JPH10316095A - Control system for unmanned remote navigation ship - Google Patents

Control system for unmanned remote navigation ship

Info

Publication number
JPH10316095A
JPH10316095A JP9128864A JP12886497A JPH10316095A JP H10316095 A JPH10316095 A JP H10316095A JP 9128864 A JP9128864 A JP 9128864A JP 12886497 A JP12886497 A JP 12886497A JP H10316095 A JPH10316095 A JP H10316095A
Authority
JP
Japan
Prior art keywords
ship
control
attitude
remote navigation
unmanned remote
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9128864A
Other languages
Japanese (ja)
Inventor
Katsuji Terazono
勝二 寺薗
Hiroshi Tsunewaki
寛 常脇
Tetsuo Goto
哲郎 後藤
Tomio Yokota
富男 横田
Hiroshi Yanai
宏 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAM SUIGENCHI KANKYO SEIBI CENTER
Ebara Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
DAM SUIGENCHI KANKYO SEIBI CENTER
Ebara Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAM SUIGENCHI KANKYO SEIBI CENTER, Ebara Corp, Mitsubishi Heavy Industries Ltd filed Critical DAM SUIGENCHI KANKYO SEIBI CENTER
Priority to JP9128864A priority Critical patent/JPH10316095A/en
Publication of JPH10316095A publication Critical patent/JPH10316095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control system for an unmanned remote navigation ship that can control the position and attitude of the ship even in such environment that the ship is carried away by the wind and a current. SOLUTION: A system is provided with two ahead-astern propulsion machines 1 and two left-right propulsion machines 1 at the bottom of an unmanned remote navigation ship 100, and provided on board with a position measuring device 2 for measuring the present position of the ship 100, an attitude measuring device 3 for measuring the attitude of the ship 100, a control computer 4 for computing control deviation between the position and attitude of the ship 100 detected by the measuring devices 2, 3, and a moving target and outputting a control signal to the propulsion machines 1, and a generator 104 for the propulsion machines 1 and measuring devices 2, 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は海底埋め立てや、
(海底)火山噴火時の状況観察等の各種3K(危険、汚
い、きつい)作業に使用する無人遠隔航行船の制御シス
テムに関するものである。
BACKGROUND OF THE INVENTION The present invention relates to undersea reclamation,
The present invention relates to a control system for an unmanned remote navigation vessel used for various 3K (dangerous, dirty, and hard) work such as observing the situation at the time of a (seabed) volcanic eruption.

【0002】[0002]

【従来の技術】従来の無人遠隔航行船システムの例を、
図6に示す。船上の監視カメラ101を使い目視にて移
動目標との相対的位置の偏差を人間が判断し、従来の無
人遠隔航行システムの船底に設置してある推進機102
にジョイ・スティック103等を使い、マニュアルで各
推進機102毎に速度指令を出力して、従来の無人遠隔
航行船を移動目標まで移動させていた。
2. Description of the Related Art An example of a conventional unmanned remote navigation ship system is as follows.
As shown in FIG. A human determines a deviation of a relative position from a moving target visually using a surveillance camera 101 on board, and a propulsion device 102 installed on the bottom of a conventional unmanned remote navigation system.
Then, a speed command is manually output for each propulsion device 102 using a joy stick 103 or the like to move the conventional unmanned remote navigation ship to a moving target.

【0003】[0003]

