JPH10316412A - Apparatus for producing iron carbide - Google Patents

Apparatus for producing iron carbide

Info

Publication number
JPH10316412A
JPH10316412A JP9128590A JP12859097A JPH10316412A JP H10316412 A JPH10316412 A JP H10316412A JP 9128590 A JP9128590 A JP 9128590A JP 12859097 A JP12859097 A JP 12859097A JP H10316412 A JPH10316412 A JP H10316412A
Authority
JP
Japan
Prior art keywords
gas
heating
reaction
reactor
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9128590A
Other languages
Japanese (ja)
Other versions
JP3279504B2 (en
Inventor
Torakatsu Miyashita
虎勝 宮下
Mitsuharu Kishimoto
充晴 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP12859097A priority Critical patent/JP3279504B2/en
Publication of JPH10316412A publication Critical patent/JPH10316412A/en
Application granted granted Critical
Publication of JP3279504B2 publication Critical patent/JP3279504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the heating quantity in heating apparatuses for heating reactional gases fed to reactors to reduce the equipment and operating costs, by providing an oxygen gas feeder for adding oxygen gas to a reduced and carbonized gas after heating in a second heating apparatus between the second heating apparatus and the second reactor. SOLUTION: A powdered iron ore is supplied to the upper part of a fluidized bed type reactional furnace 19 of a first reactional operating part 10 and the partially reduced iron ore is continuously supplied from the lower part of the fluidized bed type reactional furnace 19 to a fluidized type reactional furnace 39 of a second reactional operating part 30 to carry out the residual reduction and carbonization. An iron carbide product is then taken out from a pipeline 52. An oxygen gas feeder 60 for adding oxygen gas to the reduced and carbonized gas after heating in a tubular heating furnace 37 is provided between the tubular heating furnace 37 and the second reactor 39. Thereby, the heating quantity in the heating apparatuses for heating the reactional gases is reduced. As a result, the grade of metallic materials used in the heating apparatuses can be reduced to lower lank.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、製鉄、製鋼用の原
料、例えば電気炉等に用いる製鋼原料として好適である
鉄カーバイド(Fe3C) の製造装置に関するものであ
る。
The present invention relates to the iron, the raw material for steel making, for example, a manufacturing apparatus for an iron carbide (Fe 3 C) is suitable as steelmaking raw material used in the electric furnace or the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】一般
的に鋼の製造は、高炉により鉄鉱石を銑鉄に転化し、そ
の後、平炉又は転炉などにより銑鉄を鋼に転化する工程
からなる。このような伝統的な製法は、必要なエネルギ
ー、設備規模、及びコスト等が大きなものになるため、
小規模の製鋼には、従来、直接製鉄により鉄鉱石を製鋼
炉原料(固体)に転化し、この製鋼炉原料を電気炉等に
より溶融鋼に転化する工程からなる方法が採用されてい
る。かかる直接製鉄には、鉄鉱石を還元鉄に転化する直
接還元法があるが、この方法で製造される還元鉄は反応
活性が強く、大気中の酸素と反応して発熱するため、輸
送、貯蔵には不活性ガスによるシール等の手当が必要と
なる。このため、反応活性が低く、容易に輸送、貯蔵が
可能で、比較的高パーセンテージの鉄を含有する鉄カー
バイドが、近年、電気炉等による製鋼原料として使用さ
れつつある。
BACKGROUND OF THE INVENTION Generally, the production of steel comprises the steps of converting iron ore to pig iron in a blast furnace, and then converting pig iron to steel in a flat furnace or a converter. Such traditional manufacturing methods require large amounts of energy, equipment scale, and cost.
Conventionally, for small-scale steelmaking, a method comprising a step of converting iron ore into a steelmaking furnace raw material (solid) by direct ironmaking and converting the steelmaking furnace raw material into molten steel by an electric furnace or the like has been adopted. In such direct iron production, there is a direct reduction method for converting iron ore to reduced iron. However, the reduced iron produced by this method has a strong reaction activity and reacts with oxygen in the atmosphere to generate heat, so that it is transported and stored. Requires a treatment such as sealing with an inert gas. For this reason, iron carbide, which has a low reaction activity, can be easily transported and stored, and contains a relatively high percentage of iron, has recently been used as a steelmaking raw material for electric furnaces and the like.

【0003】さらに、鉄カーバイドを主成分とする鉄鋼
原料は、輸送貯蔵が容易であるばかりでなく、鉄と化合
している炭素が製鉄あるいは製鋼炉の燃料源となる他、
製鋼炉内では反応を促進する微細な気泡の発生源となる
利点もある。このようなことから、近年鉄カーバイドを
主成分とする製鉄、製鋼用原料は特に注目されている。
[0003] Further, the steel raw material containing iron carbide as a main component is not only easy to transport and store, but also the carbon combined with iron becomes a fuel source for iron making or a steel making furnace.
In a steelmaking furnace, there is also an advantage that it is a source of fine bubbles that promote the reaction. For these reasons, in recent years, raw materials for steelmaking and steelmaking mainly composed of iron carbide have attracted particular attention.

