JPH1031491A - Manufacturing method for acoustic lens, and resin acoustic lens of converging type probe - Google Patents

Manufacturing method for acoustic lens, and resin acoustic lens of converging type probe

Info

Publication number
JPH1031491A
JPH1031491A JP8203271A JP20327196A JPH1031491A JP H1031491 A JPH1031491 A JP H1031491A JP 8203271 A JP8203271 A JP 8203271A JP 20327196 A JP20327196 A JP 20327196A JP H1031491 A JPH1031491 A JP H1031491A
Authority
JP
Japan
Prior art keywords
resin
acoustic lens
reaction rate
lens
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8203271A
Other languages
Japanese (ja)
Other versions
JP3102629B2 (en
Inventor
Yukio Arima
幸男 有馬
Hiroshi Yamamoto
弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP08203271A priority Critical patent/JP3102629B2/en
Publication of JPH1031491A publication Critical patent/JPH1031491A/en
Application granted granted Critical
Publication of JP3102629B2 publication Critical patent/JP3102629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Epoxy Resins (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely manufacture a resin acoustic lens having a short focal distance, a high measurement precision and a high yield by controlling the reaction rate so as to obtain a specific reaction rate and forming a hardened resin. SOLUTION: A lens main body 11 formed by a resin material is entirely shaped in a column form. The tip section 11a has a cone shape and an inward concaved spherial lens surface 12 is formed at the tip section. When ultrasonic waves are emitted from the tip section of the body 11, a graded index is produced by a lens surface 12 and a focus P is formed. In the acoustic lens, the body 11 is made of a resin (a synthetic resin) having a heat-hardened characteristic (or a radiation hardened characteristic) by adding an additive to a main material. The hardened resin is formed by using the resin specifically having a reaction rate of at least more than 60%, preferably 60 to 95%. Note that the reaction rate of the formed hardened resin is normally obtained by using the measurement conducted by a Fourier transformation type infrared spectroscopic analysis device, for example.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響レンズの製造
方法および集束型探触子の樹脂製音響レンズに関し、特
に、主剤に硬化剤を添加して成る硬化性樹脂によって作
られた集束型音響レンズであって分解能の高い短焦点の
当該音響レンズを高い歩留まりで製造できる方法、およ
び集束型探触子に適した樹脂製音響レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an acoustic lens and a resin acoustic lens for a focusing probe, and more particularly, to a focusing acoustic filter made of a curable resin obtained by adding a curing agent to a main component. The present invention relates to a method of manufacturing a short-focus acoustic lens having a high resolution with a high resolution at a high yield, and a resin acoustic lens suitable for a focusing probe.

【0002】[0002]

【従来の技術】超音波探傷装置などに使用される集束型
探触子は、超音波を発生する圧電素子と、超音波を伝搬
し焦点に集束させる音響レンズを備える。音響レンズ
は、その端部平面に圧電素子を備える。また音響レンズ
の先端部には球面状のレンズ面が形成される。圧電素子
から出力された超音波は、音響レンズのレンズ本体の内
部を通り、先端部のレンズ面から、伝搬媒質である水中
に出射される。超音波が音響レンズの中を伝搬しレンズ
面から出射されるとき、超音波はレンズ面で屈折し、試
料の表面などに点状に集束する。集束型音響レンズの焦
点距離はレンズ面での屈折角に基づいて定められる。
2. Description of the Related Art A focusing probe used in an ultrasonic flaw detector or the like is provided with a piezoelectric element for generating an ultrasonic wave and an acoustic lens for transmitting the ultrasonic wave and focusing the ultrasonic wave on a focal point. The acoustic lens is provided with a piezoelectric element on its end plane. A spherical lens surface is formed at the tip of the acoustic lens. The ultrasonic wave output from the piezoelectric element passes through the inside of the lens body of the acoustic lens, and is emitted from the lens surface at the tip into water as a propagation medium. When the ultrasonic wave propagates through the acoustic lens and is emitted from the lens surface, the ultrasonic wave is refracted by the lens surface and is focused on the surface of the sample in a point-like manner. The focal length of the focusing acoustic lens is determined based on the refraction angle on the lens surface.

【0003】上記集束型探触子において、その焦点距離
を設計することは、音響レンズにおけるレンズ面での屈
折角を決めることと同じ意味である。当該屈折角は、ス
ネルの法則に従うので、伝搬媒質である水の音速、レン
ズ材料の音速、レンズ開口径、レンズ面の球面半径から
求められる。
In the focusing probe, designing the focal length has the same meaning as determining the refraction angle on the lens surface of the acoustic lens. Since the refraction angle follows Snell's law, it can be determined from the sound velocity of water as a propagation medium, the sound velocity of a lens material, the lens aperture diameter, and the spherical radius of the lens surface.

【0004】焦点を形成する集束型音響レンズの材料に
は、単結晶サファイアおよびシリコン、アルミニウムお
よび溶融石英ガラス、樹脂(合成樹脂)などがある。音
響レンズの材料について、使用する超音波周波数が高い
順から並べると、前述の通り、単結晶サファイアおよび
シリコン、アルミニウムおよび溶融石英ガラス、樹脂の
順序となる。このように、超音波の周波数に応じて用い
るレンズ材料が異なるのは、超音波の減衰に差があるか
らである。従って、レンズ材料として、例えば約100
MHzより大きい周波数では高周波減衰の少ない例えば
単結晶サファイアが多用され、それ以下の周波数では例
えば溶融石英が多用され、30MHz程度以下の周波数
では取扱いが容易な樹脂が多用される。
[0004] Materials of the focusing acoustic lens for forming the focal point include single crystal sapphire, silicon, aluminum and fused silica glass, and resin (synthetic resin). When the materials of the acoustic lens are arranged in ascending order of the ultrasonic frequency to be used, as described above, the order is single crystal sapphire and silicon, aluminum and fused silica glass, and resin. The reason for using different lens materials according to the frequency of the ultrasonic waves is that there is a difference in attenuation of the ultrasonic waves. Therefore, as a lens material, for example, about 100
At frequencies higher than MHz, for example, single-crystal sapphire having low high-frequency attenuation is frequently used, and at frequencies lower than that, for example, fused quartz is frequently used, and at frequencies lower than about 30 MHz, resins that can be easily handled are frequently used.