【発明が解決しようとする課題】従来の装置には、以下
のような問題が有る。 (1)風や水の流れ等の影響で船が流される様な環境下
では、人間が監視カメラを使い、目視にて移動目標との
相対位置を人間が認識して無人遠隔航行船システムを操
作する為、目標位置での位置保持ができない。 (2)従来の無人遠隔航行船では、操作者が監視カメラ
の映像情報にて船を操作する為、船の向きを絶えず移動
目標に向けて移動する必要が有り、船の向きを制御する
姿勢制御ができないという問題がある。 (3)移動目標位置にターゲット用の目印が無い場合
や、夜間操船をするときのように、目印が見えにくい状
況下で従来の無人遠隔航行船を操船する場合、移動目標
への正確な位置決め及び姿勢制御ができないという問題
が有る。
The conventional apparatus has the following problems. (1) In an environment where a ship is swept away due to the effects of wind, water, etc., a human can use a surveillance camera to visually recognize the relative position with the moving target and implement an unmanned remote navigation system. Due to the operation, the position cannot be held at the target position. (2) In a conventional unmanned remote navigation ship, since the operator operates the ship based on the video information of the surveillance camera, it is necessary to constantly move the ship toward the moving target, and the attitude of controlling the direction of the ship There is a problem that control is not possible. (3) When there is no target mark at the moving target position, or when maneuvering a conventional unmanned remote navigation ship in a situation where the mark is difficult to see, such as when maneuvering at night, accurate positioning on the moving target And that the attitude cannot be controlled.

【0004】本発明は、上記の問題を解決するために、
風や水流等の外乱の有る環境下でも使用でき、移動目標
の目印が無い場合や、夜間など監視カメラにて目視しに
くい状況下でも、正確な位置決め制御や、姿勢制御を具
現化し得る制御システムを提供することを目的とする。
[0004] The present invention has been made in order to solve the above problems.
A control system that can be used in environments with disturbances such as wind and water current, and can realize accurate positioning control and attitude control even when there is no mark on the moving target or when it is difficult to see with a surveillance camera such as at night. The purpose is to provide.

【0005】[0005]

【課題を解決するための手段】本発明に係る無人遠隔航
行船の制御システムは、無人遠隔航行船において、
(A)船底に、前進・後進用の推進機1を2機と左進・
右進用推進機を2機具備するとともに、(B)船内に、
船の現在位置をリアルタイムで計測する位置計測装置
と、船の姿勢をリアルタイムで計測する姿勢計測装置
と、これらの計測装置により検出される船の位置及び姿
勢と移動目標との制御偏差を算出し、制御信号を前記推
進機に出力する制御用計算機と、前記推進機及び計測装
置用の発電機を有することを特徴とする。
The control system for an unmanned remote-going ship according to the present invention comprises:
(A) At the bottom of the ship, two forward and backward thrusters 1 and two
With two right-handed propulsion units, (B)
A position measuring device that measures the current position of the ship in real time, a posture measuring device that measures the position of the ship in real time, and calculates the control deviation between the position and posture of the ship detected by these measuring devices and the moving target. , A control computer for outputting a control signal to the propulsion device, and a generator for the propulsion device and a measuring device.

【0006】したがって、次のように作用する。 (1)風・水流等の外乱の影響で船が流されても、位置
計測装置により船が流がされた移動距離を計測できる
為、この外乱により生じた位置偏差を“零”にするよう
に制御用計算機が船底に設置した4機の推進機を制御す
ることにより、目標位置での位置保持を具現化すること
ができる。 (2)無人遠隔航行船の船内に、船の位置・姿勢をリア
ルタイムで計測する位置計測装置及び姿勢計測装置を設
置し、これら2つの計測機より検出される制御信号によ
り位置及び姿勢の目標値と現在値との制御偏差が“零”
になるように4機の推進機への指令値を制御用計算機が
制御演算することにより船の姿勢制御を具現化すること
ができる。 (3)移動目標位置にターゲット用の目印が無い場合、
或いは夜間での操船の為目印が見えなくても、船内に設
置した位置計測装置、姿勢計測装置、制御用計算機によ
り無人遠隔航行船の位置制御のみならず、姿勢制御を具
現化することができる。
Therefore, the operation is as follows. (1) Even if the ship is swept under the influence of disturbances such as wind and water current, the position measurement device can measure the distance traveled by the ship, so that the position deviation caused by the disturbance is set to “zero”. The control computer controls the four propulsion units installed at the bottom of the ship, thereby realizing position holding at the target position. (2) A position measuring device and a posture measuring device that measure the position and posture of the ship in real time are installed in the unmanned remote navigation ship, and target values of the position and posture are obtained by control signals detected by these two measuring machines. Control deviation between the current value and the current value is “zero”
By controlling the command values to the four propulsion units by the control computer in such a manner, the attitude control of the ship can be realized. (3) When there is no target mark at the movement target position,
Alternatively, even if the landmarks are not visible due to nighttime maneuvering, not only the position control of the unmanned remote navigation ship but also the posture control can be realized by the position measuring device, attitude measuring device, and control computer installed inside the ship. .