【0004】かかる鉄カーバイドを製造する従来の方法
は、鉄鉱石を粉体にして流動層式反応器に充填し、還元
ガス(水素ガス)と炭化ガス(例えばメタンガスなど)
の混合ガスと所定温度で反応させることで、鉄鉱石内の
鉄酸化物(ヘマタイト(Fe23)、マグネタイト(F
34)、ウスタイト(FeO)など)を単一操作
((一つの反応器内に還元および炭化ガスを同時に導入
して行う操作をいう)で還元および炭化させるものであ
る。この種の先行技術としては、特表平6−50198
3号公報に記載のものがある。
In a conventional method for producing such iron carbide, a powder of iron ore is charged into a fluidized bed reactor, and a reducing gas (hydrogen gas) and a carbonization gas (for example, methane gas, etc.) are used.
At a predetermined temperature with a mixed gas of iron oxide (hematite (Fe 2 O 3 ) and magnetite (F
e 3 O 4), in which a reducing and carbonizing at wustite (FeO), etc.) a single operation ((refer to operation performed by introducing simultaneously one reactor to the reducing and carburizing gases). This type As the prior art, Japanese Patent Publication No. Hei 6-50198
There is one described in Japanese Patent Publication No.

【0005】還元と炭化を単一操作で行う方法は、シス
テム的に単純であるという利点はあるが、還元反応また
は炭化反応のそれぞれに最適になるように反応ガス組成
や反応温度を個別にフレキシブルに設定することができ
ないため、効率的に反応を進めることができない。そこ
で、本出願人は、第一反応操作において使用するガスを
還元反応のみに最適な組成に、また第二反応操作におい
て使用するガスを残りの還元反応と炭化反応に最適な組
成にすることができるように、「製鉄用含鉄原料の還元
反応の一部を行う第一反応操作の後に、残りの還元反応
と炭化反応を行う第二反応操作を進めることを特徴とす
る鉄カーバイドの製造方法および製造装置」に関する発
明について特許出願をした(特願平8−30985
号)。この発明によれば、単一操作で鉄カーバイドを製
造する従来の装置では不可能な、各操作ごとの各種対応
が取れ、プロセスとしてフレキシブルになるので、反応
時間の短縮を図るとともに還元および炭化ガスの流量を
大幅に低減しうる等の利点があるが、一方、次のような
不都合なことがある。というのは、以下の式(1)に従
って行われる第二反応操作は吸熱反応であるため、加熱
装置で加熱して第二反応装置に供給される反応ガスは、
反応温度より高めの温度に加熱しなければならない。
The method of performing reduction and carbonization in a single operation has the advantage of system simplicity, but the reaction gas composition and reaction temperature are individually flexible so as to be optimal for each of the reduction reaction and carbonization reaction. , The reaction cannot proceed efficiently. Therefore, the present applicant has set the gas used in the first reaction operation to have the optimum composition only for the reduction reaction, and the gas used in the second reaction operation to have the optimum composition for the remaining reduction reaction and carbonization reaction. As such, `` after the first reaction operation to perform a part of the reduction reaction of the iron-containing raw material for iron making, the method for producing iron carbide characterized by proceeding a second reaction operation to perform the remaining reduction reaction and carbonization reaction and Filed a patent application for the invention relating to "manufacturing equipment" (Japanese Patent Application No. 8-30985).
issue). According to the present invention, various operations can be taken for each operation, which is impossible with a conventional apparatus for producing iron carbide in a single operation, and the process becomes flexible. However, there is an advantage that the flow rate can be greatly reduced, but there are some disadvantages as follows. That is, since the second reaction operation performed according to the following formula (1) is an endothermic reaction, the reaction gas heated by the heating device and supplied to the second reaction device is:
It must be heated above the reaction temperature.

【0006】 3FeO2/3+CH4 →Fe3C+2H2O (1) また、第二反応操作の反応ガスはメタン(CH4) のよ
うな炭化ガス成分を含んでいるため、この炭化ガスを加
熱する装置(例えば、図6に示すヒーターチューブ式加
熱炉)のヒーターチューブHの金属成分(M)と炭化ガ
ス中の炭素(C)が反応して、次式(2)に示すよう
に、金属カーバイド(MX C)が生成されることがあ
る。
3FeO 2/3 + CH 4 → Fe 3 C + 2H 2 O (1) Since the reaction gas of the second reaction operation contains a carbon gas component such as methane (CH 4 ), this carbon gas is heated. (For example, a heater tube type heating furnace shown in FIG. 6), the metal component (M) of the heater tube H reacts with the carbon (C) in the carbonized gas, and as shown in the following equation (2), Carbide (M x C) may be generated.

【0007】C+xM→MXC (2) この金属カーバイドの生成が過飽和に達すると、次式
(3)に示すように、炭素が分離して、その際に、ヒー
ターチューブの金属成分が剥離する。
C + xM → M X C (2) When the formation of this metal carbide reaches supersaturation, carbon is separated as shown in the following equation (3), and at that time, the metal component of the heater tube is separated. .

【0008】MXC →C+xM (3) 従って、かかる浸炭性腐食を避けるようにヒーターチュ
ーブの材質を選定する必要がある。すなわち、第二反応
操作の反応温度は約630℃程度が好ましいが、吸熱反
応による温度低下分を補うため、第二反応装置に供給さ
れる反応ガスの温度は約680℃に加熱されており、し
かも、ガスを680℃に加熱するために、ヒータ一チュ
ーブの内壁面の温度は約730〜800℃に達するの
で、ヒーターチューブの材質は高温での浸炭性腐食に耐
えるような高級鋼(例えば、Ni−Cr−Mo鋼)が使
用されており、設備コストが高くついている。
M X C → C + xM (3) Therefore, it is necessary to select the material of the heater tube so as to avoid such carburizing corrosion. That is, the reaction temperature of the second reaction operation is preferably about 630 ° C., but the temperature of the reaction gas supplied to the second reactor is heated to about 680 ° C. in order to compensate for the temperature decrease due to the endothermic reaction. In addition, since the temperature of the inner wall surface of the heater tube reaches about 730 to 800 ° C. in order to heat the gas to 680 ° C., the material of the heater tube is made of high-grade steel (for example, Ni-Cr-Mo steel) is used, and the equipment cost is high.