【0005】また音響レンズの焦点距離については、同
様にして超音波の減衰の関係から、単結晶サファイアレ
ンズのタイプでは1mm前後、溶融石英レンズのタイプ
では10mm前後、そして樹脂レンズのタイプでは20
mm前後およびそれ以上、といった使い分けが行われて
いる。
Similarly, the focal length of the acoustic lens is about 1 mm for the single crystal sapphire lens type, about 10 mm for the fused silica lens type, and about 20 mm for the resin lens type, from the relation of attenuation of ultrasonic waves.
mm, and more.

【0006】単結晶サファイアや溶融石英ガラスは、音
響レンズの材料としての音速がほぼ一定であるので、焦
点距離が非常に短いにも拘らず、レンズ開口径とレンズ
球面半径から求まるレンズ面での屈折角は、設計値とず
れることはない。これに対して樹脂レンズの場合には、
成形品ごとに音速が変わり、屈折角が異なるという特性
を有し、そのため、焦点距離に関し、成形された樹脂レ
ンズごとにばらつきが生じる。しかし、樹脂レンズの焦
点距離は相対的に長いので、ばらつきがあっても、これ
までの樹脂製音響レンズでは実用上問題がなかった。
[0006] Single crystal sapphire and fused silica glass have a substantially constant sound speed as a material of an acoustic lens. Therefore, despite a very short focal length, the surface of the lens determined from the lens aperture diameter and the lens spherical radius is very small. The refraction angle does not deviate from the design value. On the other hand, in the case of a resin lens,
It has the characteristic that the sound speed changes and the refraction angle changes for each molded product, so that the focal length varies for each molded resin lens. However, since the focal length of the resin lens is relatively long, even if there is variation, there is no practical problem with the conventional resin acoustic lens.

【0007】なお従来の樹脂製音響レンズの樹脂材料に
は例えば熱硬化性樹脂が使用されており、樹脂性音響レ
ンズは、主に、主剤となる樹脂成分に硬化剤を添加し、
熱処理にて作られていた。
For example, a thermosetting resin is used as a resin material of a conventional resin acoustic lens, and a resin acoustic lens mainly includes a hardener added to a resin component serving as a main component.
It was made by heat treatment.

【0008】[0008]

【発明が解決しようとする課題】近年、合成樹脂につい
ては、エンジニアリングプラスチックや半導体用封止材
に代表されるように、高い機能を達成する目的で従来よ
りも高い割合でフィラー(充填材)を充填するようにな
ったため、高周波超音波を用いると、減衰が大きく良好
な測定結果を得ることが難しい部品や材料が増えてき
た。従って、超音波探傷で良好な測定結果を得るため、
比較的に低周波の超音波を使用することが要求されるよ
うになった。また、部品が小型化または薄型化したた
め、これらの部品を超音波で検査するには、音響レンズ
に高い分解能が求められるようになった。従って、樹脂
製の音響レンズであって、焦点距離が短いのものが要求
されるようになった。
In recent years, as for synthetic resins, fillers (fillers) have been used at higher ratios than in the past in order to achieve high functions, as typified by engineering plastics and sealing materials for semiconductors. Since high-frequency ultrasonic waves are used for filling, the number of parts and materials that have high attenuation and are difficult to obtain good measurement results have increased. Therefore, in order to obtain good measurement results by ultrasonic testing,
The use of relatively low frequency ultrasound has become required. In addition, since components have been reduced in size or thickness, high-resolution acoustic lenses have been required to inspect these components with ultrasonic waves. Accordingly, an acoustic lens made of resin and having a short focal length has been required.

【0009】そこで、超音波探傷装置では、上記の技術
的要求に基づいて、30MHz程度以下の比較的低周波
の超音波に適しており、かつ短い焦点距離を有する樹脂
レンズを備えた集束型探触子が使われるようになった。
Therefore, based on the above technical requirements, the ultrasonic flaw detector is suitable for a relatively low frequency ultrasonic wave of about 30 MHz or less and has a focusing type having a resin lens having a short focal length. Tentacles have been used.

【0010】しかしながら、従来の樹脂レンズの場合
は、その製造工程に起因して成形品ごとに特性上のばら
つきが大きく、従って成形品ごとに音速が変わり、精度
良く短焦点レンズを製作するには歩留まりが低くなると
いう問題が生じた。本発明者の実験に基づけば、精度を
±2%、焦点距離を15mmとして製作した場合、歩留
まりは50%程度であるという結論を得た。
However, in the case of a conventional resin lens, there is a large variation in the characteristics of each molded product due to the manufacturing process, and therefore the sound speed changes for each molded product. There was a problem that the yield was low. Based on experiments by the inventor, it was concluded that the yield was about 50% when manufactured with an accuracy of ± 2% and a focal length of 15 mm.

【0011】本発明の第1の目的は、上記問題を解決す
ることにあり、比較的短い焦点距離を有し測定精度が高
い樹脂製音響レンズを高い歩留まりで精度良く製造でき
る音響レンズの製造方法を提供することにある。
A first object of the present invention is to solve the above-mentioned problems, and a method of manufacturing an acoustic lens capable of manufacturing a resin acoustic lens having a relatively short focal length and high measurement accuracy with high yield and high accuracy. Is to provide.

【0012】本発明の第2の目的は、焦点距離が比較的
短く、測定分解能が高く、かつ製造歩留まりが高い集束
型探触子の樹脂製音響レンズを提供することにある。
A second object of the present invention is to provide a resin acoustic lens of a focusing probe having a relatively short focal length, a high measurement resolution, and a high production yield.