【0007】[0007]

【発明の実施の形態】本発明の実施の形態を図1〜図5
に基づき説明する。図1は、本発明の実施の形態に係る
無人遠隔航行船の側面図。図2は、本発明の実施の形態
に係る無人遠隔航行船の平面図。
1 to 5 show an embodiment of the present invention.
It will be described based on. FIG. 1 is a side view of an unmanned remote navigation boat according to an embodiment of the present invention. FIG. 2 is a plan view of the unmanned remote navigation boat according to the embodiment of the present invention.

【0008】図3は、本発明の制御システムのメインル
ーチンのフローチャート。図4は、本発明の制御モード
(制御領域)の説明図。図5は、台船の推進・旋回の移
動量と出力値の相関関係図である。
FIG. 3 is a flowchart of a main routine of the control system according to the present invention. FIG. 4 is an explanatory diagram of a control mode (control region) of the present invention. FIG. 5 is a correlation diagram between the propulsion / turning movement amount of the barge and the output value.

【0009】本発明の無人遠隔航行船においては、図1
〜図5に示すように、無人遠隔航行船の船底に、前進・
後進用の推進機を2機と、左進・右進用推進機を2機
の、合計4機の推進機1を設置する事により、無人遠隔
航行船の位置制御のみならず姿勢制御をも行う。
In the unmanned remote navigation ship of the present invention, FIG.
-As shown in Fig. 5, the unmanned remote navigation vessel
By installing a total of four propulsion units 1, two propulsion units for backward movement and two propulsion units for left and right movement, it is possible to control not only the position of the unmanned remote navigation vessel but also the attitude control. Do.

【0010】また、このような機器構成を有する無人遠
隔航行船の位置及び姿勢を制御する為、船内に無人遠隔
航行船の現在位置をリアルタイムで計測する位置計測装
置2と、船の姿勢をリアルタイムで計測する姿勢計測装
置3を設置し、これら計測装置により検出される船の位
置及び姿勢と移動目標との制御偏差を制御用計算機4で
算出し前述の4機の推進機への動作指令値を制御演算す
る。
Further, in order to control the position and attitude of the unmanned remote navigation vessel having such a device configuration, a position measuring device 2 for measuring the current position of the unmanned remote navigation vessel in real time inside the vessel, and a real time measurement of the attitude of the vessel. Is installed, the control computer 4 calculates the control deviation between the position and attitude of the ship and the moving target detected by these measuring devices, and the operation command values to the four propulsion units described above. Is calculated.

【0011】前記推進機1と計測装置2,3と計算機4
を動かすための発電機104は船内に設ける。発電機1
04の設置位置は、船内のどこであってもよい。
The propulsion device 1, the measuring devices 2, 3 and the computer 4
The generator 104 for moving the power is provided in the ship. Generator 1
The installation position of 04 may be anywhere on the ship.

【0012】図3は、本発明の制御システムのメインル
ーチンのフローチャートを示す。無人遠隔航行船が移動
目標に接近した場合には、図4に示すように、移動目標
と船との相対距離により制御モードを変更する。 (1)まず、船が減速領域に入った場合、制御用計算機
4は船の移動速度を減速する。 (2)更に船が移動目標に接近し推進機不感領域に入る
と、制御用計算機4は減速モードから位置・姿勢制御モ
ードに変更する。
FIG. 3 shows a flowchart of a main routine of the control system of the present invention. When the unmanned remote navigation ship approaches the moving target, the control mode is changed according to the relative distance between the moving target and the ship, as shown in FIG. (1) First, when the ship enters the deceleration area, the control computer 4 reduces the moving speed of the ship. (2) When the ship further approaches the moving target and enters the propelling machine insensitive area, the control computer 4 changes from the deceleration mode to the position / posture control mode.

【0013】この、位置・姿勢制御モードは、船を移動
目標へ近づけながら、船の姿勢が一定に成るように位置
・姿勢制御を行う。 (3)更に、船が移動目標に接近した場合、ホバリング
不感領域に入る。この場合制御用計算機4は船の姿勢制
御のみを行う。
In the position / posture control mode, the position / posture control is performed so that the posture of the ship becomes constant while the ship approaches the moving target. (3) Further, when the ship approaches the moving target, the ship enters the hovering insensitive area. In this case, the control computer 4 performs only the attitude control of the ship.

【0014】このように、船と移動目標との相対距離に
より船の制御モードを変更することにより、慣性の大き
な制御対象の位置・姿勢制御を実現することができる。
次に、船の制御アルゴリズムを図3に基づいて説明す
る。 (sub.1)図3に示す船の制御アルゴリズムに於
て、まずsub.1で船の現在位置及び現在姿勢を読み
込んだ後、推進・旋回の移動量を算出する。
As described above, by changing the control mode of the ship according to the relative distance between the ship and the moving target, it is possible to control the position and attitude of the controlled object having a large inertia.
Next, a ship control algorithm will be described with reference to FIG. (Sub.1) In the ship control algorithm shown in FIG. After reading the current position and current attitude of the ship in step 1, the propulsion / turning movement amount is calculated.

【0015】この推進・旋回の移動量と、図5に示す移
動量と、出力値の相関関係図から各推進機1への速度指
令値を算出する。ここで、制御目標角度と現在角度との
差が不感角度以内にある場合、sub2に制御を移行す
る。 (sub.2)次にsub2では各推進機の出力を
“零”に設定し、旋回制御時間と推進制御時間により規
定された時間(推進機保護の目的で1秒以上)(以下単
に、規定時間と略す)、速度指令値を出力した後、制御
をsub3に移行する。 (sub.3)sub3にて旋回制御を開始後、制御を
sub4に移行する。 (sub.4)sub4では現在の角度が不感角度内に
入るまで、旋回制御を継続する。
A speed command value to each propulsion unit 1 is calculated from the correlation between the movement amount of the propulsion / turning, the movement amount shown in FIG. 5, and the output value. Here, when the difference between the control target angle and the current angle is within the dead angle, the control is shifted to sub2. (Sub.2) Next, in sub2, the output of each propulsion unit is set to “zero”, and the time defined by the turning control time and the propulsion control time (1 second or more for the purpose of propulsion device protection) (hereinafter simply referred to as “specified”). After outputting the speed command value, the control is shifted to sub3. (Sub.3) After starting the turning control in sub3, the control is transferred to sub4. (Sub.4) In sub4, the turning control is continued until the current angle falls within the dead angle.

【0016】現在の角度が不感角度に入った後、制御を
sub5に移行する。 (sub.5)sub5では、各推進機出力を“零”に
設定し、規定時間速度指令値を出力した後、制御をsu
b.lに移行する。
After the current angle enters the dead angle, the control shifts to sub5. (Sub.5) In sub5, the output of each propulsion unit is set to “zero”, and after outputting the speed command value for the specified time, the control is switched to
b. Move to l.

【0017】[0017]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)本発明に係る無人遠隔航行船システムによれば、
風や水流などの外乱の影響が存在する環境下でも船の位
置を制御することができる。 (2)船の姿勢制御も実現することができるので、海上
或いは湖面上での埋め立てや観測サンプル採取等の種々
の作業を実施することができる。 (3)更に、位置計測装置、姿勢計測装置、及び推進機
用の発電機を船内に設置している為、24時間作動も可
能で、全天候型の無人遠隔航行を具現化することができ
る。そのため汎用性が有り、投資効果が良い。
Since the present invention is configured as described above, it has the following effects. (1) According to the unmanned remote navigation system according to the present invention,
It is possible to control the position of the ship even in an environment where disturbances such as wind and water flow are present. (2) Since the attitude control of the ship can also be realized, various operations such as reclamation on the sea or lake surface and collection of observation samples can be performed. (3) Further, since the position measuring device, the attitude measuring device, and the generator for the propulsion device are installed in the ship, the operation can be performed for 24 hours, and all-weather unmanned remote navigation can be realized. Therefore, it has versatility and good investment effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る無人遠隔航行船シス
テムの側面図。
FIG. 1 is a side view of an unmanned remote navigation system according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る無人遠隔航行船シス
テムの平面図。
FIG. 2 is a plan view of the unmanned remote navigation ship system according to the embodiment of the present invention.

【図3】本発明の制御システムのメインルーチンのフロ
ーチャート。
FIG. 3 is a flowchart of a main routine of the control system of the present invention.

【図4】本発明の制御モード(制御領域)の説明図。FIG. 4 is an explanatory diagram of a control mode (control region) of the present invention.

【図5】台船の推進・旋回の移動量と出力値の相関関係
図。
FIG. 5 is a diagram showing the correlation between the amount of movement of the barge propulsion and turning and the output value.

【図6】従来の無人遠隔航行船システムを示す構成図。FIG. 6 is a configuration diagram showing a conventional unmanned remote navigation ship system.

【符号の説明】[Explanation of symbols]

1…推進機、 2…位置計測装置、 3…姿勢計測装置、 4…制御用計算機、 100…無人遠隔航行船、 101…監視カメラ、 102…従来の無人遠隔航行船の推進機、 103…ジョイ・スティック、 104…発電機。 DESCRIPTION OF SYMBOLS 1 ... Propulsion device, 2 ... Position measurement device, 3 ... Attitude measurement device, 4 ... Computer for control, 100 ... Unmanned remote navigation ship, 101 ... Surveillance camera, 102 ... Propulsion device of conventional unmanned remote navigation ship, 103 ... Joy -Stick, 104 ... generator.

フロントページの続き (72)発明者 寺薗 勝二 東京都千代田区麹町2−14−2 麹町NK ビル 財団法人ダム水源地環境整備センタ ー内 (72)発明者 常脇 寛 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 後藤 哲郎 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 横田 富男 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 谷内 宏 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内Continued on the front page. (72) Katsuji Terazono, Inventor 2-14-2 Kojimachi, Chiyoda-ku, Tokyo Kojimachi NK Building Inside the Dam Water Source Environmental Improvement Center (72) Inventor Hiroshi Tsunewaki 2, Araimachi, Takasago-shi, Hyogo Prefecture No. 1-1, Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (72) Inventor Tetsuro Goto 11-1, Haneda Asahimachi, Ota-ku, Tokyo Inside Ebara Corporation (72) Inventor Tomio Yokota 11, Haneda-Asamachi, Ota-ku, Tokyo No. 1 Inside EBARA CORPORATION (72) Inventor Hiroshi Taniuchi 11-1 Haneda Asahimachi, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無人遠隔航行船(100)において、
(A)船底に、前進・後進用の推進機(1)を2機と左
進・右進用推進機(1)を2機具備するとともに、
(B)船内に、船の現在位置をリアルタイムで計測する
位置計測装置(2)と、船の姿勢をリアルタイムで計測
する姿勢計測装置(3)と、これらの計測装置(2,
3)により検出される船の位置及び姿勢と移動目標との
制御偏差を算出し制御信号を前記推進機(1)に出力す
る制御用計算機(4)と、前記推進機(1)及び計測装
置(2,3)用の発電機(104)を有することを特徴
とする無人遠隔航行船の制御システム。
1. In an unmanned remote navigation vessel (100),
(A) At the bottom of the ship, there are two forward and backward propulsion units (1) and two left and right propulsion units (1).
(B) Inside the ship, a position measuring device (2) for measuring the current position of the ship in real time, an attitude measuring device (3) for measuring the attitude of the ship in real time, and these measuring devices (2,
A control computer (4) for calculating a control deviation between the position and attitude of the ship detected by 3) and the moving target and outputting a control signal to the propulsion device (1); the propulsion device (1) and a measuring device A control system for an unmanned remote navigation ship, comprising a generator (104) for (2, 3).
JP9128864A 1997-05-19 1997-05-19 Control system for unmanned remote navigation ship Pending JPH10316095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9128864A JPH10316095A (en) 1997-05-19 1997-05-19 Control system for unmanned remote navigation ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9128864A JPH10316095A (en) 1997-05-19 1997-05-19 Control system for unmanned remote navigation ship

Publications (1)

Publication Number Publication Date
JPH10316095A true JPH10316095A (en) 1998-12-02

Family

ID=14995261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9128864A Pending JPH10316095A (en) 1997-05-19 1997-05-19 Control system for unmanned remote navigation ship

Country Status (1)

Country Link
JP (1) JPH10316095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004352A1 (en) * 2001-07-06 2003-01-16 Seiko Epson Corporation Airship system
CN102190081A (en) * 2010-03-04 2011-09-21 南京航空航天大学 Vision-based fixed point robust control method for airship
CN115324844A (en) * 2022-09-22 2022-11-11 哈尔滨工程大学 Unmanned ship small-sized wind driven generator performance measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004352A1 (en) * 2001-07-06 2003-01-16 Seiko Epson Corporation Airship system
CN102190081A (en) * 2010-03-04 2011-09-21 南京航空航天大学 Vision-based fixed point robust control method for airship
CN115324844A (en) * 2022-09-22 2022-11-11 哈尔滨工程大学 Unmanned ship small-sized wind driven generator performance measuring device
CN115324844B (en) * 2022-09-22 2024-05-10 哈尔滨工程大学 Unmanned ship small-sized wind driven generator performance measuring device

Similar Documents

Publication Publication Date Title
US20210247767A1 (en) Automatic location placement system
AU2017243430B2 (en) An automatic location placement system
Marks et al. Automatic visual station keeping of an underwater robot
Kondo et al. Navigation of an AUV for investigation of underwater structures
Allotta et al. A comparison between EKF-based and UKF-based navigation algorithms for AUVs localization
Kurowski et al. Automated survey in very shallow water using an unmanned surface vehicle
CN105270583A (en) Measuring type unmanned ship and measuring method thereof
US11774971B2 (en) Automatic location placement system
Henriksen Real-time underwater object detection based on an electrically scanned high-resolution sonar
US20210053660A1 (en) Sensor system for maritime vessels
CN204037874U (en) Measurement type unmanned boat
US3145683A (en) Ship control system
JP2003127983A (en) Navigation control device for autonomous underwater vehicle
CN103090861B (en) The multi-thread terrain match air navigation aid of underwater robot
CN101033003A (en) Dynamic localization method for ship
JPH10316095A (en) Control system for unmanned remote navigation ship
CN114879703B (en) Underwater robot path tracking control method
Kondo et al. Detailed object observation by autonomous underwater vehicle with localization involving uncertainty of magnetic bearings
JPH0155356B2 (en)
Gavrilina et al. Attitude Control System of a Highly Maneuverable Hybrid ROV for Ship-Hull Inspection
Kondo et al. Object observation in detail by the AUV" Tri-Dog 1" with laser pointers
Kondo et al. Structure tracing with a ranging system using a sheet laser beam
JPS6233998B2 (en)
Baker et al. A new procedure for simultaneous navigation of multiple auv's
JP2005075009A (en) Simple type automatic lake bottom investigation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040322

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109