【0009】本発明は従来の技術の有するこのような問
題点に鑑みてなされたものであって、その目的は、反応
装置に供給する反応ガスを加熱する装置での加熱量を低
減し、設備コストおよび運転コストを低減しうる鉄カー
バイドの製造装置を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to reduce the amount of heating in a device for heating a reaction gas supplied to a reaction device and to reduce the amount of equipment. An object of the present invention is to provide an iron carbide manufacturing device capable of reducing costs and operating costs.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明の要旨は、加熱装置で加熱した反応ガス中に酸
素ガスを添加し、反応ガス中の水素を酸素ガスで燃焼さ
せる際に生じる熱により反応ガスを昇温して第二反応操
作における吸熱反応に伴う反応温度の低下を補い、加熱
装置における反応ガスの加熱量を低減することが可能に
なる。
In order to achieve the above object, the gist of the present invention is to add oxygen gas to a reaction gas heated by a heating device and burn hydrogen in the reaction gas with the oxygen gas. The generated heat raises the temperature of the reaction gas to compensate for a decrease in the reaction temperature caused by the endothermic reaction in the second reaction operation, thereby making it possible to reduce the amount of heating of the reaction gas in the heating device.

【0011】[0011]

【発明の実施の形態】すなわち、本発明は、含鉄原料を
還元および炭化して鉄カーバイドを製造する装置であっ
て、第一加熱装置で加熱した還元ガスにより含鉄原料を
一部還元する第一反応装置に引き続いて、第二加熱装置
で加熱した還元および炭化ガスにより残りの還元と炭化
を行う第二反応装置を有する鉄カーバイドの製造装置に
おいて、第二加熱装置と第二反応装置との間に、第二加
熱装置で加熱した後の還元および炭化ガスに酸素ガスを
添加するための酸素ガス供給装置を設けたことを特徴と
する鉄カーバイドの製造装置を第一の発明とし、上記第
一の発明において、第一反応装置および第二反応装置が
それぞれ流動層式反応炉である鉄カーバイドの製造装置
を第二の発明とし、上記第二の発明において、流動層式
反応炉の流動層を仕切板によって複数のチャンバーに分
割した鉄カーバイドの製造装置を第三の発明とし、上記
第三の発明において、特定のチャンバーに供給されるガ
ス中に酸素を添加する装置を設けたことを特徴とする鉄
カーバイドの製造装置を第四の発明とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to an apparatus for producing iron carbide by reducing and carbonizing an iron-containing raw material, wherein a first gas is heated by a first heating device to partially reduce the iron-containing raw material. Subsequent to the reactor, in an iron carbide manufacturing device having a second reactor for performing the remaining reduction and carbonization by the reduction and carbonization gas heated by the second heating device, the second heating device and the second reactor The first invention is an iron carbide manufacturing device, characterized by having an oxygen gas supply device for adding oxygen gas to the reduction and carbonization gas after heating by the second heating device, In the invention of the first embodiment, the first reactor and the second reactor are each a production apparatus of iron carbide, which is a fluidized bed reactor, as the second invention, and in the second invention, the fluidized bed of the fluidized bed reactor is The third invention is an iron carbide manufacturing device divided into a plurality of chambers by a cutting plate, and in the third invention, a device for adding oxygen to a gas supplied to a specific chamber is provided. A fourth aspect of the present invention is an iron carbide manufacturing apparatus.

【0012】以上のように構成される本発明によれば、
第一反応装置において含鉄原料の還元反応の一部を行
い、第二反応装置において、残りの還元反応と炭化反応
を行うことから、単一操作で鉄カーバイドを製造する従
来の装置では不可能な各種対応が取れるので、効率的に
反応を進めることができる。しかも、第二加熱装置と第
二反応装置との間には酸素ガス供給装置があるので、第
二加熱装置で加熱した後の反応ガス(還元ガスおよび炭
化ガス)に酸素ガスを添加することにより、反応ガス中
の水素と酸素が反応して、以下の(4)式に示すような
燃焼熱が得られる。
According to the present invention configured as described above,
In the first reactor, a part of the reduction reaction of the iron-containing raw material is performed, and in the second reactor, the remaining reduction reaction and carbonization reaction are performed, so that it is impossible with a conventional apparatus that manufactures iron carbide in a single operation. Since various measures can be taken, the reaction can proceed efficiently. Moreover, since there is an oxygen gas supply device between the second heating device and the second reaction device, the oxygen gas is added to the reaction gas (reducing gas and carbon gas) heated by the second heating device. Then, the hydrogen and oxygen in the reaction gas react with each other to obtain combustion heat as shown in the following equation (4).

【0013】 H2 +1/2 O2 →H2O +57.6kcal/g・mol (4) 温度600℃付近のH2O の定圧比熱は0.5kcal
/Nm3・℃ であるから、反応ガス中に0.5容積%の
酸素ガスを添加して反応ガス中の水素と反応させれば、
反応ガス中のH2O は1容積%増加し、反応ガスの温度
Tは次式に示すように51.4℃上昇する。
H 2 +1/2 O 2 → H 2 O + 57.6 kcal / g · mol (4) The constant pressure specific heat of H 2 O at a temperature around 600 ° C. is 0.5 kcal.
/ Nm 3 · ° C., 0.5% by volume of oxygen gas is added to the reaction gas and reacted with hydrogen in the reaction gas.
H 2 O in the reaction gas increases by 1% by volume, and the temperature T of the reaction gas increases by 51.4 ° C. as shown in the following equation.

【0014】 T=57.6×103 /(22.4×0.5)/100 =51.4(℃/1%H2O) このようにして反応ガスの温度が上昇するので、第二加
熱装置において反応ガスを過度に加熱する必要はなくな
り、ヒーターチューブの金属成分のグレードを下げるこ
とが可能になる。また、加熱に使用するガス量を大幅に
低減することが可能になる。
T = 57.6 × 10 3 /(22.4×0.5)/100=51.4 (° C./1% H 2 O) In this manner, the temperature of the reaction gas rises. It is not necessary to heat the reaction gas excessively in the two-heating device, and it becomes possible to lower the grade of the metal component of the heater tube. Further, the amount of gas used for heating can be significantly reduced.

【0015】[0015]

【実施例】以下に本発明の実施例を説明する。図1に示
すように、本実施例の装置は、製鉄用含鉄原料として、
ヘマタイトを主に含有する鉄鉱石の部分的な還元を行う
第一反応操作部分10と、残りの還元反応と炭化反応を
行う第二反応操作部分30とから構成される。第一反応
操作部分10の反応ガスの流れは、管路11、管路1
2、圧縮機13、管路14、熱交換器15、管路16、
管状式加熱炉(第一加熱装置)17、管路18、流動層
式反応炉(第一反応装置)19、管路20、熱交換器1
5、管路21、スクラバ22および管路23がループを
構成している。すなわち、流動層式反応炉19の底部ガ
ス入口に、管路12、圧縮機13、管路14、熱交換器
15、管路16、管状式加熱炉17、管路18を順に経
て反応ガスが供給され、流動層式反応炉19の頂部出口
から、管路20、熱交換器15、管路21、スクラバ2
2、管路23、管路11、管路12を順に経て反応ガス
が循環するループが形成されている。
Embodiments of the present invention will be described below. As shown in FIG. 1, the apparatus of the present embodiment uses
It comprises a first reaction operation section 10 for partially reducing iron ore mainly containing hematite, and a second reaction operation section 30 for performing the remaining reduction reaction and carbonization reaction. The flow of the reaction gas in the first reaction operation part 10 is
2, compressor 13, pipe 14, heat exchanger 15, pipe 16,
Tubular heating furnace (first heating device) 17, pipe 18, fluidized bed reactor (first reactor) 19, pipe 20, heat exchanger 1
5, the pipe 21, the scrubber 22, and the pipe 23 form a loop. That is, the reaction gas flows through the pipe 12, the compressor 13, the pipe 14, the heat exchanger 15, the pipe 16, the tubular heating furnace 17, and the pipe 18 in order at the bottom gas inlet of the fluidized bed reactor 19. The pipe 20, the heat exchanger 15, the pipe 21, the scrubber 2 are supplied from the top outlet of the fluidized bed reactor 19.
2. A loop is formed in which the reaction gas circulates sequentially through the pipeline 23, the pipeline 11, and the pipeline 12.

【0016】また、管路11と管路12との連結部分に
連結した管路24より循環経路に所定の組成のガスを補
給し、管路11と管路23との連結部分に連結した管路
25より所定量のガスを排出するように構成されてお
り、この補給ガスおよび排出ガスを調整することにより
流動層式反応炉19に流入する反応ガスの組成を一定に
なるようにし、反応によりガス組成が変化し、反応速度
が低下することを防止できる。
Further, a gas having a predetermined composition is supplied to the circulation path from a pipe 24 connected to a connection section between the pipes 11 and 12, and a pipe connected to a connection section between the pipe 11 and the pipe 23. A predetermined amount of gas is discharged from the passage 25. By adjusting the make-up gas and the discharge gas, the composition of the reaction gas flowing into the fluidized bed reactor 19 is made constant, and A change in gas composition and a decrease in reaction rate can be prevented.

【0017】第二反応操作部分30の反応ガスの流れ
も、第一反応操作部分と同様であるため、共通する箇所
に第一反応操作部分10の各番号に20を加えた番号を
付して説明を省略する。
Since the flow of the reaction gas in the second reaction operation part 30 is the same as that in the first reaction operation part, the common parts are numbered by adding 20 to each number of the first reaction operation part 10. Description is omitted.