【0013】[0013]

【課題を解決するための手段】第1の本発明(請求項1
に対応)に係る音響レンズの製造方法は、上記の第1の
目的を達成するため、主剤に硬化剤を加えて成る硬化性
樹脂によって成形され、集束型探触子に使用される音響
レンズの製造方法であり、硬化性樹脂の反応率が好まし
くは60〜95%になるように当該反応率を制御して上
記硬化性樹脂を成形する方法である。
Means for Solving the Problems The first invention (claim 1)
According to the method for manufacturing an acoustic lens according to (1), in order to achieve the first object, an acoustic lens formed of a curable resin obtained by adding a curing agent to a main material and used for a focusing probe is used. This is a method for producing the curable resin by controlling the reaction rate such that the reaction rate of the curable resin is preferably 60 to 95%.

【0014】第2の本発明(請求項2に対応)に係る音
響レンズの製造方法は、上記第1の発明において、硬化
性樹脂の反応率が80%以上であることを特徴とする。
According to a second aspect of the present invention (corresponding to claim 2), in the method of manufacturing an acoustic lens according to the first aspect, the reaction rate of the curable resin is 80% or more.

【0015】第3の本発明(請求項3に対応)に係る音
響レンズの製造方法は、上記第1の発明において、硬化
性樹脂が熱硬化性の樹脂であり、反応率の制御に熱処理
を用いることを特徴とする。
According to a third aspect of the present invention (corresponding to claim 3), in the method for manufacturing an acoustic lens according to the first aspect, the curable resin is a thermosetting resin, and a heat treatment is performed to control a reaction rate. It is characterized by using.

【0016】第4の本発明(請求項4に対応)に係る音
響レンズの製造方法は、上記第3の発明において、重量
比が実質的に10:1である主剤と硬化剤を実質的に3
0℃の温度環境で混合したことを特徴とする。
According to a fourth aspect of the present invention (corresponding to claim 4), in the method for manufacturing an acoustic lens according to the third aspect, the main agent and the curing agent having a weight ratio of substantially 10: 1 are substantially combined. 3
It is characterized by being mixed in a temperature environment of 0 ° C.

【0017】第5の本発明(請求項5に対応)に係る音
響レンズの製造方法は、上記第3の発明において、重量
比が実質的に10:1である主剤と硬化剤を実質的に7
0℃の温度環境で混合し、その後に実質的に100℃で
約40分程度加熱し、さらにその後に、実質的に150
℃で少なくとも約60分程度加熱したことを特徴とす
る。
According to a fifth aspect of the present invention (corresponding to claim 5), in the acoustic lens manufacturing method according to the third aspect, the main agent and the curing agent having a weight ratio of substantially 10: 1 are substantially combined. 7
Mixing in a temperature environment of 0 ° C., followed by heating at substantially 100 ° C. for about 40 minutes, and thereafter substantially 150 ° C.
It is characterized by heating at a temperature of at least about 60 minutes.

【0018】第6の本発明(請求項6に対応)に係る音
響レンズの製造方法は、上記第1の発明において、硬化
性樹脂が放射線硬化性の樹脂であり、反応率の制御に放
射線処理を用いることを特徴とする。
According to a sixth aspect of the present invention (corresponding to claim 6), in the method for manufacturing an acoustic lens according to the first aspect, the curable resin is a radiation curable resin, and the radiation rate is controlled by controlling the reaction rate. Is used.

【0019】第7の本発明(請求項7に対応)に係る音
響レンズは、上記の第2の目的を達成するため、集束型
探触子に使用される樹脂製音響レンズであり、この樹脂
製音響レンズは主剤に硬化剤を加えて成形され、その反
応率が好ましくは60〜95%であることを特徴とす
る。
An acoustic lens according to a seventh aspect of the present invention (corresponding to claim 7) is a resin acoustic lens used for a focusing probe in order to achieve the second object. The acoustic lens is formed by adding a curing agent to a main component, and has a reaction rate of preferably 60 to 95%.

【0020】第8の本発明(請求項8に対応)に係る音
響レンズの製造方法は、上記第7の発明において、焦点
距離の精度を2〜8%の誤差範囲内に含まれるようにし
たことを特徴とする。
According to an eighth aspect of the present invention (corresponding to claim 8), in the acoustic lens manufacturing method according to the seventh aspect, the accuracy of the focal length is included within an error range of 2 to 8%. It is characterized by the following.

【0021】[0021]

【発明の実施の形態】以下に、本発明の好適な実施形態
を添付図面に基づいて説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0022】図1は、超音波を利用した集束型探触子に
使用される代表的な音響レンズの構成を示す。本図で、
レンズ本体11は樹脂材で成形される。レンズ本体11
は全体的に円柱体の形状であり、かつ先部11aが円錐
形で、さらに先端部に内方へ凹んだ球面状のレンズ面1
2が形成されている。レンズ本体11の先端部から超音
波が出射されるとき、当該レンズ面12によって集束性
が生じ、焦点Pが結ばれる。音響レンズのレンズ本体1
1の上側平面には下部電極(Au/Cr) 13が取り付けら
れ、この下部電極13と上部電極(Au/Cr) 14に挟まれ
た状態で板状の圧電素子15が設けられる。上部電極1
4と下部電極13に周波信号発生源(図示せず)から比
較的に低周波(30MHz程度以下)の電気信号を与え
ると、圧電素子15は振動を生じ、同じく比較的低周波
の超音波を発生する。圧電素子15によって発生した超
音波は、レンズ本体11を伝搬し、レンズ面12で屈折
し、当該レンズ面12から出射される。図中16はダン
パ部材である。
FIG. 1 shows the configuration of a typical acoustic lens used for a focusing probe using ultrasonic waves. In this figure,
The lens body 11 is formed of a resin material. Lens body 11
Is a spherical lens surface 1 having a cylindrical shape as a whole, a conical tip 11a, and an inward recess at the tip.
2 are formed. When an ultrasonic wave is emitted from the distal end of the lens body 11, the lens surface 12 provides convergence, and the focal point P is formed. Lens body 1 of acoustic lens
A lower electrode (Au / Cr) 13 is attached to the upper flat surface of 1, and a plate-like piezoelectric element 15 is provided between the lower electrode 13 and the upper electrode (Au / Cr) 14. Upper electrode 1
When a relatively low frequency (approximately 30 MHz or less) electric signal is applied from the frequency signal generation source (not shown) to the lower electrode 4 and the lower electrode 13, the piezoelectric element 15 vibrates, and the same relatively low frequency ultrasonic wave is emitted. Occur. Ultrasonic waves generated by the piezoelectric element 15 propagate through the lens body 11, are refracted by the lens surface 12, and are emitted from the lens surface 12. In the figure, reference numeral 16 denotes a damper member.

