大気中よりも光の透過性が良いという
利点があり、可撓性を有するので、エキシマレーザ光、
重水素ランプ、ハロゲンランプ等の紫外光源を利用した
装置、特に加工装置等、例えばレーザ加工、フォトレジ
スト、ファイバ硬化線源、接着硬化線源、各種マイクロ
部品加工、Sr(シンクロトロン)光発生線源の光伝送
用ファイバとして用いることができる。
According to the present invention, the amount of electromagnetic waves (intensity or total energy) that an optical fiber (including a bundle fiber) is exposed to in its use environment is calculated in advance, and the intensity or total energy is larger than this amount. By performing hydrogen treatment after previously irradiating an electromagnetic wave to the optical fiber, the optical fiber no longer causes deterioration of electromagnetic wave irradiation in a later use environment, so that an optical fiber with extremely improved electromagnetic wave resistance can be provided. The processing steps are simple, for example, γ
Line irradiation can process a large number of fibers at once. Further, if the present invention is carried out at a relatively low dose, there is no problem of coating deterioration of the optical fiber, which is practically advantageous. In the conventional ultraviolet region fiber, it was necessary to transmit light under a vacuum condition at a wavelength of 160 nm to 200 nm (for this reason, this region is referred to as a vacuum ultraviolet region). However, according to the present invention, 300 to
It can be used not only in the ultraviolet region of 160 nm but also in the vacuum ultraviolet region without applying vacuum. Further, in the vacuum ultraviolet region, the optical fiber according to the present invention has an advantage that light transmittance is better than that in the atmosphere, and since it has flexibility, excimer laser light,
Equipment utilizing ultraviolet light sources such as deuterium lamps and halogen lamps, especially processing equipment, such as laser processing, photoresist, fiber curing radiation source, adhesive curing radiation source, processing of various micro parts, Sr (synchrotron) light generation radiation It can be used as a source optical transmission fiber.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明と従来法の作用を比較して模式的に説明
する図である。
FIG. 1 is a diagram schematically illustrating the operation of the present invention and a conventional method in comparison.

【図2】放射線の吸収線量(Gy)と被覆材樹脂の伸び
残率(%)の関係を示すグラフ図である。
FIG. 2 is a graph showing the relationship between the absorbed dose of radiation (Gy) and the residual elongation (%) of the coating resin.

フロントページの続き (72)発明者 茂木 昌春 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 宍戸 資彦 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内Continued on the front page (72) Inventor Masaharu Mogi 1st Tayacho, Sakae-ku, Yokohama-shi, Kanagawa Prefecture Inside Sumitomo Electric Industries, Ltd. Inside Yokohama Works

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 コア中を伝播する光を含め電磁波の被爆
を受ける環境下で使用する光ファイバの使用前の処理方
法であって、予め使用環境下で受ける電磁波の強度を求
めておき、前記光ファイバに前記強度より大きな強度の
前処理用の電磁波を照射し、その後水素ガスからなる雰
囲気に浸漬することを特徴とする前記処理方法。
1. A method for treating an optical fiber used in an environment exposed to electromagnetic waves including light propagating in a core before use, wherein the intensity of the electromagnetic waves received in a use environment is determined in advance, and The above-mentioned processing method, wherein the optical fiber is irradiated with an electromagnetic wave for pretreatment having an intensity higher than the above intensity, and then immersed in an atmosphere made of hydrogen gas.
【請求項2】 コア中を伝播する光を含め電磁波の被爆
を受ける環境下で使用する光ファイバの使用前の処理方
法であって、予め使用環境下で受ける電磁波をエネルギ
ーに換算した総量を求めておき、前記光ファイバに前記
総量より大きなエネルギー換算総量となるように前処理
用の電磁波を照射し、その後水素ガスからなる雰囲気に
浸漬することを特徴とする請求項1記載の処理方法。
2. A method for treating an optical fiber used in an environment exposed to electromagnetic waves including light propagating in a core before use, wherein a total amount of the electromagnetic waves received in the environment used is converted into energy in advance. 2. The processing method according to claim 1, wherein the optical fiber is irradiated with an electromagnetic wave for pretreatment so that the total amount of energy of the optical fiber becomes larger than the total amount, and then the optical fiber is immersed in an atmosphere made of hydrogen gas.
【請求項3】 前記前処理用の電磁波としてγ線を用い
ることを特徴とする請求項1又は請求項2記載の処理方
法。
3. The processing method according to claim 1, wherein gamma rays are used as the pre-processing electromagnetic waves.
【請求項4】 前記前処理用の電磁波としてX線を用い
ることを特徴とする請求項1又は請求項2記載の処理方
法。
4. The processing method according to claim 1, wherein X-rays are used as the pre-processing electromagnetic waves.
【請求項5】 前記前処理用の電磁波として波長400
nm以下のレーザー光を用いることを特徴とする請求項
1又は請求項2記載の処理方法。
5. The method according to claim 5, wherein the electromagnetic wave for pretreatment has a wavelength of 400.
3. The processing method according to claim 1, wherein a laser beam having a wavelength of not more than nm is used.
【請求項6】 前記前処理用の電磁波を線量10〜10
4 Gyの範囲内で照射することを特徴とする請求項3又
は請求項4に記載の処理方法。
6. The method according to claim 1, wherein the pre-treatment electromagnetic wave is irradiated with a dose of 10 to 10.
The method according to claim 3, wherein the irradiation is performed within a range of 4 Gy.
JP12728697A 1997-05-16 1997-05-16 Treatment of optical fiber before use Pending JPH10316445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12728697A JPH10316445A (en) 1997-05-16 1997-05-16 Treatment of optical fiber before use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12728697A JPH10316445A (en) 1997-05-16 1997-05-16 Treatment of optical fiber before use

Publications (1)

Publication Number Publication Date
JPH10316445A true JPH10316445A (en) 1998-12-02

Family

ID=14956221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12728697A Pending JPH10316445A (en) 1997-05-16 1997-05-16 Treatment of optical fiber before use

Country Status (1)

Country Link
JP (1) JPH10316445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059013A1 (en) * 1999-03-25 2000-10-05 Asahi Glass Company, Limited Exposure apparatus, semiconductor device, and photomask
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
US7277616B2 (en) 2002-05-17 2007-10-02 Sumitomo Electric Industries, Ltd. Optical fiber bundle and method of manufacturing the same
JP2007272251A (en) * 2002-05-17 2007-10-18 Sumitomo Electric Ind Ltd Optical fiber bundle
US10971286B2 (en) 2017-05-31 2021-04-06 Jfe Steel Corporation Thermal-insulated multi-walled pipe for superconducting power transmission

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059013A1 (en) * 1999-03-25 2000-10-05 Asahi Glass Company, Limited Exposure apparatus, semiconductor device, and photomask
US6611317B1 (en) 1999-03-25 2003-08-26 Asahi Glass Company, Limited Exposure apparatus, semiconductor device, and photomask
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
US7277616B2 (en) 2002-05-17 2007-10-02 Sumitomo Electric Industries, Ltd. Optical fiber bundle and method of manufacturing the same
JP2007272251A (en) * 2002-05-17 2007-10-18 Sumitomo Electric Ind Ltd Optical fiber bundle
US10971286B2 (en) 2017-05-31 2021-04-06 Jfe Steel Corporation Thermal-insulated multi-walled pipe for superconducting power transmission

Similar Documents

Publication Publication Date Title
JP2980094B2 (en) Quartz glass article and method for producing the same
US6333283B1 (en) Silica glass article and manufacturing process therefor
EP1020413B1 (en) Silica glass article and manufacturing method therefor
CN112094052B (en) Radiation-resistant quartz optical fiber preform core rod and preparation method thereof
JPH044988B2 (en)
US5267343A (en) Enhanced radiation resistant fiber optics
JPH10316445A (en) Treatment of optical fiber before use
US5313547A (en) Halide glass medium containing trivalent uranium ions and process for producing said medium
JPS6090853A (en) Treatment of glass for optical fiber
JP3456449B2 (en) Quartz glass article and method for producing the same
US6564585B2 (en) Method for producing a second-order nonlinear glass material
JPS62143844A (en) Treatment of light-transmitting material
CN1792911A (en) Low attenuation fibre-optical and mfg. process thereof
EP0773195B1 (en) Glass body for optical fiber, use thereof, optical fiber, and method of making it
Henschel et al. A new radiation hard optical fiber for high-dose values
JP2001335337A (en) Optical fiber for transmission of ultraviolet light and its production method
JP2000226223A (en) Optical fiber for transmitting ultraviolet ray and its production
JPS6090845A (en) Manufacture of optical fiber
US6587625B1 (en) Optical fiber apparatus for high-radiation environments
JP3054412B2 (en) UV- and radiation-resistant silica glass and method for producing the same, UV- and radiation-resistant optical element and method for producing the same
JP4004895B2 (en) Optical device
RU2222032C2 (en) Fiber light guide ( variants ) and process of its fabrication
JPS59228602A (en) Optical information transmitting method in radiation field
JP2003021731A (en) Bundle fiber for transmission of uv light
JPS6214604A (en) Radiation-resisting fiber scope