【0018】以上のように構成される鉄カーバイドの製
造装置において、粉状にした鉄鉱石を管路50を介して
第一反応操作部分10の流動層式反応炉19の上部に供
給すると、部分的に還元された鉄鉱石は流動層式反応炉
19の下部から管路51を経て第二反応操作部分30の
流動層式反応炉39に連続的に供給され、この流動層式
反応炉39内で残りの還元と炭化を行った後、鉄カーバ
イド製品が管路52を経て連続的に取り出される。以上
の反応に用いる反応ガスの組成については、第一反応操
作は還元反応のみを考慮すればよいことから、水素を主
体とする還元ガスにより行い、第二反応操作は還元反応
および炭化反応を考慮しなければならないので、水素と
メタンの混合ガスで行う。また、流動層式反応炉39の
好ましい反応温度は約630℃であり、流動層式反応炉
39に供給される反応ガスは、熱交換器35において約
580℃に昇温され、さらに管状式加熱炉37において
約630℃に加熱された後、管状式加熱炉37と流動層
式反応炉39との間に設置された酸素ガス供給装置60
から管路38に供給される酸素ガスにより、上式
((4)に示すように燃焼熱を生成するので、管路38
から流動層式反応炉39に供給される反応ガスの温度を
上昇させることができる。この場合、酸素ガス供給装置
60から管路38に0.5容積%の酸素ガスを添加した
ので、第二反応操作の循環ループ内の循環ガス中のH2
O は1容積%増加し、反応ガスの温度は約50℃上昇
して、約680℃になった。このように、酸素ガス供給
装置から供給した酸素で反応ガス中の水素を燃焼させる
ことにより流動層式反応炉39(第二反応装置)に供給
する反応ガスの温度を約50℃上昇させることができる
ので、管状式加熱炉37(第二加熱装置)の加熱量を半
減することができる。その結果、ヒーターチューブの材
質グレードを低下させることができるし、管状式加熱炉
37で加熱のために使用するガス量を大幅に低減させる
こともできる。
In the iron carbide manufacturing apparatus configured as described above, when powdered iron ore is supplied to the upper part of the fluidized bed reactor 19 of the first reaction operation section 10 through the pipe 50, The reduced iron ore is continuously supplied from the lower part of the fluidized bed reactor 19 to the fluidized bed reactor 39 of the second reaction operation section 30 through the pipe 51, and the fluidized bed reactor 39 After performing the remaining reduction and carbonization, the iron carbide product is continuously taken out through the pipeline 52. Regarding the composition of the reaction gas used in the above reaction, since the first reaction operation only needs to consider the reduction reaction, the first reaction operation is performed using a reducing gas mainly composed of hydrogen, and the second reaction operation considers the reduction reaction and the carbonization reaction. Must be performed with a mixed gas of hydrogen and methane. Further, the preferable reaction temperature of the fluidized bed reactor 39 is about 630 ° C., and the reaction gas supplied to the fluidized bed reactor 39 is heated to about 580 ° C. in the heat exchanger 35, After being heated to about 630 ° C. in the furnace 37, the oxygen gas supply device 60 installed between the tubular heating furnace 37 and the fluidized-bed reactor 39.
The combustion heat is generated by the oxygen gas supplied from the pipe 38 to the pipe 38 as shown in the above equation ((4)).
, The temperature of the reaction gas supplied to the fluidized bed reactor 39 can be increased. In this case, since 0.5% by volume of oxygen gas was added from the oxygen gas supply device 60 to the line 38, H 2 in the circulation gas in the circulation loop of the second reaction operation was added.
O 2 increased by 1% by volume and the temperature of the reaction gas increased by about 50 ° C. to about 680 ° C. As described above, by burning the hydrogen in the reaction gas with the oxygen supplied from the oxygen gas supply device, the temperature of the reaction gas supplied to the fluidized bed reactor 39 (second reaction device) can be raised by about 50 ° C. Therefore, the heating amount of the tubular heating furnace 37 (second heating device) can be reduced by half. As a result, the material grade of the heater tube can be reduced, and the amount of gas used for heating in the tubular heating furnace 37 can be significantly reduced.

【0019】ところで、スクラバ42は、中空の本体4
6、ガス中に水を噴射する管路47、および本体46内
の水を排出する管路48より構成され、反応炉39から
排出されたガスを冷却し、ガス中のH2O( 水蒸気)を
凝縮させて除去するものである。反応炉39における還
元反応の結果発生するH2O の大部分はスクラバ42に
おいて除去され、スクラバ42から管路43に排出され
るガス中のH2O は約1容積%になる。このH2O 分に
燃焼の結果生成するH2O が付加されるので、循環ルー
プ内を循環しているガス中のH2O は約2容積%にな
る。
By the way, the scrubber 42 has a hollow main body 4.
6. A pipe 47 for injecting water into the gas and a pipe 48 for discharging the water in the main body 46. The gas discharged from the reaction furnace 39 is cooled, and H 2 O (water vapor) in the gas is cooled. Is condensed and removed. Most of the H 2 O generated as a result of the reduction reaction in the reactor 39 is removed in the scrubber 42, and the H 2 O in the gas discharged from the scrubber 42 to the pipe 43 becomes about 1% by volume. Since H 2 O as a result generating combustion in the H 2 O content is added, H 2 O in the gas circulating in the circulation loop is about 2 volume%.

【0020】一方、第二反応操作部分の実際の反応は、
以下の式(5)、(6)に従って進行する。
On the other hand, the actual reaction of the second reaction operation part is
It proceeds according to the following equations (5) and (6).

【0021】 CH4 +H2O →3H2 +CO (5) 3Fe+CO+H2 →Fe3C +H2O (6) (6)式に明らかなように、循環ガス中にH2O が多く
含まれていると、鉄カーバイド(Fe3C) が生成され
にくくなる。従って、鉄カーバイドの生成をスムーズに
進めるために、循環ガス中のH2O は一定以下にするの
が好ましく、その値を実験により求めたところ、H2
/H2≦0.2にするのが好ましいことが分かった。本
実施例の循環ガス中のH2 は約35%であるから、鉄カ
ーバイドをスムーズに生成するためには、循環ガス中の
2O の上限値は約7%にする必要があることが分か
る。しかし、操業条件のバラツキ等を考慮すると、循環
ガス中のH2O は低い方が好ましく、6容積%程度が循
環ガス中のH2O の上限値であると考えられる。上記し
たように、酸素ガス供給装置を有しない従来のもので
は、循環ガス中に定常的に1容積%のH2O が含まれて
いるので、循環ガス中に許容されるH2O 量は差し引き
5容積%である。一方、本実施例においては、循環ルー
プ内を循環するガス中には2容積%のH2O が含まれて
いるので、還元反応の結果生成するH2Oとして循環ガ
ス中に許容されるH2O量は差し引き4容積%になる。
このように、循環ガス中に許容されるH2O の量が1/
5(20%)減少することによる反応速度の低下を避け
るためには、循環ガス総量を増加すればよく、具体的に
は、5/4倍、約25%増加すればよい。
CH 4 + H 2 O → 3H 2 + CO (5) 3Fe + CO + H 2 → Fe 3 C + H 2 O (6) As is apparent from the equation (6), the circulating gas contains a large amount of H 2 O. , Iron carbide (Fe 3 C) is less likely to be generated. Therefore, in order to promote the formation of iron carbide smoothly, H 2 O in the circulating gas is preferably to below a certain level, which was determined by experiment that value, H 2 O
/ H 2 ≦ 0.2 was found to be preferable. Since H 2 in the circulating gas of this embodiment is about 35%, the upper limit of H 2 O in the circulating gas needs to be about 7% in order to generate iron carbide smoothly. I understand. However, in consideration of variations in operating conditions and the like, it is preferable that H 2 O in the circulating gas is lower, and it is considered that about 6% by volume is the upper limit of H 2 O in the circulating gas. As described above, in the conventional apparatus having no oxygen gas supply device, since the circulating gas constantly contains 1% by volume of H 2 O, the allowable amount of H 2 O in the circulating gas is: The deduction is 5% by volume. On the other hand, in the present embodiment, since the gas circulating in the circulation loop contains 2% by volume of H 2 O, it is allowed to circulate in the gas as H 2 O to produce a result of the reduction reaction H The amount of 2 O is 4% by volume.
Thus, the amount of H 2 O allowed in the circulating gas is 1 /
In order to avoid a decrease in the reaction rate due to a decrease of 5 (20%), the total amount of the circulating gas may be increased, specifically, it may be increased by a factor of 5/4, about 25%.

【0022】図2は、反応温度(℃)と全ガス使用量
(循環ガスおよび管状式加熱炉で使用するガスとの合計
量)との関係を示し、線Aは循環ガス中に酸素ガスを添
加しなかった場合、線Bは管状式加熱炉37の出側ガス
に酸素ガスを0.5容積%添加した場合を示す。図2に
明らかなように、管状式加熱炉37の出側ガスに酸素ガ
スを添加することにより、加熱に使用するガス量を大幅
に低減することができるので、結果として、全ガス使用
量を低減しうる。また、図3は循環ガス中のH2Oの増
加量と全ガス使用量との関係を示し、管状式加熱炉37
の出側ガスに酸素ガスを添加して水素ガスを燃焼させる
ことにより生成するH2O の量が多くなるほど(燃焼生
成熱量が増えるほど)、全ガス使用量は減少することが
分かる。
FIG. 2 shows the relationship between the reaction temperature (° C.) and the total amount of gas used (the total amount of the circulating gas and the gas used in the tubular heating furnace). In the case where oxygen gas was not added, the line B indicates the case where oxygen gas was added to the outlet gas of the tubular heating furnace 37 at 0.5% by volume. As is clear from FIG. 2, by adding oxygen gas to the outlet gas of the tubular heating furnace 37, the amount of gas used for heating can be significantly reduced, and as a result, the total gas consumption can be reduced. Can be reduced. FIG. 3 shows the relationship between the amount of H 2 O in the circulating gas and the total amount of gas used.
It can be seen that the total amount of gas used decreases as the amount of H 2 O generated by adding oxygen gas to the outlet gas and burning the hydrogen gas increases (the amount of heat generated by combustion increases).

【0023】図4は流動層式反応炉の流動層を仕切板に
よって多室に分割した例を示す図である。図4におい
て、流動層炉70の底部には多数の小孔が形成された分
散板71が配設されており、底部の供給ガスダクト72
から炉内に供給された反応ガスは風箱73から分散板7
1を経て流動層74に達する。この流動層74は2枚の
仕切板75によって3つのチャンバー(74a、74
b、74c)に分割されている。76は排ガスダクト、
77は粉粒体原料の投入管、78は製品(鉄カーバイ
ド)の排出管、79はサイクロン(図示せず)で捕集さ
れた炉内ガス中の微粉を投入する投入管である。このよ
うに、流動層を仕切板によって複数の区画に分割すれ
ば、原料の流動層内滞留時間が長くなるので、得られる
製品の純度が向上する。
FIG. 4 is a view showing an example in which a fluidized bed of a fluidized bed reactor is divided into multiple chambers by a partition plate. In FIG. 4, a dispersion plate 71 having a large number of small holes is provided at the bottom of a fluidized bed furnace 70, and a supply gas duct 72 at the bottom is provided.
The reaction gas supplied into the furnace from
1 and reaches the fluidized bed 74. The fluidized bed 74 is divided into three chambers (74a, 74a) by two partition plates 75.
b, 74c). 76 is an exhaust gas duct,
Reference numeral 77 denotes an input pipe for the raw material of the granular material, 78 denotes an exhaust pipe for the product (iron carbide), and 79 denotes an input pipe for inputting the fine powder in the furnace gas collected by a cyclone (not shown). As described above, when the fluidized bed is divided into a plurality of sections by the partition plate, the residence time of the raw material in the fluidized bed becomes longer, and the purity of the obtained product is improved.

【0024】図5は、仕切板によって分割された各チャ
ンバー(74a、74b、74c)へ別々のガス供給管
路(38a、38b、38c)が設けられ、そのうちの
特定の管路38aに酸素ガス供給装置60が接続されて
いる。すなわち、このように仕切板によって流動層74
が複数のチャンバーに分割されている場合には、各チャ
ンバー内での反応量が多少異なるため、各チャンバーへ
供給されるガスが必要とする温度も異なる。従って、流
動層へ供給される全量のガスに酸素ガスを添加するので
はなく、特定のチャンバーへ供給されるガスに酸素ガス
を添加する。なお、図中符号80a、80b、80cで
示されるガス分配器は図4に示される分散板71とは異
なり、多数のガス吹込孔を有するパイプが格子状に設置
されている構造となっている。なお、循環ガス中に添加
される酸素ガスは純粋なものである必要はなく、一般に
工業的に得られるもので、多少の不純物(N2やArガ
ス)を含んでいてもよいことはもちろんである。また、
第一反応操作部分の管路18に酸素ガスを添加しても、
上述した理由と同じように管状加熱炉での負荷を軽減で
きることは当然である。
FIG. 5 shows that each of the chambers (74a, 74b, 74c) divided by a partition plate is provided with a separate gas supply pipe (38a, 38b, 38c), and oxygen gas is supplied to a specific pipe 38a. The supply device 60 is connected. That is, the fluidized bed 74 is thus formed by the partition plate.
Is divided into a plurality of chambers, the reaction amount in each chamber is slightly different, so that the temperature required for the gas supplied to each chamber is also different. Therefore, instead of adding oxygen gas to the total amount of gas supplied to the fluidized bed, oxygen gas is added to gas supplied to a specific chamber. The gas distributors indicated by reference numerals 80a, 80b, and 80c in the figure are different from the distribution plate 71 shown in FIG. 4 in that pipes having a large number of gas injection holes are arranged in a lattice. . The oxygen gas added to the circulating gas does not need to be pure, but is generally obtained industrially, and may contain some impurities (N 2 or Ar gas). is there. Also,
Even if oxygen gas is added to the line 18 of the first reaction operation part,
Naturally, the load on the tubular heating furnace can be reduced in the same manner as described above.

【0025】[0025]

【発明の効果】本発明は上記のとおり構成されているの
で、次の効果を奏する。 請求項1記載の発明によれば、反応ガスを加熱する
加熱装置の加熱量が軽減されるので、加熱装置に使用す
る金属材料のグレードを下げることが可能であり、設備
コストを低減するとともに運転コスト(ガス使用量)を
低減することができる。この場合、加熱装置で昇温する
反応ガスの温度を変えなければ、反応温度の上昇によ
り、生産性の向上が図れるという効果が期待できる。
Since the present invention is configured as described above, the following effects can be obtained. According to the first aspect of the present invention, since the heating amount of the heating device for heating the reaction gas is reduced, it is possible to reduce the grade of the metal material used for the heating device, thereby reducing the equipment cost and operating. Cost (gas usage) can be reduced. In this case, if the temperature of the reaction gas heated by the heating device is not changed, an effect that productivity can be improved by increasing the reaction temperature can be expected.

【0026】 請求項2記載の発明によれば、原料の
供給と製品の排出が連続的に行え、反応が均一に行われ
るので、得られる製品の品質にバラツキが少なくなると
いう効果がある。
According to the second aspect of the present invention, since the supply of the raw material and the discharge of the product can be performed continuously and the reaction is performed uniformly, there is an effect that the variation in the quality of the obtained product is reduced.

【0027】 請求項3記載の発明によれば、原料の
炉内滞留時間が長くなるので、得られる製品の純度が向
上するという効果がある。
According to the third aspect of the present invention, since the residence time of the raw material in the furnace is lengthened, there is an effect that the purity of the obtained product is improved.

【0028】 請求項4記載の発明によれば、流動層
式反応炉の流動層が複数のチャンバーに分割されている
場合に、特定のチャンバーへ供給されるガスの温度を高
めることができるという効果がある。
According to the fourth aspect of the invention, when the fluidized bed of the fluidized bed reactor is divided into a plurality of chambers, the temperature of the gas supplied to a specific chamber can be increased. There is.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の鉄カーバイドの製造装置の一実施例を
示す概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of an iron carbide manufacturing apparatus of the present invention.

【図2】反応温度と全ガス使用量との関係を示す図で、
線Aは循環ガス中に酸素ガスを添加しなかった場合、線
Bは管状式加熱炉の出側ガス中に酸素ガスを0.5容積
%添加した場合(循環ガス中のH2O が1容積%増加し
た場合)を示す図である。
FIG. 2 is a diagram showing the relationship between the reaction temperature and the total gas usage,
Line A shows the case where oxygen gas was not added to the circulating gas, and line B shows the case where oxygen gas was added to the outlet gas of the tubular heating furnace at 0.5% by volume (H 2 O in the circulating gas was 1%). It is a figure which shows the case (volume% increase).

【図3】循環ガスへ酸素ガスを添加して水素ガスと反応
させることにより生成するH2O量(容積%)と全ガス
使用量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of H 2 O (vol%) generated by adding oxygen gas to a circulating gas and reacting with hydrogen gas, and the total amount of gas used.

【図4】多室分割型流動層炉の一例の断面図である。FIG. 4 is a sectional view of an example of a multi-chamber split type fluidized bed furnace.

【図5】多室分割型流動層炉の他の一例の断面図であ
る。
FIG. 5 is a sectional view of another example of a multi-chamber split type fluidized bed furnace.

【図6】管状式加熱炉の内部を示す断面図である。FIG. 6 is a sectional view showing the inside of a tubular heating furnace.

【符号の説明】[Explanation of symbols]

10…第一反応操作部分 17…管状式加熱炉(第一加熱装置) 19…流動層式反応炉(第一反応装置) 30…第二反応操作部分 37…管状式加熱炉(第二加熱装置) 39…流動層式反応炉(第二反応装置) 60…酸素ガス供給装置 DESCRIPTION OF SYMBOLS 10 ... 1st reaction operation part 17 ... Tubular heating furnace (1st heating apparatus) 19 ... Fluidized bed type reaction furnace (1st reaction apparatus) 30 ... 2nd reaction operation part 37 ... Tubular heating furnace (2nd heating apparatus) 39: fluidized bed reactor (second reactor) 60: oxygen gas supply device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 含鉄原料を還元および炭化して鉄カーバ
イドを製造する装置であって、第一加熱装置で加熱した
還元ガスにより含鉄原料を一部還元する第一反応装置に
引き続いて、第二加熱装置で加熱した還元および炭化ガ
スにより残りの還元と炭化を行う第二反応装置を有する
鉄カーバイドの製造装置において、第二加熱装置と第二
反応装置との間に、第二加熱装置で加熱した後の還元お
よび炭化ガスに酸素ガスを添加するための酸素ガス供給
装置を設けたことを特徴とする鉄カーバイドの製造装
置。
An apparatus for producing iron carbide by reducing and carbonizing an iron-containing raw material, comprising: a first reactor for partially reducing an iron-containing raw material by a reducing gas heated by a first heating device; In an iron carbide production device having a second reactor for performing the remaining reduction and carbonization by the reduction and carbonization gas heated by the heating device, the second heating device heats the second reactor between the second heater and the second reactor. An apparatus for producing iron carbide, comprising an oxygen gas supply device for adding oxygen gas to the reduced and carbonized gas after the reduction.
【請求項2】 第一反応装置および第二反応装置がそれ
ぞれ流動層式反応炉である請求項1記載の鉄カーバイド
の製造装置。
2. The iron carbide manufacturing apparatus according to claim 1, wherein each of the first reactor and the second reactor is a fluidized bed reactor.
【請求項3】 流動層式反応炉の流動層を仕切板によっ
て複数のチャンバーに分割した請求項2記載の鉄カーバ
イドの製造装置。
3. The iron carbide manufacturing apparatus according to claim 2, wherein the fluidized bed of the fluidized bed reactor is divided into a plurality of chambers by a partition plate.
【請求項4】 特定のチャンバーに供給されるガス中に
酸素を添加する装置を設けたことを特徴とする請求項3
記載の鉄カーバイドの製造装置。
4. An apparatus for adding oxygen to a gas supplied to a specific chamber is provided.
An iron carbide manufacturing apparatus as described above.
JP12859097A 1997-05-19 1997-05-19 Iron carbide manufacturing equipment Expired - Fee Related JP3279504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12859097A JP3279504B2 (en) 1997-05-19 1997-05-19 Iron carbide manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12859097A JP3279504B2 (en) 1997-05-19 1997-05-19 Iron carbide manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH10316412A true JPH10316412A (en) 1998-12-02
JP3279504B2 JP3279504B2 (en) 2002-04-30

Family

ID=14988525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12859097A Expired - Fee Related JP3279504B2 (en) 1997-05-19 1997-05-19 Iron carbide manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3279504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2050771A1 (en) * 2020-06-26 2021-12-27 Greeniron H2 Ab Method and device for producing direct reduced metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2050771A1 (en) * 2020-06-26 2021-12-27 Greeniron H2 Ab Method and device for producing direct reduced metal
WO2021262078A1 (en) * 2020-06-26 2021-12-30 Greeniron H2 Ab Method and device for producing direct reduced metal
SE544421C2 (en) * 2020-06-26 2022-05-17 Greeniron H2 Ab Method and device for producing direct reduced metal

Also Published As

Publication number Publication date
JP3279504B2 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
US5618032A (en) Shaft furnace for production of iron carbide
WO2009037587A2 (en) Method and apparatus for the direct reduction of iron ores utilizing gas from a melter-gasifier
US5437708A (en) Iron carbide production in shaft furnace
JPS638161B2 (en)
RU2304620C2 (en) Method of the direct reduction of the ferric oxides and production of the iron melt and the installation for the method realization
US3236628A (en) Process and plant for producing molten pig iron
US5069716A (en) Process for the production of liquid steel from iron containing metal oxides
US5542963A (en) Direct iron and steelmaking
JPS5847449B2 (en) direct iron making method
JP3279504B2 (en) Iron carbide manufacturing equipment
US4375983A (en) Method of making sponge metal
US6602317B2 (en) Method and apparatus for controlling temperature uniformity of the burden in a direct reduction shaft furnace
US3964898A (en) Process for batch production of sponge iron
US6506353B2 (en) Process and apparatus for producing iron carbide
US4298190A (en) Apparatus for gaseous reduction of metal ores with cooling loop
IE42344B1 (en) Method for gaseous reduction of metal oxides
AU711114B2 (en) Process and apparatus for producing iron carbide
JP2948771B2 (en) Manufacturing method of iron carbide
JP3104842B2 (en) Iron anchor hydride production equipment
RU2319749C2 (en) Method of the direct production of iron, in particular steels, and installation for its implementation
EP1604373B1 (en) Method and apparatus for controling temperature uniformity of the burden in a direct reduction shaft furnace
JP2975582B2 (en) Fluidized bed furnace
JP3025253B1 (en) Manufacturing method of iron carbide
JP4153797B2 (en) Method for preventing accumulation of impurity gas components in circulating gas
AU708255B2 (en) Direct iron and steelmaking

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees