JPH10314909A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH10314909A
JPH10314909A JP15044897A JP15044897A JPH10314909A JP H10314909 A JPH10314909 A JP H10314909A JP 15044897 A JP15044897 A JP 15044897A JP 15044897 A JP15044897 A JP 15044897A JP H10314909 A JPH10314909 A JP H10314909A
Authority
JP
Japan
Prior art keywords
copper plate
thermocouple wire
mold
thermocouple
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15044897A
Other languages
Japanese (ja)
Inventor
Kazumi Daitoku
一美 大徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15044897A priority Critical patent/JPH10314909A/en
Publication of JPH10314909A publication Critical patent/JPH10314909A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the surface temp. of copper plate of a mold by embedding insulated thermocouple wires into the copper plate provided with coating layer at the casting side and making short-circuit of the tip parts of the exposed tip part with an electric conductive meter. SOLUTION: The mold A for continuous casting forms a rectangular shape hollow part surrounded with mold long pieces 3a, 3b composed of the copper plate 1 having 20-60 mm thickness and a water-cooling box 2 integrally arranged by a fastening means of bolts and nuts and mold short pieces 3c, 3d composed of the copper plate 1 and the water cooling box 2, and this shape is held with a mold supporting device. On the surfaces of the copper plates 1 at the casting side of these mold long sides 3a, 3b and the mold short sides 3c, 3d, coating layer 1a with a chromium plating is arranged. The formation of the coating layer 10 can be executed with thermal-spraying or padding, etc., besides the plating. The thermocouple wires 8b are exposed on the surface of the copper plate 1, and exposed tip parts are connected with the electric conductive metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造に用いる
鋳型内の湯面レベル、鋳型内における溶鋼の凝固状態あ
るいはブレークアウト等を検出する熱電対線を備えた連
続鋳造鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold provided with a thermocouple wire for detecting a molten metal level in a casting mold, a solidification state of molten steel in the casting mold, a breakout, and the like.

【0002】[0002]

【従来の技術】一般に溶鋼の連続鋳造は、熱伝導性に優
れた銅板、あるいはこの銅板に合金組成物からなる被覆
層を形成した鋳型を用いて、鋳型内で溶鋼を冷却凝固さ
せながら連続的に下方向に引き抜いて鋳片を製造するこ
とが行われている。この鋳型を用いた鋳造の初期は、鋳
型内の湯面レベル(溶鋼レベル)の保持や浸漬管の吐出
口の露出が生じないように、鋳型上部からの溶鋼の注入
量と引き抜き速度のバランスを正確に調整している。こ
の溶鋼の注入量と引き抜き速度の調整により、鋳型から
の溶鋼溢れによる鋳造事故や浸漬管の吐出口の露出によ
る鋳片の品質低下を防止している。また、連続鋳造開始
後の定常操業においては、鋳型内の不均一な冷却から凝
固殻(鋳型内で溶鋼が凝固した部分)を常に所定の厚み
に確保することが困難であり、凝固殻の薄い場合はブレ
ークアウトが発生して溶鋼洩れとなり、鋳造操業の停止
あるいは溶鋼の飛散に伴う鋳造機械の損傷を招く等の問
題がある。
2. Description of the Related Art Generally, continuous casting of molten steel is performed by using a copper plate having excellent thermal conductivity or a mold in which a coating layer made of an alloy composition is formed on the copper plate while cooling and solidifying the molten steel in the mold. To produce a cast slab by drawing it downward. In the early stage of casting using this mold, the balance between the amount of molten steel injected from the upper part of the mold and the drawing speed is adjusted so that the level of the molten metal in the mold (molten steel level) is not maintained and the outlet of the dip tube is not exposed. It is precisely adjusted. By adjusting the amount of molten steel injected and the drawing speed, it is possible to prevent casting accidents due to overflow of molten steel from the mold and deterioration of cast slab quality due to exposure of the discharge port of the immersion pipe. In addition, in a steady operation after the start of continuous casting, it is difficult to always secure a solidified shell (a portion where molten steel solidifies in the mold) to a predetermined thickness due to uneven cooling in the mold. In such a case, there is a problem that a breakout occurs and the molten steel leaks, causing a stoppage of the casting operation or damage to the casting machine due to the scattering of the molten steel.

【0003】従って、前述の鋳造の初期、あるいは定常
操業におけるブレークアウト等を防止するために、例え
ば特公昭56−7783号公報に示すように、4面の鋳
型銅板内の短片側2面に熱電対を取付けて、この短片側
の熱電対の温度差から鋳型内に凝固殻が拘束された場合
のブレークアウトの検出を行うことが開示されている。
また、特開昭56−141955号公報に示すように、
鋳型の反鋳造側の銅板に孔を設け、この孔に先端以外を
非導電性の絶縁物で被覆した熱電対線を挿入して、先端
を銅板にアーク溶接することで、熱感応性に優れた温度
測定の可能な熱電対線を設けた鋳型が鋳造に用いられて
いる。
Accordingly, in order to prevent the above-described breakout in the initial stage of casting or in a steady operation, for example, as shown in Japanese Patent Publication No. Sho 56-7783, two short sides of a four sided copper plate are thermoelectrically charged. It is disclosed that a pair is attached and a breakout is detected when a solidified shell is confined in a mold from the temperature difference between the thermocouples on the short side.
Also, as shown in Japanese Patent Application Laid-Open No. 56-141955,
Excellent heat sensitivity by making a hole in the copper plate on the non-casting side of the mold, inserting a thermocouple wire covered with a non-conductive insulator at the other end into this hole, and arc welding the tip to the copper plate A mold provided with a thermocouple wire capable of measuring temperature is used for casting.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前述の
熱電対線を設けた鋳型は、そのいずれとも鋳型を構成す
る銅板の反鋳造側に穿孔して、この孔に熱電対線を挿入
して先端接合した構造である。溶鋼あるいは凝固殻に接
する鋳型銅板の鋳造側に対して、残存する銅板厚み20
〜30mm(全体の厚み40〜60mm)を介在した状
態となっている。この銅板の残存厚みを介在して鋳造側
の温度を測定するために、発生した異常温度が熱伝導の
高い残存銅板により拡散して正確な温度の測定ができな
い。また、反鋳造側は水冷箱を介して冷却水を通水して
いるために、銅板と熱電対線の先端の接合部に浸水を招
き、浸水した水による外乱を生じて測定温度の誤差が発
生する。更に、鋳造により損耗した鋳造側面の銅板は、
鋳造終了毎に表面を改削して再度鋳造に用いるが、反鋳
造側に穿孔して熱電対を取付けてあるために、銅板残存
厚みの制約から改削再使用に限界があり、高価な鋳型の
寿命が大幅に低下する等の問題点を有する。
However, any of the above-mentioned molds provided with thermocouple wires are perforated on the non-casting side of a copper plate constituting the mold, and a thermocouple wire is inserted into this hole to form a tip. It is a joined structure. Residual copper plate thickness 20 against the casting side of mold copper plate in contact with molten steel or solidified shell
3030 mm (total thickness of 40-60 mm). Since the temperature on the casting side is measured with the remaining thickness of the copper plate interposed, the generated abnormal temperature is diffused by the remaining copper plate having high thermal conductivity, and accurate temperature measurement cannot be performed. In addition, since the cooling water flows through the water-cooling box on the anti-casting side, the joint between the copper plate and the tip of the thermocouple wire is flooded, and the disturbance caused by the flooded water causes an error in the measurement temperature. Occur. In addition, the copper plate on the side of the casting,
Each time the casting is finished, the surface is reworked and used again for casting.However, since a thermocouple is drilled on the opposite side of the casting and a thermocouple is attached, there is a limit to the reworking and reuse due to the restriction of the remaining thickness of the copper plate, and an expensive mold Has a problem that the life of the device is greatly reduced.

【0005】本発明はかかる事情に鑑みてなされたもの
で、連続鋳造に用いる鋳型の銅板の表面温度の正確な測
定と、外乱による温度誤差を防止して発生現象を正確に
検出し、また鋳造側の銅板表面の改削による極限的な再
使用を可能にする連続鋳造用鋳型を提供することを目的
とする。
The present invention has been made in view of such circumstances, and has an accurate measurement of a surface temperature of a copper plate of a mold used for continuous casting, a temperature error caused by a disturbance is accurately detected, and an occurrence phenomenon is accurately detected. It is an object of the present invention to provide a continuous casting mold that enables extreme reuse by reshaping the surface of a copper plate on the side.

【0006】[0006]

【課題を解決するための手段】前記目的に沿う請求項1
記載の連続鋳造用鋳型は、鋳造側となる銅板の表面に被
覆層を設け、前記銅板の反鋳造側に水冷箱を備えた連続
鋳造用鋳型において、前記鋳造側となる銅板内に絶縁さ
れた熱電対線を埋設し、露出した該熱電対線の先端を前
記銅板の表面に露出させると共に、前記熱電対線の先端
部を導電金属で短絡してある。
According to the present invention, there is provided a semiconductor device comprising:
The continuous casting mold according to the present invention is provided with a coating layer on the surface of a copper plate on the casting side, and in a continuous casting mold having a water-cooling box on the non-casting side of the copper plate, insulated in the copper plate on the casting side. A thermocouple wire is buried, the exposed tip of the thermocouple wire is exposed on the surface of the copper plate, and the tip of the thermocouple wire is short-circuited with a conductive metal.

【0007】請求項2記載の連続鋳造用鋳型は、請求項
1記載の連続鋳造用鋳型において、前記絶縁された熱電
対線は、前記銅板にろう材で接合してある。
According to a second aspect of the present invention, in the continuous casting mold according to the first aspect, the insulated thermocouple wire is joined to the copper plate with a brazing material.

【0008】請求項3記載の連続鋳造用鋳型は、請求項
1又は2記載の連続鋳造用鋳型において、前記絶縁され
た熱電対線が金属シースの中に嵌装されている。このよ
うに金属シース内に熱電対線を設けてあるので、金属シ
ースによる熱電対線の全体の強度が向上でき、曲げ加工
性も付与できる。
According to a third aspect of the present invention, in the continuous casting mold according to the first or second aspect, the insulated thermocouple wire is fitted in a metal sheath. Since the thermocouple wire is provided in the metal sheath as described above, the overall strength of the thermocouple wire formed by the metal sheath can be improved, and bending workability can be imparted.

【0009】請求項4記載の連続鋳造用鋳型は、請求項
1〜3のいずれか1項に記載の連続鋳造用鋳型におい
て、前記熱電対線の一つの熱電対素線が、前記銅板に接
続されたアース線からなる。
A continuous casting mold according to a fourth aspect of the present invention is the continuous casting mold according to any one of the first to third aspects, wherein one of the thermocouple wires is connected to the copper plate. Consisting of a ground wire.

【0010】請求項5記載の連続鋳造用鋳型は、請求項
1〜4のいずれか1項に記載の連続鋳造用鋳型におい
て、前記熱電対線が分割された二つの銅柱片の合わせ面
に埋設された熱電対線ユニットであり、鋳造側となる銅
板の表面に埋め込んである。
A continuous casting mold according to a fifth aspect of the present invention is the continuous casting mold according to any one of the first to fourth aspects, wherein the thermocouple wire is provided on a mating surface of two divided copper column pieces. The embedded thermocouple unit is embedded in the surface of the copper plate on the casting side.

【0011】[0011]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。図1は本発明の第1の実施の形態に
係る連続鋳造用鋳型の全体の概略を示す平面図、図2は
図1におけるB−B断面矢視図、図3は図2における熱
電対線の埋設部の部分拡大図、図4は同熱電対線を金属
シースに嵌装した場合の熱電対線の埋設部の部分拡大
図、図5(A)は本発明の第2の実施の形態に係る連続
鋳造用鋳型の熱電対線の埋設部の部分拡大図、図5
(B)は同熱電対線を金属シースに嵌装した場合の熱電
対線の埋設部の部分拡大図、図6は本発明の第3の実施
の形態に係る連続鋳造用鋳型において、鋳造側の銅板の
表面に熱電対線ユニットを埋め込んだ場合の全体斜視
図、図7は同熱電対線の埋設部の部分拡大図、図8は同
熱電対線ユニットの構成を示す全体斜視図、図9は同熱
電対線ユニットを三角柱片で構成する場合の全体斜視図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a plan view schematically showing an entire continuous casting mold according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line BB in FIG. 1, and FIG. 3 is a thermocouple wire in FIG. FIG. 4 is a partially enlarged view of a buried portion of the thermocouple wire when the thermocouple wire is fitted in a metal sheath, and FIG. 5A is a second embodiment of the present invention. FIG. 5 is a partially enlarged view of an embedded portion of a thermocouple wire of a continuous casting mold according to the present invention.
(B) is a partially enlarged view of a buried portion of the thermocouple wire when the thermocouple wire is fitted in a metal sheath, and FIG. 6 is a continuous casting mold according to a third embodiment of the present invention; FIG. 7 is an overall perspective view of a thermocouple wire unit embedded in the surface of the copper plate of FIG. 7, FIG. 7 is a partially enlarged view of an embedded portion of the thermocouple wire, and FIG. 8 is an overall perspective view showing the configuration of the thermocouple wire unit. 9 is an overall perspective view in the case where the thermocouple unit is constituted by triangular prism pieces.

【0012】まず、本発明の第1の実施の形態に係る連
続鋳造用鋳型ついて、図1〜図4を参照して説明する。
図1に示すように連続鋳造用鋳型Aは、厚みが20〜6
0mmの銅板1に、ボルト、ナット(図示せず)等の締
結手段により一体に設けた水冷箱2とからなる鋳型長片
3a、3bと、前記と同様に銅板1と水冷箱2とからな
る鋳型短片3c、3dにより囲まれた長方形の空洞を形
成し、且つ鋳型支持装置(図示せず)により、この形状
を保持してある。この鋳型長片3a、3b、と鋳型短片
3c、3dの鋳造側となる銅板1の表面には、クロムメ
ッキによる被覆層1aが設けてある。この被覆層1aは
厚み1mmとした。この被覆層1aの形成は、メッキの
他に溶射あるいは肉盛り施工等により行うことができ
る。また、図2に示すように、銅板1の反鋳造側に備え
られた水冷箱2には冷却水を供給するための冷却水供給
管4と冷却水の流路5及び流路6とを設けてあり、銅板
1を水により冷却する。冷却水は、冷却水供給管4から
2〜5Kg/cm2の圧力で流路5から流路6へと循環
し、排出口7から系外に流れるようにしてある。更に、
図1及び図2に示すように、鋳型長片3a、3bには、
熱電対線8a〜8hが設けられ、図2に示すように、熱
電対線8b、8fの下部にはそれぞれ熱電対線8b′、
8b″と8f′、8f″とが多段に設けてある。同様
に、熱電対線8a〜8hの下段においても、熱電対線8
a′、8a″〜8h′、8h″(図示せず)が多段に設
けてある。そのいずれも同じ構成であるので、ここでは
熱電対線8bを代表として説明する。図2及び図3、図
4に示すように、連続鋳造の鋳型長片3aに埋設した熱
電対線8bはコンスタンタンを用いた熱電対素線9と銅
を用いた熱電対素線10からなり、この熱電対線8b
は、非導電性の絶縁物11で表面を被覆されており、銅
板1に穿った孔12及び水冷箱2に穿った孔13内に埋
設されている。なお、銅板1及び水冷箱2の穿孔はドリ
ル等の一般的な穿孔手段により行うことができる。
First, a casting mold for continuous casting according to a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, the continuous casting mold A has a thickness of 20 to 6 mm.
Molded strips 3a and 3b each comprising a water cooling box 2 provided integrally with a 0 mm copper plate 1 by fastening means such as bolts and nuts (not shown), and a copper plate 1 and a water cooling box 2 as described above. A rectangular cavity surrounded by the mold short pieces 3c and 3d is formed, and this shape is maintained by a mold support device (not shown). A coating layer 1a by chrome plating is provided on the surface of the copper plate 1 on the casting side of the mold long pieces 3a, 3b and the mold short pieces 3c, 3d. This coating layer 1a had a thickness of 1 mm. The formation of the coating layer 1a can be performed by thermal spraying or overlaying in addition to plating. Further, as shown in FIG. 2, a water cooling box 2 provided on the anti-casting side of the copper plate 1 is provided with a cooling water supply pipe 4 for supplying cooling water and cooling water flow paths 5 and 6. The copper plate 1 is cooled with water. The cooling water circulates from the cooling water supply pipe 4 to the flow path 6 from the flow path 5 at a pressure of 2 to 5 kg / cm 2 , and flows from the discharge port 7 to the outside of the system. Furthermore,
As shown in FIG. 1 and FIG. 2, the mold long pieces 3a and 3b have
Thermocouple wires 8a to 8h are provided, and as shown in FIG. 2, thermocouple wires 8b 'and 8b' are provided below thermocouple wires 8b and 8f, respectively.
8b "and 8f ', 8f" are provided in multiple stages. Similarly, the thermocouple wires 8a to 8h also
a ', 8a "to 8h', 8h" (not shown) are provided in multiple stages. Since each of them has the same configuration, the thermocouple wire 8b will be described as a representative here. As shown in FIGS. 2, 3 and 4, the thermocouple wire 8 b buried in the continuous casting mold strip 3 a is composed of a thermocouple wire 9 using constantan and a thermocouple wire 10 using copper, This thermocouple wire 8b
Is covered with a nonconductive insulator 11 and is embedded in a hole 12 formed in the copper plate 1 and a hole 13 formed in the water-cooling box 2. In addition, the perforation of the copper plate 1 and the water-cooled box 2 can be performed by a general perforation means such as a drill.

【0013】また、熱電対線8bを構成する熱電対素線
9と熱電対素線10の先端部9aと10aは、銅板1の
表面に露出しており、露出した先端部9aと10aは、
導電金属を溶接あるいは溶射、ろう付け等により接続し
て、短絡部14を形成してある。短絡部14を介して熱
電対素線9と熱電対素線10とは電気的に導通を可能に
してある。更に、熱電対線8bは厚み100μmの絶縁
物11により表面を覆ってあり、銅板に穿った孔12と
絶縁物11との間に銅系のろう材15を流し込んで銅板
1に一体に接合してある。熱電対線8bの水冷箱2の側
は、水冷箱2に穿った孔13に挿入され、水冷箱2と熱
電対線8bの間にオーリング16を設けると共に、フラ
ンジ17とボルトナット(図示せず)等の締結手段で、
前記の水冷箱2に固定されている。熱電対線8bの熱電
対素線9と熱電対素線10は、水冷箱2を経て外部に取
出されて、起電力の温度変換器を備えた温度指示計18
に表示されるように構成してある。また、熱電対線8b
の直径と銅板1の孔12との隙間を2〜6mmとし、冷
却水の流路6側をテーパー孔19に拡径してあり、ろう
材15の流し込みを容易にしてある。
The ends 9a and 10a of the thermocouple wire 9 and the thermocouple wire 10 constituting the thermocouple wire 8b are exposed on the surface of the copper plate 1, and the exposed tips 9a and 10a are
The conductive metal is connected by welding, thermal spraying, brazing, or the like to form a short-circuit portion 14. The thermocouple wire 9 and the thermocouple wire 10 can be electrically connected via the short-circuit portion 14. Further, the surface of the thermocouple wire 8b is covered with an insulator 11 having a thickness of 100 μm, and a copper brazing material 15 is poured between the hole 12 formed in the copper plate and the insulator 11 to be integrally joined to the copper plate 1. It is. The side of the water-cooled box 2 of the thermocouple wire 8b is inserted into a hole 13 formed in the water-cooled box 2, an O-ring 16 is provided between the water-cooled box 2 and the thermocouple wire 8b, and a flange 17 and a bolt nut (not shown) are provided. Zu) and other fastening means,
It is fixed to the water cooling box 2. The thermocouple wire 9 and the thermocouple wire 10 of the thermocouple wire 8b are taken out through the water-cooled box 2 and are output to a temperature indicator 18 provided with an electromotive force temperature converter.
Is configured to be displayed. In addition, thermocouple wire 8b
The gap between the diameter of the copper plate 1 and the hole 12 of the copper plate 1 is set to 2 to 6 mm, and the diameter of the flow path 6 of the cooling water is enlarged to the tapered hole 19 so that the brazing material 15 can be easily poured.

【0014】ここで、銅板1は銅を用いるが、銅を主体
とする合金でもよく、この銅板1の表面(鋳造側)に設
ける被覆層1aもクロムメッキとしたが、ニッケルある
いはニッケル基合金、クロム、あるいはこれ等を複合し
た耐熱、耐磨耗性を有する合金を溶射、肉盛り等により
形成しても良く、その厚みは0.2mm〜5mmが用い
られる。また、鋳造側となる銅板1の表面とは、溶鋼あ
るいは溶鋼と被覆層1aの間に介在した潤滑パウダーに
接する被覆層1a側の面であり、この鋳造側となる銅板
1に埋設される熱電対線8bはその直径を1.0〜7.
0mmとしてある。熱電対線8bの直径が1.0mmよ
り小さいと、銅板1への取付けあるいは使用中の振動等
により断線し易くなり、直径が7.0mmより大きいと
銅板1に取付ける場所の制約と、銅板1の表面の抜熱特
性が阻害される。更に、熱電対線8bとしては、コンス
タンタンと銅の組み合わせを用いたが、この他にコンス
タンタン、クロメル、アルメル、ニッケル、鉄、白金、
白金ロジュウム、アルミニウム、銅等を組み合わせて用
いることができる。この熱電対線8bの表面を絶縁する
非導電性の絶縁物11としては、例えばアルミナ、窒化
珪素、ジルコニア、サイアロン、マグネシア、アルミナ
等の材料を用いることができ、被覆によって電気的に絶
縁してある。この熱電対線8bを絶縁する際の絶縁物1
1の厚みは1〜1000μmであり、1μmより薄いと
絶縁性が低下し、1000μmより厚くなると絶縁層の
剥離、特に曲げ加工の際に絶縁被覆が剥離する。また、
熱電対線8bの熱電対素線9と10の露出した先端部9
aと10aに、導電金属により短絡部14を形成する際
に、非導電性の物質が不純物として混入するので電気的
導通の信頼性が低下する。この理由から好ましくは熱電
対線の絶縁物11の厚みは10〜50μmがよい。
Although the copper plate 1 is made of copper, an alloy mainly composed of copper may be used. The coating layer 1a provided on the surface (casting side) of the copper plate 1 is also made of chromium plating. Chromium or a heat and wear resistant alloy of chromium or a combination thereof may be formed by thermal spraying, overlaying, or the like, and the thickness is 0.2 mm to 5 mm. The surface of the copper plate 1 on the casting side is the surface of the coating layer 1a on the side of the molten steel or the lubricating powder interposed between the molten steel and the coating layer 1a. The paired wire 8b has a diameter of 1.0-7.
0 mm. If the diameter of the thermocouple wire 8b is smaller than 1.0 mm, it is easy to break due to vibrations during mounting on the copper plate 1 or during use. If the diameter is larger than 7.0 mm, restrictions on the place to be mounted on the copper plate 1 and restrictions on the copper plate 1 The heat removal characteristics of the surface are inhibited. Further, as the thermocouple wire 8b, a combination of constantan and copper was used. In addition, constantan, chromel, alumel, nickel, iron, platinum,
Platinum rhodium, aluminum, copper and the like can be used in combination. As the non-conductive insulator 11 for insulating the surface of the thermocouple wire 8b, for example, a material such as alumina, silicon nitride, zirconia, sialon, magnesia, or alumina can be used. is there. Insulator 1 for insulating this thermocouple wire 8b
1 has a thickness of 1 to 1000 μm, and if it is thinner than 1 μm, the insulating property is reduced. Also,
Exposed tip 9 of thermocouple wires 9 and 10 of thermocouple wire 8b
When the short-circuit portion 14 is formed by using a conductive metal in “a” and “10a”, a non-conductive substance is mixed as an impurity, so that the reliability of electrical conduction is reduced. For this reason, the thickness of the insulator 11 of the thermocouple wire is preferably 10 to 50 μm.

【0015】また、熱電対線8bの絶縁物11の形成
は、前述の非導電性の材料をプラズマ溶射やフレーム溶
射あるいはイオン蒸着等により施すことができる。な
お、11aは絶縁層であり、熱電対素線9と熱電対素線
10とを絶縁するもので、絶縁物11と同じ非導電性の
材料を充填してある。更に、熱電対線8bを銅板1に接
合するために、銅系のろう材(銅ろう)15を705〜
980℃に加熱して隙間に流し込みを行ったが、この他
に銀ろうや黄銅ろう、りん銅ろう、金ろう、アルミニウ
ムろう等を用いることができる。なお、この熱電対線8
bの銅板1への接合は熱電対線8bに銅ろう箔を巻き付
けて、前述の銅板1に穿った孔12に挿入した後、全体
を705〜980℃に加熱して、銅ろう箔を溶解するこ
とでも行うことができる。
The insulator 11 of the thermocouple wire 8b can be formed by applying the above-mentioned non-conductive material by plasma spraying, flame spraying, ion deposition or the like. Reference numeral 11a denotes an insulating layer that insulates the thermocouple wires 9 from the thermocouple wires 10, and is filled with the same non-conductive material as the insulator 11. Further, in order to join the thermocouple wire 8b to the copper plate 1, a copper brazing material (copper brazing) 15
Although the mixture was heated to 980 ° C. and poured into the gap, silver braze, brass braze, phosphor copper braze, gold braze, aluminum braze, or the like can be used. In addition, this thermocouple wire 8
b is joined to the copper plate 1 by winding a copper brazing foil around the thermocouple wire 8b and inserting it into the hole 12 formed in the copper plate 1 described above, and then heating the whole to 705 to 980 ° C. to melt the copper brazing foil. You can also do this.

【0016】また、図4は、本発明の第1の実施の形態
に係る連続鋳造用鋳型の変形例であり、熱電対素線9と
10の露出された先端部9aと10aを含めた熱電対線
8bの先端のすべてを覆って短絡部14aを形成してあ
る。また、絶縁された熱電対線8bを金属シース20の
中に嵌装して銅板1に穿った孔12及び水冷箱2に穿っ
た孔13内に埋設してあり、前述の構成以外は、図3に
示す熱電対線8bと同じ構成である。同じ構成について
は同一の符合を付してある。なお、熱電対線8bを嵌装
する金属シース20としては、ステンレス、銅、アル
ミ、鉄、インコネル等の金属からなるパイプあるいは板
を丸めて覆うことにより形成する。
FIG. 4 shows a modification of the continuous casting mold according to the first embodiment of the present invention, in which the thermocouple including the exposed tips 9a and 10a of the thermocouple wires 9 and 10 is shown. A short-circuit portion 14a is formed to cover the entire tip of the pair wire 8b. An insulated thermocouple wire 8b is fitted in a metal sheath 20 and buried in a hole 12 formed in the copper plate 1 and a hole 13 formed in the water-cooling box 2. It has the same configuration as the thermocouple wire 8b shown in FIG. The same components are denoted by the same reference numerals. The metal sheath 20 for fitting the thermocouple wire 8b is formed by rolling and covering a pipe or plate made of a metal such as stainless steel, copper, aluminum, iron, or inconel.

【0017】次に、本発明の第1の実施の形態に係る連
続鋳造用鋳型の使用の方法について、図1、図2及び図
3、図4により説明する。連続鋳造用鋳型Aの鋳型長片
3a、3b及び鋳型短片3c、3dに囲まれた鋳型内部
に浸漬管(図示せず)から溶鋼21が注湯される。この
注湯された溶鋼21の熱は、銅板1の表面に形成した被
覆層1aから銅板1へと伝わり、水冷箱2内に形成した
流路5、流路6を流れる水によって拔熱、冷却され、図
2中の点線に示すように溶鋼21が冷却されて凝固殻2
2を形成しながら下方に引かれて連続的に鋳造される。
この凝固殻22の形成以降の連続鋳造は、凝固殻22と
銅板1の表面に形成した被覆層1aとの間に溶融したパ
ウダー(図示せず)を潤滑剤として介在させて行われ
る。前述の溶鋼21、凝固殻22からの熱は、直接ある
いはパウダー(図示せず)を介して鋳造側の銅板1の表
面に設けた被覆層1aから銅板1の表面に設けた短絡部
14へと伝熱される。この溶鋼21、凝固殻22からの
伝熱により鋳型長片3aに設けた熱電対線8bの熱電対
素線9と熱電対素線10の接合点で起電力が発生する。
接合点で発生した起電力を、温度に変換して温度指示計
18に表示する。ここで、溶鋼21及び凝固殻22の温
度は、略銅板1の表面に形成した被覆層1aの表面温度
となるので、前記の熱電対素線9と熱電対素線10の接
合点で発生する起電力を変換した温度も略同温度の表示
となる。この溶鋼21の鋳造過程を時経的に測定するこ
とで、温度の上昇から凝固殻22が薄い場合や凝固殻2
2のブレークアウトの現象を確実に検出できる。
Next, a method for using the continuous casting mold according to the first embodiment of the present invention will be described with reference to FIGS. 1, 2, 3 and 4. FIG. Molten steel 21 is poured from an immersion pipe (not shown) into a mold surrounded by mold long pieces 3a and 3b and mold short pieces 3c and 3d of the continuous casting mold A. The heat of the poured molten steel 21 is transmitted from the coating layer 1 a formed on the surface of the copper plate 1 to the copper plate 1, and is removed and cooled by water flowing through the flow path 5 and the flow path 6 formed in the water cooling box 2. The molten steel 21 is cooled as shown by a dotted line in FIG.
It is drawn downward while forming 2 and continuously cast.
Continuous casting after the formation of the solidified shell 22 is performed by interposing a molten powder (not shown) as a lubricant between the solidified shell 22 and the coating layer 1 a formed on the surface of the copper plate 1. The heat from the molten steel 21 and the solidified shell 22 is transferred directly or via a powder (not shown) from the coating layer 1 a provided on the surface of the copper plate 1 on the casting side to the short-circuit portion 14 provided on the surface of the copper plate 1. Heat is transferred. By the heat transfer from the molten steel 21 and the solidified shell 22, an electromotive force is generated at the junction between the thermocouple wire 9 and the thermocouple wire 10 of the thermocouple wire 8b provided on the mold long piece 3a.
The electromotive force generated at the junction is converted into a temperature and displayed on the temperature indicator 18. Here, the temperature of the molten steel 21 and the solidified shell 22 is substantially equal to the surface temperature of the coating layer 1 a formed on the surface of the copper plate 1, and thus occurs at the junction between the thermocouple wires 9 and the thermocouple wires 10. The converted temperature of the electromotive force is also displayed at substantially the same temperature. By measuring the casting process of the molten steel 21 over time, the case where the solidified shell 22 is thin or the solidified shell 2
2 can reliably detect the breakout phenomenon.

【0018】また、熱電対線8bを非導電性の絶縁物1
1で覆ってあるので、漏電が防止され、短絡部14で直
接高温度領域の測定を行うことにより大きな起電力が得
られ、大きな起電力は被覆層1aの正確な現象を判定で
きる。更に、熱電対線8bを銅板1に穿った孔12にろ
う材15で一体的に固定してあるので、浸水や熱電対線
8bの脱落による測定の誤差を防止できる。特に、前述
の銅板1の表面あるいは被覆層1aは、鋳造に用いるこ
とにより、磨耗やその面を削られて使用不能となる。こ
こで、被覆層1aを含む銅板1の表面の研削を行なっ
て、再び熱電対線8bの熱電対素線9と熱電対素線10
の先端部9a、10aを再度露出させて短絡部14を形
成し、この短絡部14を覆う被覆層1aを施すことで、
銅板1と熱電対線8bを繰り返して使用することができ
る。
The thermocouple wire 8b is connected to the non-conductive insulator 1
1, the leakage is prevented, and a large electromotive force is obtained by directly measuring the high temperature region at the short-circuit portion 14, and the large electromotive force can accurately determine the phenomenon of the coating layer 1a. Further, since the thermocouple wire 8b is integrally fixed to the hole 12 formed in the copper plate 1 with the brazing material 15, it is possible to prevent measurement errors due to flooding or dropping of the thermocouple wire 8b. In particular, the surface of the copper plate 1 or the coating layer 1a becomes unusable because it is worn or its surface is shaved by being used for casting. Here, the surface of the copper plate 1 including the coating layer 1a is ground, and the thermocouple wires 9 and 10 of the thermocouple wire 8b are again formed.
By exposing the tip portions 9a and 10a again to form a short-circuit portion 14 and applying a coating layer 1a covering the short-circuit portion 14,
The copper plate 1 and the thermocouple wire 8b can be used repeatedly.

【0019】また、本発明の第1の実施の形態の変形例
である図4は、熱電対線8bの先端のすべて(熱電対素
線9と熱電対素線10の先端部9aと10aを含める)
を覆った短絡部14aを形成してあるので、短絡部14
aの剥落がより確実に防止できる。更に、絶縁された熱
電対線8bを金属シース20の中に嵌装してあるため
に、熱電対線8bの強度を高くできることから熱電対線
8bの曲げ加工を可能にすると共に、熱電対線8bの折
損事故を防止でき、銅板1の表面の温度を温度指示計1
8により正確に長時間測定できる。
FIG. 4, which is a modification of the first embodiment of the present invention, shows all the distal ends of the thermocouple wire 8b (the distal end portions 9a and 10a of the thermocouple wires 9 and 10). include)
Is formed, so that the short-circuit portion 14a is formed.
a can be prevented more reliably. Further, since the insulated thermocouple wire 8b is fitted in the metal sheath 20, the strength of the thermocouple wire 8b can be increased, so that the thermocouple wire 8b can be bent and the thermocouple wire 8b can be bent. 8b can be prevented, and the temperature of the surface of the copper
8 enables accurate long-term measurement.

【0020】次に、本発明の第2の実施の形態に係る連
続鋳造用鋳型について、図1、図2及び図5(A)、
(B)を参照して説明する。前述した本発明の第1の実
施の形態において説明した連続鋳造用鋳型Aの構成、及
び熱電対線8a〜8hと、その下部に設けた熱電対線8
a′、8a″〜8h′、8h″については、同一の構成
部分は同一の符合を付してある。なお、ここでは熱電対
線8bを代表として説明する。鋳型長片3aの銅板1に
は、銅板1に穿った孔12に先端を露出した一本の熱電
対素線9からなり、表面を絶縁物11で被覆した熱電対
線8bが埋設してある。この熱電対線8bの熱電対素線
9の露出させた先端部9aと銅板1の表面とは、導電金
属を溶接肉盛りした短絡部14aにより接合してあり、
銅板1の孔12と熱電対線8bの絶縁物11の間隙にろ
う材15を流し込んで銅板1に一体に接合してある。一
方、銅板1にはアース線23がろう付けされており、こ
のアース線23は、水冷箱2に設けたアース線孔24内
を経て外部にとりだされて、温度指示計18に接続して
ある。このアース線23と熱電対素線9、短絡部14a
とは電気的な導通を可能にしてある。なお、25はアー
ス線孔24に設けたアース線23のシールパッキンであ
る。
Next, a continuous casting mold according to a second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. The structure of the continuous casting mold A described in the first embodiment of the present invention, the thermocouple wires 8a to 8h, and the thermocouple wire 8 provided thereunder.
Regarding a ', 8a "to 8h', 8h", the same components are denoted by the same reference numerals. Here, the thermocouple wire 8b will be described as a representative. In the copper plate 1 of the mold long piece 3a, a thermocouple wire 9b composed of a single thermocouple wire 9 whose tip is exposed in a hole 12 formed in the copper plate 1 and whose surface is covered with an insulator 11 is embedded. . The exposed end portion 9a of the thermocouple wire 9 of the thermocouple wire 8b and the surface of the copper plate 1 are joined by a short-circuit portion 14a in which a conductive metal is welded.
A brazing material 15 is poured into a gap between the hole 12 of the copper plate 1 and the insulator 11 of the thermocouple wire 8b and is integrally joined to the copper plate 1. On the other hand, an earth wire 23 is brazed to the copper plate 1, and the earth wire 23 is taken out through an earth wire hole 24 provided in the water-cooling box 2 and connected to the temperature indicator 18. . The ground wire 23, the thermocouple wire 9, and the short-circuit portion 14a
Means that electrical conduction is possible. Reference numeral 25 denotes a seal packing for the ground wire 23 provided in the ground wire hole 24.

【0021】以上の如く構成された本発明の第2の実施
の形態に係る連続鋳造用鋳型の使用の方法について図
1、図2及び図5(A)、(B)により説明する。連続
鋳造用鋳型Aの鋳型長片3a、3b及び鋳型短片3c、
3dに囲まれた鋳型内部に浸漬管(図示せず)から溶鋼
21が注湯される。前述の溶鋼21、凝固殻22からの
熱は、直接あるいはパウダー(図示せず)を介して鋳造
側の銅板1の表面に設けた被覆層1aから銅板1の表面
に設けた短絡部14aに伝熱されて、鋳型長片3aに設
けた熱電対線8bの熱電対素線9と短絡部14aの接合
点で起電力が発生する。この起電力を温度変換器を備え
た温度指示計18に表示する。この被覆層1aの温度
は、溶鋼21及び凝固殻22の温度と略同じ表面温度と
なる。この溶鋼21の鋳造を時経的に測定することで、
凝固殻22が薄い場合あるいはブレークアウト等の発生
現象を温度の上昇により把握することができる。
A method of using the continuous casting mold according to the second embodiment of the present invention configured as described above will be described with reference to FIGS. 1, 2, and 5A and 5B. The mold long pieces 3a and 3b and the mold short piece 3c of the continuous casting mold A,
Molten steel 21 is poured from a dip tube (not shown) into a mold surrounded by 3d. The heat from the molten steel 21 and the solidified shell 22 is transferred from the coating layer 1a provided on the surface of the copper plate 1 on the casting side to the short-circuit portion 14a provided on the surface of the copper plate 1 directly or via a powder (not shown). When heated, an electromotive force is generated at the junction between the thermocouple wire 9 of the thermocouple wire 8b provided on the mold long piece 3a and the short-circuit portion 14a. This electromotive force is displayed on a temperature indicator 18 provided with a temperature converter. The temperature of the coating layer 1a is substantially the same as the temperature of the molten steel 21 and the solidified shell 22. By measuring the casting of the molten steel 21 over time,
When the solidified shell 22 is thin, or a phenomenon such as breakout can be grasped by an increase in temperature.

【0022】また、熱電対線8bを非導電性の絶縁物1
1で覆ってあるので、漏電を防止でき、銅板1の表面の
高温度領域を直接に測定できるので、起電力を大きな値
として測定できる。同時に、熱電対線8bが、ろう材1
5により銅板1に穿った孔12に一体に固定してあるの
で、浸水や熱電対線8bの脱落による測定の誤差を防止
できる。更に、熱電対線8bを一本の熱電対素線9と
し、もう一つの熱電対素線が銅板1に接続されたアース
線23からなるので銅板1への熱電対線8bの直径を小
さくすることが可能であり埋設の本数を増設できる。特
に、前述の銅板1の表面あるいは被覆層1aは、鋳造に
より磨耗や削り損傷を生じているので、被覆層1aと銅
板1の表面を研削して、銅板1の表面を平滑化し、熱電
対素線9の先端部9aの短絡部14aを形成した後に、
銅板1の表面に被覆層1aの形成を行なうことで再使用
が可能である。
The thermocouple wire 8b is connected to the non-conductive insulator 1
1, the leakage can be prevented, and the high temperature region on the surface of the copper plate 1 can be directly measured, so that the electromotive force can be measured as a large value. At the same time, the thermocouple wire 8b
5, it is integrally fixed to the hole 12 formed in the copper plate 1, so that it is possible to prevent errors in measurement due to flooding or dropping of the thermocouple wire 8b. Further, the thermocouple wire 8b is one thermocouple wire 9 and the other thermocouple wire is made of the ground wire 23 connected to the copper plate 1, so that the diameter of the thermocouple wire 8b to the copper plate 1 is reduced. It is possible to increase the number of buried. In particular, since the surface of the copper plate 1 or the coating layer 1a is worn or scraped by casting, the surfaces of the coating layer 1a and the copper plate 1 are ground to smooth the surface of the copper plate 1, After forming the short-circuit portion 14a at the tip 9a of the wire 9,
By forming the coating layer 1a on the surface of the copper plate 1, it can be reused.

【0023】次に、図5(B)は、本発明の第2の実施
の形態に係る連続鋳造用鋳型の変形例であり、熱電対線
8bは金属シース20に嵌装されており、銅板1に穿っ
た孔12内に挿入してある。熱電対線8bは銅板1に穿
った孔12と金属シース20との隙間にろう材15を流
し込んで銅板1に固定してある。この熱電対線8bの熱
電対素線9の露出した先端部9aと銅板1とは、短絡部
14aを形成して電気的な導通を可能にしてある。な
お。前述の構成以外は、図5(A)に示す熱電対線8b
と同じ構成である。
FIG. 5B shows a modification of the continuous casting mold according to the second embodiment of the present invention, in which a thermocouple wire 8b is fitted in a metal sheath 20 and a copper plate is provided. It is inserted into the hole 12 drilled in 1. The thermocouple wire 8 b is fixed to the copper plate 1 by pouring a brazing material 15 into a gap between the hole 12 formed in the copper plate 1 and the metal sheath 20. The exposed end portion 9a of the thermocouple wire 9 of the thermocouple wire 8b and the copper plate 1 form a short-circuit portion 14a to enable electrical conduction. In addition. Except for the configuration described above, the thermocouple wire 8b shown in FIG.
It has the same configuration as.

【0024】更に、本発明の第2の実施の形態に係る連
続鋳造用鋳型の変形例の使用方法について説明する。連
続鋳造用鋳型Aに注湯された溶鋼21及び凝固殻22か
らの熱は、被覆層1aから銅板1の表面に設けた短絡部
14aに伝熱されて、熱電対線8bの熱電対素線9と短
絡部14aの接合点で起電力が発生する。この起電力を
温度に変換して温度指示計18に表示する。この被覆層
1aの温度は、溶鋼21及び凝固殻22の温度と略同じ
表面温度となる。この表面温度を時経的に測定すること
で、凝固殻22が薄い場合あるいはブレークアウトの発
生等の現象を検出できる。また、一本の熱電対素線9と
金属シース20を組み合わせてあるので、熱電対線8b
の強度の向上により熱電対線8bの断線の防止と曲げ加
工が可能となり取付けが容易にできる。
Further, a method of using a modified example of the continuous casting mold according to the second embodiment of the present invention will be described. Heat from the molten steel 21 and the solidified shell 22 poured into the casting mold A for continuous casting is transferred from the coating layer 1a to the short-circuit portion 14a provided on the surface of the copper plate 1, and the thermocouple element wire of the thermocouple wire 8b An electromotive force is generated at the junction between the short-circuit portion 9 and the short-circuit portion 14a. This electromotive force is converted into a temperature and displayed on the temperature indicator 18. The temperature of the coating layer 1a is substantially the same as the temperature of the molten steel 21 and the solidified shell 22. By measuring this surface temperature over time, it is possible to detect phenomena such as the case where the solidified shell 22 is thin or the occurrence of breakout. Further, since one thermocouple element wire 9 and the metal sheath 20 are combined, the thermocouple wire 8b
Of the thermocouple wire 8b can be prevented and the bending process can be performed, and the mounting can be easily performed.

【0025】次に、本発明の第3の実施の形態に係る連
続鋳造用鋳型ついて、図6、図7、図8、図9を参照し
て説明する。なお、本発明の第1及び第2の実施の形態
に係る連続鋳造用鋳型と同じ構成については同一の符合
を付してある。連続鋳造用鋳型Aの鋳型長片3aの銅板
1には,熱電対線ユニット26が一体に接合してある。
この熱電対線ユニット26には,熱電対線8b、(8
b′、8b″)が埋設されており、熱電対線8b(8
b′、8b″)の先端は銅板1の表面に露出してある。
熱電対線8b(8b′、8b″)の先端と銅板1の表面
は、導電性の金属による短絡部14により接合してあ
り、更に銅板1の表面と短絡部14は、例えばクロムあ
るいはクロム合金等をメッキした被覆層1aで覆ってあ
る。この短絡部14の形成により熱電対線8b(8
b′、8b″)は短絡部14を介して電気的な回路が形
成されており、熱電対線8b(8b′、8b″)の基端
側は起電力の温度変換器を備えた温度指示計18に連結
してある。また、熱電対線ユニット26は、二つに分割
された銅柱片27aと銅柱片27bとからなり、銅柱片
27a及び銅柱片27bに設けた半円孔28aと28b
との合わせ面に熱電対線8b(8b′、8b″)を埋設
してある。この熱電対線ユニット26に埋設される熱電
対線8b(8b′、8b″)は半円孔28aと28bと
の合わせ面との隙間にろう材15を流し込んで銅柱片2
7aと銅柱片27bに一体に固定してある。熱電対線ユ
ニット26は、銅柱片27aと銅柱片27bの周縁29
をピグ溶接あるいは銅ろう付けして一体の熱電対線ユニ
ット26を形成する。この熱電対線ユニット26を予め
熱電対線ユニット26の外形寸法の凹部を有する銅板1
に嵌合させ、同様に縁部をピグ溶接あるいは銅ろう付け
等により固定してある。更に、熱電対線ユニット26の
形状は図9に示すように、二つに分割された三角形の銅
柱片30aと銅柱片30bを用いたり、この三角形の銅
柱片30aと銅柱片30bのかわりに半円柱片(図示せ
ず)としても良い。また、熱電対線ユニット26は、銅
板1に少なくとも二つ以上を埋設して銅板1の鋳造側面
の広範囲の温度を測定できるように構成することが好ま
しい。
Next, a continuous casting mold according to a third embodiment of the present invention will be described with reference to FIGS. 6, 7, 8 and 9. FIG. The same components as those of the continuous casting mold according to the first and second embodiments of the present invention are denoted by the same reference numerals. A thermocouple unit 26 is integrally joined to the copper plate 1 of the long mold piece 3a of the continuous casting mold A.
The thermocouple wire unit 26 includes thermocouple wires 8b, (8
b ', 8b ") are buried, and the thermocouple wires 8b (8
b ', 8b ") are exposed on the surface of the copper plate 1.
The tip of the thermocouple wire 8b (8b ', 8b ") is joined to the surface of the copper plate 1 by a short-circuit portion 14 made of a conductive metal. Further, the surface of the copper plate 1 and the short-circuit portion 14 are, for example, chromium or chromium alloy. Are covered by a coating layer 1a plated with a thermocouple wire 8b (8).
b ', 8b "), an electric circuit is formed via the short-circuit portion 14. The base end of the thermocouple wire 8b (8b', 8b") has a temperature indicator provided with a temperature converter for electromotive force. It is connected to a total of 18. The thermocouple wire unit 26 is composed of a copper column 27a and a copper column 27b divided into two, and semicircular holes 28a and 28b provided in the copper column 27a and the copper column 27b.
The thermocouple wire 8b (8b ', 8b ") is embedded in the mating surface of the thermocouple wire. The thermocouple wire 8b (8b', 8b") embedded in the thermocouple wire unit 26 has semicircular holes 28a and 28b. The brazing material 15 is poured into the gap between the mating surface and the copper column piece 2.
7a and the copper column piece 27b are integrally fixed. The thermocouple wire unit 26 includes a copper pillar 27a and a peripheral edge 29 of the copper pillar 27b.
By pig welding or copper brazing to form an integral thermocouple unit 26. This thermocouple wire unit 26 is previously placed on a copper plate 1 having a concave portion having the outer dimensions of the thermocouple wire unit 26.
And the edges are similarly fixed by pig welding or copper brazing. Further, as shown in FIG. 9, the thermocouple wire unit 26 has a triangular copper column piece 30a and a copper column piece 30b which are divided into two, or the triangular copper column piece 30a and the copper column piece 30b. Instead, a semi-cylindrical piece (not shown) may be used. Preferably, at least two or more thermocouple wire units 26 are embedded in the copper plate 1 so that a wide range of temperatures on the casting side surface of the copper plate 1 can be measured.

【0026】以上のように構成された本発明の第3の実
施の形態に係る連続鋳造用鋳型の使用の方法について図
6、図7、図8、図9を参照して説明する。溶鋼21、
凝固殻22からの熱は、鋳造側の銅板1の表面に設けた
被覆層1aから銅板1の表面に設けた短絡部14に伝熱
されて、鋳型長片3aに設けた熱電対線8b(8b′、
8b″)の熱電対素線9と熱電対素線10の接合点で起
電力が発生する。この起電力を温度に変換して温度指示
計18に表示する。ここで、溶鋼21及び凝固殻22の
温度は略銅板1の表面に形成した被覆層1aの表面温度
となるので、前記の熱電対素線9と熱電対素線10の接
合点で発生する大きな値の起電力を変換した温度を表示
できる。この溶鋼21の鋳造を時経的に測定すること
で、温度の上昇から凝固殻22が薄い場合や凝固殻22
の破れに伴うブレークアウトの発生の現象を確実に検出
できる。
A method of using the continuous casting mold according to the third embodiment of the present invention configured as described above will be described with reference to FIGS. 6, 7, 8, and 9. Molten steel 21,
The heat from the solidified shell 22 is transferred from the coating layer 1a provided on the surface of the copper plate 1 on the casting side to the short-circuit portion 14 provided on the surface of the copper plate 1, and the thermocouple wire 8b ( 8b ',
8b ″), an electromotive force is generated at the junction between the thermocouple wire 9 and the thermocouple wire 10. This electromotive force is converted into a temperature and displayed on the temperature indicator 18. Here, the molten steel 21 and the solidified shell Since the temperature of 22 is approximately the surface temperature of the coating layer 1a formed on the surface of the copper plate 1, the temperature obtained by converting the electromotive force of a large value generated at the junction between the thermocouple wires 9 and 10 is converted. By measuring the casting of the molten steel 21 over time, the solidified shell 22 may be thin due to an increase in temperature, or the solidified shell 22 may be displayed.
The phenomenon of the occurrence of a breakout due to the breakage of the vehicle can be reliably detected.

【0027】また、熱電対線8bの熱電対素線9と熱電
対素線10を非導電性の絶縁物11で覆ってあるので、
漏電を防止し、先端の短絡部14の高温度域の直接的な
測定により、大きな起電力を正確に測定できる。更に、
熱電対線8bを銅板1に穿った半円孔28aと半円孔2
8bの合わせ部にろう材15で一体に固定してあるの
で、浸水や熱電対線8bの脱落による測定の誤差を防止
できる。特に、前述の銅板1の表面あるいは銅板1の表
面に設けた被覆層1aは鋳造により、磨耗や削りを受け
るために、再使用する場合には、この被覆層1aを含む
銅板1の表面の研削を行なって熱電対線8bの熱電対素
線9と熱電対素線10の先端部9aと10aを再度露出
させ、同様に短絡部14を形成し、この短絡部14を覆
う被覆層1aを施す。これにより銅板1と熱電対線8b
を繰り返し使用して、温度の測定を行うことができる。
Since the thermocouple wires 9 and 10 of the thermocouple wire 8b are covered with a non-conductive insulator 11,
Electric leakage can be prevented, and a large electromotive force can be accurately measured by directly measuring the high temperature region of the short-circuit portion 14 at the tip. Furthermore,
A semi-circular hole 28a and a semi-circular hole 2 in which a thermocouple wire 8b is formed in the copper plate 1
Since the brazing material 15 is integrally fixed to the mating portion of the thermocouple wire 8b, it is possible to prevent a measurement error due to flooding or dropping of the thermocouple wire 8b. In particular, since the surface of the copper plate 1 or the coating layer 1a provided on the surface of the copper plate 1 is subject to abrasion and shaving by casting, when reused, the surface of the copper plate 1 including the coating layer 1a is ground. To expose the thermocouple wire 9 of the thermocouple wire 8b and the tip portions 9a and 10a of the thermocouple wire 10 again to form a short-circuit portion 14, and apply a coating layer 1a covering the short-circuit portion 14. . Thereby, the copper plate 1 and the thermocouple wire 8b
Can be used repeatedly to measure the temperature.

【0028】なお、本発明の実施の形態に係る連続鋳造
用鋳型について説明したが、銅板1に埋設する熱電対線
としては、図3あるいは図4、図5(A)あるいは図5
(B)に記載された構成のいずれか、又はこれ等を組み
合わせて用いてもよく、熱電対線の埋設においても3段
以上の多段あるいは千鳥状等に行なうことができ、その
埋設本数も多数本で構成することができる。また、鋳型
の長片3a、(3b)に熱電対線8a〜8h、8a′〜
8h′、8a″〜8h″を埋設したが、鋳型の短片3
c、3dにも適用でき、本発明の要旨を逸脱しない範囲
を含むものである。
Although the continuous casting mold according to the embodiment of the present invention has been described, the thermocouple wire embedded in the copper plate 1 is shown in FIG. 3 or FIG. 4, FIG.
Any of the configurations described in (B) or a combination thereof may be used, and the thermocouple wires may be buried in three or more stages or in a staggered manner, and the number of buried thermocouple wires is large. It can be composed of books. In addition, thermocouple wires 8a to 8h, 8a 'to
8h ', 8a "to 8h" were buried, but the short piece 3
c and 3d, and includes a range that does not deviate from the gist of the present invention.

【0029】[0029]

【発明の効果】請求項1〜5記載の連続鋳造用鋳型は、
鋳造側となる銅板の表面に被覆層を設け、反鋳造側に水
冷箱を備えた連続鋳造用鋳型において、前記鋳造側とな
る銅板内に絶縁された熱電対線の先端部を露出して埋設
し、その先端部を導電金属で短絡してあるので、溶鋼の
湯面レベルや凝固殻の形成及びブレークアウトを最も近
似する銅板表面で測定し、その現象を正確に温度変化と
して検出できる。この銅板表面の温度測定から把握され
る溶鋼の溢れやブレークアウトを予測できるので、鋳造
量の制御あるいは鋳造速度を早期に調整することにより
鋳造事故や品質の低下を事前に防止できる。また、鋳造
より磨耗や削りを受けた銅板の表面を研削し、再度露出
させた熱電対線の先端の短絡と被覆層の形成により再使
用を簡単に行うことができる。
The continuous casting mold according to claims 1 to 5,
A coating layer is provided on the surface of the copper plate on the casting side, and in a continuous casting mold having a water cooling box on the opposite casting side, the tip of the insulated thermocouple wire is exposed and embedded in the copper plate on the casting side. However, since the tip is short-circuited with a conductive metal, it can be measured on the copper plate surface that most closely approximates the level of the molten steel surface and the formation and breakout of the solidified shell, and the phenomenon can be accurately detected as a temperature change. Since overflow or breakout of molten steel can be predicted from the temperature measurement of the copper plate surface, casting accidents and deterioration in quality can be prevented in advance by controlling the casting amount or adjusting the casting speed early. In addition, the surface of the copper plate which has been worn or shaved by casting is ground, and the reuse can be easily performed by short-circuiting the tip of the thermocouple wire exposed again and forming the coating layer.

【0030】特に、請求項2記載の連続鋳造用鋳型は、
絶縁された熱電対線を、前記銅板に穿つた孔に挿入し、
且つ絶縁された熱電対線と銅板とをろう材で接合してあ
るので、熱電対線の先端への浸水が防止され、熱電対線
の取付け強度が向上して、銅板表面の温度の測定精度の
向上と熱電対線の断線等による測定不能を防止できる。
[0030] In particular, the continuous casting mold according to claim 2 is
Insert an insulated thermocouple wire into the hole drilled in the copper plate,
In addition, since the insulated thermocouple wire and the copper plate are joined by brazing material, water infiltration at the tip of the thermocouple wire is prevented, the mounting strength of the thermocouple wire is improved, and the temperature measurement accuracy of the copper plate surface is improved. And it is possible to prevent measurement failure due to breakage of the thermocouple wire or the like.

【0031】また、請求項3記載の連続鋳造用鋳型は、
熱電対線が金属シースに嵌装されているので、金属シー
スにより熱電対線の全体の強度が向上でき、曲げ加工性
を施した銅板への取付けが可能となり、しかも、熱電対
線の全体の強度が向上できることから熱電対線の断線等
による測定不能が確実に防止できる。
The continuous casting mold according to claim 3 is
Since the thermocouple wire is fitted in the metal sheath, the overall strength of the thermocouple wire can be improved by the metal sheath, and the thermocouple wire can be attached to a copper plate with bendability. Since the strength can be improved, measurement failure due to breakage of the thermocouple wire or the like can be reliably prevented.

【0032】請求項4記載の連続鋳造用鋳型は、熱電対
線の一つの熱電対素線を鋳型の銅板に接続されたアース
線にしてあるので、熱電対線の線径を小さくでき、銅板
への熱電対線の埋設本数を増加でき、しかも、熱電対線
の埋設による銅板の強度の低下を防止できる。更に、銅
板への熱電対線の埋設により溶鋼の湯面レベルや凝固殻
の形成及びブレークアウト等をより正確に検出できる。
In the continuous casting mold according to the present invention, since one thermocouple wire of the thermocouple wire is a ground wire connected to the copper plate of the mold, the wire diameter of the thermocouple wire can be reduced, and The number of thermocouple wires embedded in the copper plate can be increased, and the strength of the copper plate can be prevented from lowering due to the embedding of the thermocouple wires. Further, by embedding the thermocouple wire in the copper plate, the level of the molten steel surface, the formation of a solidified shell, breakout, and the like can be detected more accurately.

【0033】請求項5記載の連続鋳造用鋳型は、熱電対
線が分割された二つの銅柱片の合わせ面に埋設されて熱
電対線ユニットを形成し、前記溶鋼の鋳造側となる銅板
の表面に一体に埋め込んであるので、熱電対線ユニット
を事前に作成して銅板の表面に嵌め込むことで、簡単に
多数の熱電対線を取付けることができる。また、銅板に
固定した熱電対線の浸水による測定温度の誤差の発生や
熱電対線取付け部の洩水の問題がなく、測定精度の向上
が達成できる。
According to a fifth aspect of the present invention, there is provided a continuous casting mold for forming a thermocouple wire unit by embedding a thermocouple wire in a mating surface of two divided copper column pieces, and forming a thermocouple wire unit on the casting side of the molten steel. Since the thermocouple wire unit is integrally embedded in the surface, a large number of thermocouple wires can be easily attached by preparing the thermocouple wire unit in advance and fitting the thermocouple wire unit on the surface of the copper plate. In addition, there is no problem of an error in the measurement temperature due to the infiltration of the thermocouple wire fixed to the copper plate, and there is no problem of water leakage at the thermocouple wire attachment portion, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態に係る連続鋳造用鋳
型の全体の概略を示す平面図である。
FIG. 1 is a plan view schematically showing an entire continuous casting mold according to a first embodiment of the present invention.

【図2】図1におけるB−B断面図である。FIG. 2 is a sectional view taken along line BB in FIG.

【図3】図2における熱電対線の埋設部の部分拡大図で
ある。
FIG. 3 is a partially enlarged view of an embedded portion of a thermocouple wire in FIG. 2;

【図4】同熱電対線を金属シースに嵌装した場合の熱電
対線の埋設部の部分拡大図である。
FIG. 4 is a partially enlarged view of an embedded portion of the thermocouple wire when the thermocouple wire is fitted in a metal sheath.

【図5】(A)は本発明の第2の実施の形態に係る連続
鋳造用鋳型の熱電対線の埋設部の部分拡大図である。
(B)は同熱電対線を金属シースに嵌装した場合の熱電
対線の埋設部の部分拡大図である。
FIG. 5A is a partially enlarged view of a buried portion of a thermocouple wire of a continuous casting mold according to a second embodiment of the present invention.
(B) is a partial enlarged view of a buried portion of the thermocouple wire when the thermocouple wire is fitted in a metal sheath.

【図6】本発明の第3の実施の形態に係る連続鋳造用鋳
型において、鋳造側の銅板の表面に熱電対線ユニットを
埋め込んだ場合の全体斜視図である。
FIG. 6 is an overall perspective view of a continuous casting mold according to a third embodiment of the present invention in which a thermocouple unit is embedded in a surface of a copper plate on a casting side.

【図7】同熱電対線の埋設部の部分拡大図である。FIG. 7 is a partially enlarged view of a buried portion of the thermocouple wire.

【図8】同熱電対線ユニットを構成する全体斜視図であ
る。
FIG. 8 is an overall perspective view of the thermocouple unit.

【図9】同熱電対線ユニットを三角柱片で構成する場合
の全体斜視図である。
FIG. 9 is an overall perspective view when the thermocouple unit is constituted by triangular prism pieces.

【符号の説明】[Explanation of symbols]

A 連続鋳造用鋳型 1 銅板 1a 被覆層 2 水冷箱 3a 鋳型長片 3b 鋳型長片 3c 鋳型短片 3d 鋳型短片 4 冷却水供給管 5 冷却水の流
路 6 冷却水の流路 7 排出口 8a 熱電対線 8b 熱電対線 8c 熱電対線 8d 熱電対線 8e 熱電対線 8f 熱電対線 8g 熱電対線 8h 熱電対線 8b′ 熱電対線 8b″ 熱電対
線 8f′ 熱電対線 8f″ 熱電対
線 9 熱電対素線 10 熱電対素
線 9a 先端部 10a 先端部 11 絶縁物 11a 絶縁層 12、13 孔 14、14a
短絡部 15 ろう材 16 オーリン
グ 17 フランジ 18 温度指示
計 19 テーパー孔 20 金属シー
ス 21 溶鋼 22 凝固殻 23 アース線 24 アース線
孔 25 シールパッキン 26 熱電対線
ユニット 27a 銅柱片 27b 銅柱片 28a 半円孔 28b 半円孔 29 周縁 30a 三角形
の銅柱片 30b 三角形の銅柱片
A Continuous casting mold 1 Copper plate 1a Coating layer 2 Water cooling box 3a Mold long piece 3b Mold long piece 3c Mold short piece 3d Mold short piece 4 Cooling water supply pipe 5 Cooling water flow path 6 Cooling water flow path 7 Outlet 8a Thermocouple Wire 8b Thermocouple wire 8c Thermocouple wire 8d Thermocouple wire 8e Thermocouple wire 8f Thermocouple wire 8g Thermocouple wire 8h Thermocouple wire 8b 'Thermocouple wire 8b "Thermocouple wire 8f' Thermocouple wire 8f" Thermocouple wire 9 Thermocouple wire 10 Thermocouple wire 9a Tip 10a Tip 11 Insulator 11a Insulating layer 12,13 Hole 14,14a
Short-circuit part 15 Brazing material 16 O-ring 17 Flange 18 Temperature indicator 19 Taper hole 20 Metal sheath 21 Molten steel 22 Solidified shell 23 Earth wire 24 Earth wire hole 25 Seal packing 26 Thermocouple wire unit 27a Copper column piece 27b Copper column piece 28a Half Circular hole 28b Semicircular hole 29 Peripheral edge 30a Triangular copper column piece 30b Triangular copper column piece

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋳造側となる銅板の表面に被覆層を設
け、前記銅板の反鋳造側に水冷箱を備えた連続鋳造用鋳
型において、 前記鋳造側となる銅板内に絶縁された熱電対線を埋設
し、露出した該熱電対線の先端を前記銅板の表面に露出
させると共に、前記熱電対線の先端部を導電金属で短絡
したことを特徴とする連続鋳造用鋳型。
1. A continuous casting mold provided with a coating layer on a surface of a copper plate on the casting side and a water cooling box on a side opposite to the casting side of the copper plate, wherein a thermocouple wire insulated in the copper plate on the casting side is provided. Wherein the exposed end of the thermocouple wire is exposed on the surface of the copper plate, and the end of the thermocouple wire is short-circuited with a conductive metal.
【請求項2】 前記絶縁された熱電対線は、前記銅板に
ろう材で接合されていることを特徴とする請求項1記載
の連続鋳造用鋳型。
2. The continuous casting mold according to claim 1, wherein the insulated thermocouple wire is joined to the copper plate with a brazing material.
【請求項3】 前記絶縁された熱電対線が金属シースの
中に嵌装されていることを特徴とする請求項1又は2記
載の連続鋳造用鋳型。
3. The continuous casting mold according to claim 1, wherein the insulated thermocouple wire is fitted in a metal sheath.
【請求項4】 前記熱電対線の一つの熱電対素線が、前
記銅板に接続されたアース線からなることを特徴とする
請求項1〜3のいずれか1項に記載の連続鋳造用鋳型。
4. The continuous casting mold according to claim 1, wherein one of the thermocouple wires is a ground wire connected to the copper plate. .
【請求項5】 前記熱電対線が分割された二つの銅柱片
の合わせ面に埋設された熱電対線ユニットであることを
特徴とする請求項1〜4のいずれか1項に記載の連続鋳
造用鋳型。
5. The continuity according to claim 1, wherein the thermocouple wire is a thermocouple wire unit embedded in a mating surface of two divided copper pillar pieces. Casting mold.
JP15044897A 1997-05-22 1997-05-22 Mold for continuous casting Withdrawn JPH10314909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15044897A JPH10314909A (en) 1997-05-22 1997-05-22 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15044897A JPH10314909A (en) 1997-05-22 1997-05-22 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH10314909A true JPH10314909A (en) 1998-12-02

Family

ID=15497162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15044897A Withdrawn JPH10314909A (en) 1997-05-22 1997-05-22 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH10314909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110018A (en) * 2022-06-22 2022-09-27 武汉钢铁有限公司 Preparation method of coating for crystallizer copper plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110018A (en) * 2022-06-22 2022-09-27 武汉钢铁有限公司 Preparation method of coating for crystallizer copper plate
CN115110018B (en) * 2022-06-22 2023-11-10 武汉钢铁有限公司 Preparation method of coating for crystallizer copper plate

Similar Documents

Publication Publication Date Title
US4245500A (en) Sensor for determining heat flux through a solid medium
KR101398485B1 (en) Temperature measurement tube
PL76636B1 (en)
US4995733A (en) Measurement sensor for the detection of temperatures in metal or alloy melts
JPH10314909A (en) Mold for continuous casting
JPH1190599A (en) Method for judging abnormality in mold for continuous casting
US5184894A (en) Method of using an immersible air cooled thermocouple
US5104234A (en) Air cooled thermocouple lance
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
JP3617294B2 (en) Mounting method of a sheathed thermocouple for measuring the temperature of a metal body
JP6367449B1 (en) Continuous casting mold
JPS59111022A (en) Device and method of making sure position of surface of liquid of metallic solution
JP5439531B2 (en) Continuous casting mold and manufacturing method thereof
JPH0242409B2 (en)
KR100687620B1 (en) Probe for molten sample adhesion prevention of stainless steel
JP3369926B2 (en) Auto start method for continuous casting
JPH06226413A (en) Method for measuring molten steel temperature in continuous casting
JP7539716B2 (en) Temperature measurement sensor module and temperature measurement system including the same
KR101546040B1 (en) Mold and measuring method for thickness
KR200161743Y1 (en) Measuring device for thickness mold powder of continuous casting
JP3069031B2 (en) Heat flux measuring device
CN107314827A (en) The method that thermocouple is installed on the inwall of the housing of elevated temperature vessel
JPS58176055A (en) Casting mold for continuous casting
Van der Perre Temperature measurement in liquid metal
JPS62203642A (en) Mold for continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803