【0023】上記音響レンズにおいて、レンズ本体11
は、主剤に硬化剤を添加して成る熱硬化性(または放射
線硬化性)の樹脂(合成樹脂)で作られる。この硬化性
の樹脂は、特に、反応率が少なくとも60%以上、好ま
しくは60〜95%である樹脂を用いて成形される。こ
こで「反応率」とは、上述のごとく主剤に硬化剤を添加
し主剤と硬化剤が混合して作られる樹脂において、主剤
と硬化剤の混合時の反応の割合と定義され、より具体的
に述べると、実質的に、主剤の官能基と硬化剤の官能基
との結合に関する化学構造において結合の度合いと同じ
意味である。当該反応率は、硬化性樹脂の強度すなわち
硬化度と対応関係を有する。従って、通常、成形された
硬化性樹脂の反応率は、例えば、フーリエ変換型赤外線
分光分析装置による計測を利用して未硬化の割合または
硬化の割合を求めることによって、得ることができる。
In the above acoustic lens, the lens body 11
Is made of a thermosetting (or radiation-curable) resin (synthetic resin) obtained by adding a curing agent to a main component. The curable resin is molded using a resin having a reaction rate of at least 60% or more, preferably 60 to 95%. Here, the “reaction rate” is defined as a ratio of a reaction at the time of mixing the main agent and the curing agent in a resin made by adding the curing agent to the main agent and mixing the main agent and the curing agent as described above, and more specifically In the chemical structure relating to the bonding between the functional group of the base material and the functional group of the curing agent, the meaning is substantially the same as the degree of bonding. The reaction rate has a correspondence with the strength of the curable resin, that is, the degree of curing. Therefore, usually, the reaction rate of the molded curable resin can be obtained, for example, by obtaining the uncured ratio or the cured ratio using measurement by a Fourier transform infrared spectrometer.

【0024】反応率について上記条件を満たすように樹
脂製音響レンズを成形することによって、30MHz程
度以下の比較的に低周波の超音波であって相対的に短い
焦点距離を有する樹脂製音響レンズを、その特性上でば
らつきが少なく、成形品ごとの音速がほぼ一定となるよ
うに、高い歩留まりで製造できる。
By molding the resin acoustic lens so as to satisfy the above conditions for the reaction rate, a resin acoustic lens which is a relatively low frequency ultrasonic wave of about 30 MHz or less and has a relatively short focal length can be obtained. In addition, it can be manufactured at a high yield so that there is little variation in its characteristics and the speed of sound for each molded product is almost constant.

【0025】本発明者は、実験に基づいて、樹脂製音響
レンズのレンズ本体11に使用される樹脂は、成形品の
反応率が高い程、音速のばらつきを抑制することができ
るという結論を得た。すなわち、少なくとも反応率が6
0%以上(好ましくは60〜95%)であれば、低周波
超音波を利用するものであって焦点距離が短く、かつ製
造上歩留まりが良好な樹脂製音響レンズを得ることがで
きることが判明した。このことを、図2〜図4を参照し
て具体的に説明する。
The present inventor has concluded based on experiments that the resin used for the lens body 11 of the resin acoustic lens can suppress the variation in sound speed as the reaction rate of the molded product increases. Was. That is, the reaction rate is at least 6
If it is 0% or more (preferably 60 to 95%), it has been found that a low-frequency ultrasonic wave can be used to obtain a resin acoustic lens having a short focal length and a good production yield. . This will be specifically described with reference to FIGS.

【0026】図2は、熱硬化性樹脂をレンズ本体11に
用いた場合における反応率と成形品の音速との関係に関
する実験結果を示す。図2によれば、反応率が約60%
の場合には音速が約2590〜2740m/sに、反応
率が約80%の場合には音速が約2620〜2690m
/s、反応率が約90%の場合には音速が約2630〜
2680m/sになったことを示している。すなわち反
応率が大きくなるに従って音速のばらつきの幅が小さく
なっていることが分かる。図2に一点鎖線で示されるよ
うに、音速のばらつきの幅が小さくなる変化の程度を考
察すると、反応率が少なくとも60%、好ましくは60
%〜95%の範囲に含まれるものであることが望まし
い。
FIG. 2 shows the results of an experiment on the relationship between the reaction rate and the speed of sound of a molded product when a thermosetting resin is used for the lens body 11. According to FIG. 2, the reaction rate is about 60%.
, The sound speed is about 2590 to 2740 m / s, and when the reaction rate is about 80%, the sound speed is about 2620 to 2690 m / s.
/ S, when the reaction rate is about 90%, the sound speed is about 2630-
2680 m / s. That is, it can be seen that as the reaction rate increases, the width of the variation in sound speed decreases. As shown by the dashed line in FIG. 2, when considering the degree of change in which the width of the variation in the speed of sound is reduced, the reaction rate is at least 60%, preferably 60%.
% Is desirably included in the range of 95% to 95%.

【0027】上記の実験結果を、レンズ開口径を例えば
6.4mmの一定値とし、かつ樹脂製音響レンズの音速
を2650m/sとして、焦点距離が15mmとなるよ
うにレンズ面12の球面半径を設定して、25MHzの
低周波超音波の探触子を製作した場合の焦点距離のばら
つきを示すと、図3のようになる。図3によれば、反応
率が約60%の場合には焦点距離が約14.4〜15.
5mmに、反応率が約80%の場合には焦点距離が約1
4.7〜15.2mm、反応率が約90%の場合には焦
点距離が約14.8〜15.1mmになったことを示し
ている。すなわち反応率が大きくなるに従って焦点距離
のばらつきの幅が小さくなっていることが分かる。
Based on the above experimental results, the lens aperture diameter was set to a constant value of, for example, 6.4 mm, the sound speed of the resin acoustic lens was set to 2650 m / s, and the spherical radius of the lens surface 12 was adjusted so that the focal length became 15 mm. FIG. 3 shows the dispersion of the focal length when the probe is set and a low frequency ultrasonic probe of 25 MHz is manufactured. According to FIG. 3, when the reaction rate is about 60%, the focal length is about 14.4-15.
5 mm, the focal length is about 1 when the reaction rate is about 80%.
When the response rate is 4.7 to 15.2 mm and the reaction rate is about 90%, it indicates that the focal length is about 14.8 to 15.1 mm. That is, it can be seen that as the reaction rate increases, the width of the variation in the focal length decreases.

【0028】さらに、上記の実験結果を、反応率と焦点
距離15mmの探触子における精度との関係として示す
と、図4のようになる。図4によれば、反応率が約60
%の場合には焦点距離の精度(誤差)が約8%に、反応
率が約80%の場合には焦点距離の精度(誤差)が約4
%、反応率が約90%の場合には焦点距離の精度(誤
差)が約2%になったことを示している。すなわち反応
率が大きくなるに従って焦点距離の精度(誤差)が小さ
くなっていることが分かる。
FIG. 4 shows the relationship between the above experimental results and the reaction rate and the accuracy of a probe having a focal length of 15 mm. According to FIG. 4, the reaction rate is about 60.
%, The focal length precision (error) is about 8%, and when the response rate is about 80%, the focal length precision (error) is about 4%.
% And a response rate of about 90%, it indicates that the precision (error) of the focal length is about 2%. That is, it can be seen that the accuracy (error) of the focal length decreases as the reaction rate increases.

【0029】以上の実験結果により、レンズ本体11と
して成形された熱硬化性樹脂の反応率が60〜90%に
なるように制御される場合には、成形品ごと音速、焦点
距離、焦点距離の精度などの観点でばらつきが小さくな
り、樹脂製音響レンズとして、比較的に低周波の超音波
に対応しかつ短焦点距離を有するものが、高い歩留まり
で製造できることが明らかである。なお図2〜図4の変
化特性から推察すれば、反応率は90%より大きくても
構わないが、前述の通り、好ましくは上記60〜95%
の範囲に含まれる値、さらに好ましくは80%以上であ
る。
According to the above experimental results, when the reaction rate of the thermosetting resin molded as the lens body 11 is controlled so as to be 60 to 90%, the sound speed, the focal length, and the focal length of each molded product are controlled. It is clear that the variation is small in terms of accuracy and the like, and it is clear that a resin acoustic lens that can handle relatively low-frequency ultrasonic waves and has a short focal length can be manufactured with a high yield. According to the change characteristics shown in FIGS. 2 to 4, the reaction rate may be higher than 90%, but as described above, the reaction rate is preferably 60 to 95%.
, More preferably 80% or more.

【0030】また、集束型探触子の焦点付近における超
音波のビーム径(d-6)とビーム長さ(L)は、それぞ
れ、下記の式(数1),(数2)で示されることが知ら
れている。ここで、ビーム径は方位分解能に対応し、ビ
ーム長さは焦点深度に対応する。焦点距離の長い探触子
の場合は焦点深度が大きくなるため、樹脂レンズの音速
精度が多少粗くても設計値の中に入るが、焦点深度の小
さい探触子の場合は、精度が悪いと設計値を外れてしま
うこととなる。
The beam diameter (d -6 ) and beam length (L) of the ultrasonic wave near the focal point of the focusing probe are expressed by the following equations (Equation 1) and (Equation 2), respectively. It is known. Here, the beam diameter corresponds to the azimuth resolution, and the beam length corresponds to the depth of focus. In the case of a probe with a long focal length, the depth of focus is large, so even if the sound velocity accuracy of the resin lens is somewhat coarse, it can be within the design value.However, in the case of a probe with a small depth of focus, the accuracy is poor. This will deviate from the design value.

【0031】[0031]

【数1】d-6=0.71λf/(D/2)## EQU1 ## d- 6 = 0.71λf / (D / 2)

【0032】[0032]

【数2】L=(2α/(α2 −1))f ここで α
=D2 /(4λf)
L = (2α / (α 2 -1)) f where α
= D 2 / (4λf)

【0033】上記の各式で、λは波長、Dは開口径、f
は焦点距離である。
In the above equations, λ is the wavelength, D is the aperture diameter, f
Is the focal length.

【0034】参考として、上式(数2)に基づいて求め
た焦点距離別の許容誤差の計算例を図5の表に示す。当
該計算において、超音波の周波数は25MHz、レンズ
面の開口径は6.4mmとしている。
For reference, FIG. 5 shows a calculation example of the permissible error for each focal length obtained based on the above equation (Equation 2). In the calculation, the frequency of the ultrasonic wave is 25 MHz, and the aperture diameter of the lens surface is 6.4 mm.

【0035】次に、樹脂製音響レンズの製造方法の実施
例を説明する。
Next, an embodiment of a method for manufacturing a resin acoustic lens will be described.

【0036】最初に熱硬化性樹脂を用いてレンズ成形品
を作る例について説明する。まず第1実施例として、例
えば、ビスフェノールA系エポキシ樹脂が使用され、そ
の反応率を60%にする製造方法について説明する。主
剤はビスフェノールA系エポキシ樹脂(製品名:キャス
ター101)であり、硬化剤は脂肪族アミン(製品名:
HD)である。かかる主剤と硬化剤において、主剤と硬
化剤の重量比を約10:1とし、当該主剤に硬化剤を添
加して混合し、その混合時の温度環境を約30℃に設定
することにより、反応率が実質的に60%である成形品
を得ることができる。
First, an example of manufacturing a lens molded product using a thermosetting resin will be described. First, as a first example, a production method in which, for example, a bisphenol A-based epoxy resin is used and its reaction rate is 60% will be described. The main agent is bisphenol A epoxy resin (product name: Caster 101), and the curing agent is aliphatic amine (product name:
HD). In the main agent and the curing agent, the weight ratio of the main agent and the curing agent is about 10: 1, the curing agent is added to the main agent and mixed, and the temperature environment at the time of mixing is set at about 30 ° C. A molded article having a ratio of substantially 60% can be obtained.

【0037】第2実施例として、同じくビスフェノール
A系エポキシ樹脂が使用され、その反応率を80%にす
る製造方法について説明する。同様に、主剤はビスフェ
ノールA系エポキシ樹脂、硬化剤は脂肪族アミンであ
り、主剤と硬化剤との重量比は約10:1である。当該
主剤に硬化剤を添加して混合し、その混合時の温度環境
を約70℃に設定して約1分間攪拌し、その後、約10
0℃で約40分間加熱して硬化させ、さらにその後、約
1時間、約150℃で加熱処理する。そうすると、反応
率が実質的に80%である成形品を得ることができる。
As a second embodiment, a production method in which a bisphenol A-based epoxy resin is used and the reaction rate of which is 80% will be described. Similarly, the main component is a bisphenol A-based epoxy resin, the curing agent is an aliphatic amine, and the weight ratio of the main component to the curing agent is about 10: 1. A curing agent is added to the main agent and mixed, the temperature environment at the time of mixing is set to about 70 ° C., and the mixture is stirred for about 1 minute.
The composition is cured by heating at 0 ° C. for about 40 minutes, and then heat-treated at about 150 ° C. for about 1 hour. Then, a molded article having a reaction rate of substantially 80% can be obtained.

【0038】なお第2実施例に係る製造方法では、最後
の150℃による熱処理の時間を調整することにより、
反応率を変化させることができる。例えば、熱処理時間
が0、すなわち150℃の熱処理をまったく行わないと
きには反応率が約63%の成形品、熱処理時間が約4時
間のときには反応率が約85%の成形品、熱処理時間が
8時間のときには反応率が約89%の成形品を得ること
ができる。従って、成形される樹脂製音響レンズにより
高い反応率を持たせるためには、150℃の熱処理の時
間を長くすれば良い。
In the manufacturing method according to the second embodiment, the time of the final heat treatment at 150 ° C. is adjusted.
The reaction rate can be varied. For example, when the heat treatment time is 0, that is, when a heat treatment at 150 ° C. is not performed at all, a molded article having a reaction rate of about 63%, when the heat treatment time is about 4 hours, a molded article having a reaction rate of about 85%, and the heat treatment time is 8 hours In this case, a molded product having a reaction rate of about 89% can be obtained. Therefore, in order to give the molded resin acoustic lens a higher reaction rate, the time of the heat treatment at 150 ° C. may be increased.

【0039】因みに、図6に、上記の150℃の熱処理
時間と音速のばらつきとの関係の一例を示す。
FIG. 6 shows an example of the relationship between the heat treatment time at 150 ° C. and the variation in the speed of sound.

【0040】集束型探触子の音響レンズとして組み立て
る場合には、上記の所要反応率を有する熱硬化性樹脂の
レンズ成形品について、前述の下部電極13、上部電極
14、圧電素子15を設けるように組み付けると共に、
レンズ本体の先部に、焦点距離に応じたステンレス球を
押し当てて球面状レンズ面12を形成する。
When assembling as an acoustic lens of a focusing probe, the lower electrode 13, the upper electrode 14, and the piezoelectric element 15 are provided for a lens molded product of a thermosetting resin having the required reaction rate. Together with
A spherical lens surface 12 is formed by pressing a stainless steel ball according to the focal length against the front end of the lens body.

【0041】以上述べたように、集束型探触子に使用さ
れる音響レンズで、高い精度で短焦点の樹脂レンズを製
造する場合に、当該樹脂の反応率を望ましい値に制御す
れば、高い歩留まりで集束型探触子の樹脂製音響レンズ
を製造することができる。
As described above, when manufacturing a short-focus resin lens with high accuracy in an acoustic lens used for a focusing probe, if the reaction rate of the resin is controlled to a desired value, a high value is obtained. The resin acoustic lens of the focusing probe can be manufactured with a high yield.

【0042】前述の説明では、主剤をビスフェノールA
系エポキシ樹脂、硬化剤を脂肪族アミンとしたが、類似
の関係を有する他の主剤と硬化剤についても上記製造方
法を適用することができる。
In the above description, the main ingredient is bisphenol A
Although the aliphatic epoxy resin and the curing agent are aliphatic amines, the above production method can be applied to other main agents and curing agents having similar relationships.

【0043】上記実施例では、音響レンズとして使用さ
れる樹脂の反応率を制御する方法として熱処理を用いた
が、アクリル樹脂のような紫外線硬化樹脂の場合は、紫
外線照射量を制御することで反応率を上記のごとく制御
して、高い歩留まりで焦点集束型探触子を製造すること
ができる。アクリル樹脂の場合、反応率と照射量の関係
は、特開平4−341808号公報で示されるように、
照射量の増加に伴って反応率も上昇することが知られて
いる。従って、要求される音速精度に応じた反応率が得
られるように、紫外線の照射量が決められる。その他の
光硬化樹脂、γ線硬化樹脂やX線硬化樹脂など(一般的
に「放射線硬化性樹脂」という)も、反応率を上記のご
とく制御することで、同様な特性、および製造上の利点
を有する音響レンズを製造できる。
In the above embodiment, heat treatment was used as a method of controlling the reaction rate of the resin used as the acoustic lens. However, in the case of an ultraviolet curable resin such as an acrylic resin, the reaction rate was controlled by controlling the amount of ultraviolet irradiation. By controlling the rate as described above, it is possible to manufacture a focus focusing probe with a high yield. In the case of an acrylic resin, the relationship between the reaction rate and the irradiation amount is, as shown in JP-A-4-341808,
It is known that the reaction rate increases as the irradiation dose increases. Therefore, the irradiation amount of the ultraviolet rays is determined so that a reaction rate corresponding to the required accuracy of sound speed is obtained. Other photo-curable resins, γ-ray curable resins, X-ray curable resins, etc. (generally referred to as “radiation-curable resins”) have similar properties and manufacturing advantages by controlling the reaction rate as described above. Can be manufactured.

【0044】なお上記実施例では、音響レンズとして球
面レンズを用い、焦点位置が所定の微小範囲にある点集
束型の探触子を例に説明したが、音響レンズとして非球
面レンズを用いた点集束型探触子や、シリンドリクルレ
ンズを用いた線集束型探触子であっても良い。
In the above embodiment, a spherical lens is used as an acoustic lens, and a point focusing type probe having a focal position within a predetermined minute range has been described as an example. It may be a focusing probe or a line focusing probe using a cylindrical lens.

【0045】[0045]

【発明の効果】以上の説明で明らかなように本発明によ
れば、集束性の超音波探触子の音響レンズを樹脂で製造
する場合に、その製造工程でその反応率を望ましい値に
なるように制御したため、短い焦点距離を有し、かつ測
定精度が高い樹脂製音響レンズを、高い歩留まりで精度
良く製造することができる。
As is apparent from the above description, according to the present invention, when an acoustic lens of a converging ultrasonic probe is made of resin, the reaction rate becomes a desired value in the manufacturing process. With this control, a resin acoustic lens having a short focal length and high measurement accuracy can be manufactured with high yield and high accuracy.

【0046】また、焦点距離が短く、測定分解能が高
く、かつ製造歩留まりが高い集束型探触子の樹脂製音響
レンズを製造することができ、近年の部品や材料の変化
傾向に対応する実用性の高い樹脂性音響レンズを提供す
ることができる。
In addition, it is possible to manufacture a resin acoustic lens of a focusing probe having a short focal length, a high measurement resolution, and a high production yield, and has a practicality corresponding to a change tendency of components and materials in recent years. And a resin acoustic lens having a high level can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】集束性探触子の音響レンズの代表的構造を示す
断面図である。
FIG. 1 is a cross-sectional view showing a typical structure of an acoustic lens of a focusing probe.

【図2】レンズ本体に熱硬化性樹脂を用いた場合におけ
る反応率と成形品の音速との関係に関する実験結果を示
す特性図である。
FIG. 2 is a characteristic diagram showing an experimental result on a relationship between a reaction rate and a sound speed of a molded product when a thermosetting resin is used for a lens body.

【図3】図2に示した実験結果を、特定のレンズ開口径
と音速と焦点距離に関してレンズ面の球面半径を設定し
かつ特定の低周波超音波の探触子を製作した場合の、反
応率と焦点距離の関係に置き換えた結果を示す特性図で
ある。
FIG. 3 shows the results of the experiment shown in FIG. 2 when the spherical radius of the lens surface is set with respect to a specific lens aperture diameter, sound velocity, and focal length and a specific low-frequency ultrasonic probe is manufactured. FIG. 11 is a characteristic diagram showing a result of replacement with a relationship between a rate and a focal length.

【図4】図2に示した実験結果を、反応率と焦点距離1
5mmの探触子における精度との関係として示す特性図
である。
FIG. 4 shows the results of the experiment shown in FIG.
It is a characteristic view shown as a relation with the accuracy in a 5 mm probe.

【図5】超音波の周波数を25MHz、レンズ面の開口
径を6.4mmとしたときの焦点距離別の許容誤差の計
算例を示す表である。
FIG. 5 is a table showing a calculation example of an allowable error for each focal length when an ultrasonic frequency is 25 MHz and an aperture diameter of a lens surface is 6.4 mm.

【図6】重量比が10:1の主剤に硬化剤を添加して混
合し、その混合時の温度環境を約70℃に設定して約1
分間攪拌し、その後、約100℃で約40分間加熱して
硬化させた場合における、その後の150℃の熱処理時
間と音速のばらつきとの関係の一例を示す特性図であ
る。
FIG. 6: A curing agent is added to and mixed with a main agent having a weight ratio of 10: 1.
FIG. 4 is a characteristic diagram showing an example of a relationship between a subsequent heat treatment time at 150 ° C. and a variation in sound speed in a case where the composition is heated and cured at about 100 ° C. for about 40 minutes.

【符号の説明】[Explanation of symbols]

11 レンズ本体 12 レンズ面 13 下部電極 14 上部電極 15 圧電素子 16 ダンパ部材 DESCRIPTION OF SYMBOLS 11 Lens main body 12 Lens surface 13 Lower electrode 14 Upper electrode 15 Piezoelectric element 16 Damper member

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 主剤に硬化剤を加えて成る硬化性樹脂に
よって成形され、集束型探触子に使用される音響レンズ
の製造方法において、前記硬化性樹脂の反応率が60〜
95%になるように前記反応率を制御して前記硬化性樹
脂を成形したことを特徴とする音響レンズの製造方法。
1. A method of manufacturing an acoustic lens which is formed of a curable resin obtained by adding a curing agent to a main agent and is used for a focusing probe, wherein a reaction rate of the curable resin is 60 to
A method of manufacturing an acoustic lens, wherein the curable resin is molded by controlling the reaction rate so as to be 95%.
【請求項2】 前記硬化性樹脂の前記反応率が80%以
上であることを特徴とする請求項1記載の音響レンズの
製造方法。
2. The method for manufacturing an acoustic lens according to claim 1, wherein the reaction rate of the curable resin is 80% or more.
【請求項3】 前記硬化性樹脂は熱硬化性の樹脂であ
り、前記反応率の制御に熱処理を用いることを特徴とす
る請求項1記載の音響レンズの製造方法。
3. The method of manufacturing an acoustic lens according to claim 1, wherein the curable resin is a thermosetting resin, and a heat treatment is used to control the reaction rate.
【請求項4】 重量比が実質的に10:1である前記主
剤と前記硬化剤を実質的に30℃の温度環境で混合した
ことを特徴とする請求項3記載の音響レンズの製造方
法。
4. The method of manufacturing an acoustic lens according to claim 3, wherein the base agent and the curing agent having a weight ratio of substantially 10: 1 are mixed in a temperature environment of substantially 30 ° C.
【請求項5】 重量比が実質的に10:1である前記主
剤と前記硬化剤を実質的に70℃の温度環境で混合し、
その後に実質的に100℃で40分加熱し、さらにその
後、実質的に150℃で少なくとも60分加熱したこと
を特徴とする請求項3記載の音響レンズの製造方法。
5. The method according to claim 5, wherein the base material and the curing agent having a weight ratio of substantially 10: 1 are mixed in a temperature environment of substantially 70 ° C.,
4. The method according to claim 3, wherein the heating is performed at substantially 100 [deg.] C. for 40 minutes, and then at substantially 150 [deg.] C. for at least 60 minutes.
【請求項6】 前記硬化性樹脂は放射線硬化性の樹脂で
あり、前記反応率の制御に放射線処理を用いることを特
徴とする請求項1の音響レンズの製造方法。
6. The method of manufacturing an acoustic lens according to claim 1, wherein said curable resin is a radiation-curable resin, and a radiation treatment is used for controlling said reaction rate.
【請求項7】 集束型探触子に使用される樹脂製音響レ
ンズであり、この樹脂製音響レンズは主剤に硬化剤を加
えて成形され、その反応率が60〜95%であることを
特徴とする集束型探触子の樹脂製音響レンズ。
7. A resin acoustic lens used for a focusing probe, wherein the resin acoustic lens is formed by adding a curing agent to a main component, and has a reaction rate of 60 to 95%. A resin acoustic lens for a focusing probe.
【請求項8】 焦点距離の精度を2〜8%の誤差範囲内
としたことを特徴とする請求項7記載の集束型探触子の
樹脂製音響レンズ。
8. A resin acoustic lens for a focusing probe according to claim 7, wherein the accuracy of the focal length is within an error range of 2 to 8%.
JP08203271A 1996-07-12 1996-07-12 Method for manufacturing acoustic lens and resin acoustic lens for focusing probe Expired - Fee Related JP3102629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08203271A JP3102629B2 (en) 1996-07-12 1996-07-12 Method for manufacturing acoustic lens and resin acoustic lens for focusing probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08203271A JP3102629B2 (en) 1996-07-12 1996-07-12 Method for manufacturing acoustic lens and resin acoustic lens for focusing probe

Publications (2)

Publication Number Publication Date
JPH1031491A true JPH1031491A (en) 1998-02-03
JP3102629B2 JP3102629B2 (en) 2000-10-23

Family

ID=16471291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08203271A Expired - Fee Related JP3102629B2 (en) 1996-07-12 1996-07-12 Method for manufacturing acoustic lens and resin acoustic lens for focusing probe

Country Status (1)

Country Link
JP (1) JP3102629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177479A (en) * 2003-12-15 2005-07-07 General Electric Co <Ge> Acoustic backing material for small element ultrasonic transducer array

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177479A (en) * 2003-12-15 2005-07-07 General Electric Co <Ge> Acoustic backing material for small element ultrasonic transducer array
JP4688484B2 (en) * 2003-12-15 2011-05-25 ゼネラル・エレクトリック・カンパニイ Acoustic backing material for small element ultrasonic transducer arrays

Also Published As

Publication number Publication date
JP3102629B2 (en) 2000-10-23

Similar Documents

Publication Publication Date Title
Juárez Axisymmetric vibrations of circular plates with stepped thickness
Alig et al. Relaxations in thermosets. XVIII. Ultrasonic studies of curing kinetics of ethylene‐diamine‐cured epoxide
US5009102A (en) Method of monitoring solidification of a liquid composition
JP3102629B2 (en) Method for manufacturing acoustic lens and resin acoustic lens for focusing probe
Radulescu et al. 1–60 MHz measurements in focused acoustic fields using spatial averaging corrections
WO2021227276A1 (en) Surface wave time-frequency regulation-based localized heterogeneous composite material preparation device and method
Terzi et al. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness
Hildebrand et al. Fourier transform approach to materials characterization with the acoustic microscope
JPH08261997A (en) Surface wave probe
JPH0449948B2 (en)
US20220241818A1 (en) Flat-Plate Focusing Ultrasonic Transducer and Acoustic Lens Which are Composed of Annular Array Piezoelectric Element, and Methods of Manufacturing and Designing Thereof
CN113533527A (en) Aspheric surface focusing deep-scene ultrasonic detector and method
Ono et al. Experimental study of construction mechanism of V (z) curves obtained by line-focus-beam acoustic microscopy
Muller et al. Effects of high intensity ultrasonic radiation
Rozenberg Ultrasonic focusing radiators
EP0033751B1 (en) Ultrasonic transducer using ultra high frequency
JPH0347800B2 (en)
KR102611563B1 (en) Impedance matching material and Manufacturing method thereof
Li et al. Characterization of materials fabricated by additive manufacturing method using line focused ultrasonic transducer
Stieler et al. Ultrasonic spectrometry of polystyrene latex suspensions. Scattering and configurational elasticity of polymer chains
Igarashi et al. 1P5-3 Experimental Evaluation of High Intensity Ultrasound Source System using Acoustic Waveguide for Calibration of Hydrophone
Li et al. Design and evaluation of microfabricated acoustical lenses for high frequency ultrasound applications
Saito et al. B/A measurement for liquid media using an LN transducer with inverted-domain layer
CN113820781B (en) Point sound source generating device based on optical fiber optoacoustic and manufacturing method thereof
JPS62179659A (en) Ultrasonic probe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees