JPH10313501A - Grounding circuit for electric car - Google Patents

Grounding circuit for electric car

Info

Publication number
JPH10313501A
JPH10313501A JP9134501A JP13450197A JPH10313501A JP H10313501 A JPH10313501 A JP H10313501A JP 9134501 A JP9134501 A JP 9134501A JP 13450197 A JP13450197 A JP 13450197A JP H10313501 A JPH10313501 A JP H10313501A
Authority
JP
Japan
Prior art keywords
circuit
current collector
electric vehicle
vehicle body
grounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9134501A
Other languages
Japanese (ja)
Other versions
JP3536142B2 (en
Inventor
Takashi Kaneko
貴志 金子
Satoru Horie
堀江  哲
Ken Ito
謙 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13450197A priority Critical patent/JP3536142B2/en
Publication of JPH10313501A publication Critical patent/JPH10313501A/en
Application granted granted Critical
Publication of JP3536142B2 publication Critical patent/JP3536142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grounding circuit for an electric car with almost no trouble of induction at any time, regardless of connection structure between a car body and a chassis such as pressure/absence of measures against electric erosion. SOLUTION: A grounding brush 7 and a car body 9 are connected with a resistor 14. A harmonic current generated by switching an inverter 4 is carried from the inverter circuit 4 to a path made up of a motor wire 11, a floating capacity 12 of the motor, a motor frame 16, an equalizer 17, a grounding brush 7, a resistor 14, the body 9, a body ground 3, an inverter box 22, a box ground 10, and a grounding switch 6. Thus, the harmonic current is not passed to a main circuit wire 13. A variation in potential of the body 9 caused by a voltage drop in wiring inductance 18 related with the harmonic current can be reduced, so that trouble of induction on a train wireless apparatus or a signal apparatus can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体を用いた制
御装置を備えた電気車両の接地回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground circuit for an electric vehicle provided with a control device using a semiconductor.

【0002】[0002]

【従来の技術】従来、電気車の接地回路として、特開昭
62−213501号公報に記載の接地回路が広く知ら
れている。この接地回路は、インバータ等の制御器箱と
負極の集電装置を車体接地することにより、半導体素子
のスイチッングによる高調波電流を制御器箱近傍に集中
し、列車無線装置や信号機器等に及ぼす誘導障害を防止
する。図3は、集電装置1よりスイッチ2を介して電力
を受け、インバータ4のスイッチングにより主電動機5
を駆動する制御装置を備えた、上記従来技術で構成した
インバータ制御電車の接地回路の例である。この回路で
は、主回路の帰線電流は、破線で示すように、インバ
ータ回路4、接地スイッチ6、主回路電線13からアー
スブラシ(負極の集電装置)7、車輪20、レール21
へと流れるのが通常である。しかし、台車装置8と車体
9の接続部分に特に絶縁処置を施さない限り、車輪20
は台車装置8を介して車体9と電気的に接続されている
ことになる。この結果、破線で示すように、インバー
タ回路4からの帰線電流の一部が接地スイッチ6、箱接
地10、インバータ箱22、車体接地3、車体9、台車
装置8、車輪20の経路で流れてしまう。ここで、主回
路からの帰線電流が台車装置8を通るために、例えば台
車の中心ピン(図示せず)等に電蝕が発生するという問
題が起きる。また、上記電蝕を防止するために、図4に
示すように、台車装置8と車体9の接続部分に絶縁処置
15を施す場合がある。この場合、台車装置8や車体9
の電蝕を防ぐことができるが、下記理由により、誘導障
害が発生する。図3におけるインバータ4のスイッチン
グによる高調波電流の経路を図5に示す。台車装置8と
車体9の接続部分に絶縁処置を施さない場合、破線で
示すように、高調波電流はインバータ回路4からモータ
線11、モータの浮遊容量12、モータフレーム16、
台車装置8、車体9、車体接地3、インバータ箱22、
箱接地10、接地スイッチ6の経路で流れる。これに対
し、台車装置8と車体9の間に絶縁処置15が施された
場合の高調波電流の経路を図6に示す。高調波電流は、
破線で示すように、インバータ回路4からモータ線1
1、モータの浮遊容量12、モータフレーム16、均圧
線17、アースブラシ7、主回路電線13、接地スイッ
チ6の経路で流れるようになる。この2つの電流経路
の交流インピーダンスを比較した場合、幅広の導体で
ある車体9よりも主回路電線13の方が著しく大きい。
このため、絶縁処置15を施し、インバータ4のスイッ
チングに伴う高調波電流が主回路電線13を流れると、
配線インダクタンス18で電圧降下が生じ、接地スイッ
チ6の電位即ち車体接地3を介して車体9の電位が変動
する。その結果、例えば列車無線装置の電源やアンテナ
からこの高調波の電圧変動を誘導するなどして、誘導障
害が発生する。
2. Description of the Related Art Conventionally, a grounding circuit described in Japanese Patent Application Laid-Open No. 62-213501 is widely known as a grounding circuit for an electric vehicle. This grounding circuit concentrates the harmonic current due to the switching of the semiconductor element in the vicinity of the controller box by grounding the controller box such as an inverter and the negative electrode current collector to the vehicle body, and has an effect on the train radio device and the signal device. Prevent induction disturbance. FIG. 3 shows that the power is received from the current collector 1 via the switch 2, and the main motor 5 is switched by the switching of the inverter 4.
1 is an example of a grounding circuit of an inverter-controlled train configured with the above-mentioned conventional technology, which is provided with a control device for driving the inverter. In this circuit, the return current of the main circuit is, as shown by the broken line, the inverter circuit 4, the grounding switch 6, the main circuit electric wire 13, the ground brush (negative current collector) 7, the wheel 20, the rail 21
It usually flows to However, unless the insulation between the bogie device 8 and the vehicle body 9 is particularly treated,
Is electrically connected to the vehicle body 9 via the bogie device 8. As a result, as shown by the broken line, a part of the retrace current from the inverter circuit 4 flows through the paths of the ground switch 6, the box ground 10, the inverter box 22, the vehicle body ground 3, the vehicle body 9, the bogie device 8, and the wheels 20. Would. Here, since the return current from the main circuit passes through the bogie device 8, there arises a problem that, for example, electrolytic corrosion occurs at a center pin (not shown) of the bogie. Further, in order to prevent the electrolytic corrosion, as shown in FIG. 4, an insulation treatment 15 may be applied to a connection portion between the bogie device 8 and the vehicle body 9. In this case, the bogie device 8 and the body 9
Can be prevented, but induction failure occurs for the following reasons. FIG. 5 shows the path of the harmonic current due to the switching of the inverter 4 in FIG. When the insulation treatment is not performed on the connecting portion between the bogie device 8 and the vehicle body 9, as indicated by the broken line, the harmonic current flows from the inverter circuit 4 to the motor wire 11, the motor floating capacity 12, the motor frame 16,
Bogie device 8, vehicle body 9, vehicle body ground 3, inverter box 22,
It flows through the path of the box ground 10 and the ground switch 6. On the other hand, FIG. 6 shows a path of a harmonic current when the insulation treatment 15 is performed between the bogie device 8 and the vehicle body 9. The harmonic current is
As shown by the broken line, the motor line 1
1. The floating capacity of the motor 12, the motor frame 16, the equalizing line 17, the ground brush 7, the main circuit wire 13, and the ground switch 6 flow. When comparing the AC impedances of the two current paths, the main circuit electric wire 13 is significantly larger than the body 9 which is a wide conductor.
Therefore, when the insulation treatment 15 is performed and a harmonic current accompanying the switching of the inverter 4 flows through the main circuit wire 13,
A voltage drop occurs in the wiring inductance 18, and the potential of the ground switch 6, that is, the potential of the vehicle body 9 via the vehicle body ground 3 fluctuates. As a result, for example, a voltage disturbance of this harmonic is induced from a power supply or an antenna of the train radio device, and an induction failure occurs.

【0003】[0003]

【発明が解決しようとする課題】このように、従来の接
地回路では、車体や台車に電蝕対策を施すと、誘導障害
が発生するという問題があった。本発明の課題は、電蝕
対策の有無等、車体と台車の接続構造に関係なく、如何
なる場合も誘導障害の少ない電気車両の接地回路を提供
することにある。
As described above, the conventional grounding circuit has a problem that an induction fault occurs when a countermeasure against electric corrosion is applied to a vehicle body or a bogie. It is an object of the present invention to provide a grounding circuit for an electric vehicle with less induction disturbance in any case regardless of the connection structure between the vehicle body and the bogie, such as whether or not there is a measure against electric corrosion.

【0004】[0004]

【課題を解決するための手段】上記課題は、半導体のス
イッチングに伴う高調波電流によって発生する車体の電
位変動を抑制するために、電気車の接地回路の交流イン
ピーダンスを低減する回路手段を具備することにより、
解決される。ここで、前記回路手段は、車体と負極の集
電装置の間に接続する。また、前記回路手段は、半導体
をスイッチング制御する制御装置と負極の集電装置を接
続し、集電装置からの帰線電流を流す主回路導体を平行
平板とする。
The object of the present invention is to provide circuit means for reducing the AC impedance of a ground circuit of an electric vehicle in order to suppress a potential fluctuation of a vehicle body caused by a harmonic current accompanying switching of a semiconductor. By doing
Will be resolved. Here, the circuit means is connected between the vehicle body and the negative electrode current collector. Further, the circuit means connects a control device for controlling the switching of the semiconductor to a negative current collector, and the main circuit conductor through which a retrace current from the current collector flows is a parallel flat plate.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は、本発明の第1の実施形態によ
る電気車両の接地回路を示す。本実施形態は、車体9と
台車装置8の接続部分に絶縁処置15を施してある場合
であり、車体9とアースブラシ7の間に抵抗14を接続
したことに特徴がある。他の主回路構成は、図3と同一
である。本実施形態では、車体9と台車装置8が電気的
に絶縁処置15されているため、インバータ回路4から
の帰線電流は台車装置8へは流れない。また、車体9か
らアースブラシ7の間に抵抗14が存在するため、イン
バータ回路4からの帰線電流は、破線に示すように、
抵抗14に比べて直流インピーダンスの小さい主回路電
線13を通り、車体9を通らない。主回路電流が車体
9、台車装置8を流れないため、これらの部分に電蝕は
発生しない。一方、インバータ4のスイッチングによる
高調波電流については、主回路電線13のインダクタン
ス18と車体9のインダクタンス19及び抵抗14によ
りその経路が決まる。ここで、高調波電流に対するイン
ピーダンスを計算する。主回路電線13の長さを10m
とし、単位長さ当たりのインダクタンスが1(μH/
m)であるとすれば、そのインダクタンスL13は、 L13≒10(μH) となる。抵抗分を無視すると、列車無線等に使われてい
る100kHz程度の周波数成分に対する主回路電線1
3のインピーダンスZ13は、 Z13≒2π×100×103×10×10~6≒6(Ω) となる。一方、車体9は幅広の板状導体とみなせること
から、配線インダクタンスが主回路電線13のそれより
1桁程度小さいものと考えられる。よって、ここでは車
体9の配線インダクタンスL9は、 L9≒1(μH) とする。抵抗14の抵抗値を1(Ω)に選んだとすれ
ば、車体9〜抵抗14のインピーダンスZ9+14は、 Z9+14≒√12+(2π×100×103×1×10~6)2
≒1.2(Ω) となる。即ち、本実施形態においては、破線に示すよ
うに、インバータ4のスイッチングによる高調波電流の
殆どが車体9を流れることになり、即ち、インバータ回
路4からモータ線11、モータの浮遊容量12、モータ
フレーム16、均圧線17、アースブラシ7、抵抗1
4、車体9、車体接地3、インバータ箱22、箱接地1
0、接地スイッチ6の経路で流れ、主回路電線13を通
らないため、配線インダクタンス18の電圧降下による
車体9の電位変動が起きない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a ground circuit of an electric vehicle according to a first embodiment of the present invention. The present embodiment is a case where an insulation treatment 15 is applied to a connection portion between the vehicle body 9 and the bogie device 8, and is characterized in that a resistor 14 is connected between the vehicle body 9 and the ground brush 7. The other main circuit configuration is the same as that of FIG. In this embodiment, since the vehicle body 9 and the bogie device 8 are electrically insulated 15, the retrace current from the inverter circuit 4 does not flow to the bogie device 8. Further, since the resistor 14 exists between the vehicle body 9 and the ground brush 7, the return current from the inverter circuit 4 becomes
It passes through the main circuit wire 13 having a smaller DC impedance than the resistor 14 and does not pass through the vehicle body 9. Since the main circuit current does not flow through the vehicle body 9 and the bogie device 8, no electrolytic corrosion occurs in these portions. On the other hand, the path of the harmonic current caused by the switching of the inverter 4 is determined by the inductance 18 of the main circuit wire 13 and the inductance 19 and the resistance 14 of the vehicle body 9. Here, the impedance with respect to the harmonic current is calculated. Main circuit wire 13 length 10m
And the inductance per unit length is 1 (μH /
if a m), the inductance L 13 is a L 13 ≒ 10 (μH). If the resistance component is ignored, the main circuit electric wire 1 for the frequency component of about 100 kHz used in train radios and the like
The impedance Z 13 of 3 is Z 13 ≒ 2π × 100 × 10 3 × 10 × 10 × 6 ~ 6 (Ω). On the other hand, since the vehicle body 9 can be regarded as a wide plate-shaped conductor, it is considered that the wiring inductance is about one digit smaller than that of the main circuit electric wire 13. Therefore, here, the wiring inductance L 9 of the vehicle body 9 is L 9 ≒ 1 (μH). If the resistance value of the resistor 14 is selected to be 1 (Ω), the impedance Z 9 + 14 of the vehicle body 9 to the resistor 14 becomes Z 9 + 14 ≒ √1 2 + (2π × 100 × 10 3 × 1 × 10 ~ 6 ) 2
≒ 1.2 (Ω). That is, in the present embodiment, as indicated by the broken line, most of the harmonic current due to the switching of the inverter 4 flows through the vehicle body 9, that is, the motor circuit 11, the stray capacitance 12 of the motor, the motor Frame 16, equalizing line 17, ground brush 7, resistor 1
4, vehicle body 9, vehicle body ground 3, inverter box 22, box ground 1
0, which flows on the path of the ground switch 6 and does not pass through the main circuit electric wire 13, so that the potential change of the vehicle body 9 due to the voltage drop of the wiring inductance 18 does not occur.

【0006】ここで、従来の接地回路と本実施形態の車
体9の電位変動を比較する。今、高調波電流の絶対値が
接地回路に関係なく、i(A)であるとすると、従来の
接地回路での電位変動Δv1は、 Δv1=i×Z13 本実施形態の接地回路での電位変動Δv2は、 Δv2=i×Z9+14 よって、 Δv2/Δv1=Z9+14/Z13=0.2 となり、本実施形態により、車体9の電位変動、即ち誘
導障害を20%程度に低減することができる。
Here, a comparison will be made between potential fluctuations of the conventional ground circuit and the vehicle body 9 of the present embodiment. Now, assuming that the absolute value of the harmonic current is i (A) regardless of the ground circuit, the potential fluctuation Δv 1 in the conventional ground circuit is Δv 1 = i × Z 13 In the ground circuit of the present embodiment, potential change Delta] v 2 of, Δv 2 = i × Z 9 + 14 Therefore, Δv 2 / Δv 1 = Z 9 + 14 / Z 13 = 0.2 , and the the present embodiment, the potential fluctuation of the vehicle body 9, i.e. induction Obstacles can be reduced to about 20%.

【0007】ここで、抵抗14をR14、主回路電線13
の抵抗分をR13とすると、 R13≪R14 の関係にあるので、主回路の帰線電流は、主回路電線1
3に流れ、抵抗14には流れない。よって、抵抗14は
小形のものでよく、台車装置8の内部又はその近傍に容
易に収納できる。あるいは、図7に示すように、絶縁端
子台23に抵抗14を直接取り付ければ、抵抗器の固定
や配線も簡易なもので済み、艤装上の問題もない。図7
は、車体9に取り付けられた既設の絶縁端子台23にア
ースブラシ、接地スイッチと接続する主回路電線13を
固定した構造を示す。
Here, the resistor 14 is set to R 14 and the main circuit electric wire 13
When the resistance component and R 13, since a relation of R 13 «R 14, the return current of the main circuit, the main circuit wire 1
3 and does not flow to the resistor 14. Therefore, the resistor 14 may be of a small size and can be easily housed inside the bogie device 8 or in the vicinity thereof. Alternatively, as shown in FIG. 7, if the resistor 14 is directly attached to the insulated terminal block 23, fixing and wiring of the resistor can be simplified, and there is no problem in fitting. FIG.
Shows a structure in which the main circuit wire 13 connected to the ground brush and the ground switch is fixed to the existing insulating terminal block 23 attached to the vehicle body 9.

【0008】図2は、本発明の第2の実施形態を示す。
本実施形態は、第1の実施形態に対し、車体9と台車装
置8との接続部分に絶縁処置を施していない場合であ
る。よって、この部分に電蝕が発生する可能性はある
が、第1の実施形態と同様、車体9とアースブラシ7の
間に抵抗14を接続する。図2のように、車体9と台車
装置8との接続部分に絶縁処置が施されていない場合、
この部分の電気的接触状態は車体の振動によって大きく
変動するため、走行中は車体9と台車装置8との接続部
分の接触抵抗が刻々と変化し、この部分が電気的に絶縁
されるタイミングが存在する。本実施形態によれば、こ
のようなモードでも抵抗14により車体9とアースブラ
シ7を接続しておくことにより、破線に示す経路で高
調波電流を確実に車体9に流すことができ、車体9の電
位変動を抑制できるため、誘導障害の発生を防止するこ
とができる。なお、図1、図2、図7の実施形態におい
て抵抗14は、電線の内部抵抗でも良い。
FIG. 2 shows a second embodiment of the present invention.
This embodiment is a case where the connecting portion between the vehicle body 9 and the bogie device 8 is not subjected to insulation treatment in the first embodiment. Therefore, although there is a possibility that electrolytic corrosion may occur in this portion, the resistor 14 is connected between the vehicle body 9 and the ground brush 7 as in the first embodiment. As shown in FIG. 2, when insulation treatment is not performed on a connection portion between the vehicle body 9 and the bogie device 8,
Since the electrical contact state of this portion greatly fluctuates due to the vibration of the vehicle body, the contact resistance of the connection portion between the vehicle body 9 and the bogie device 8 changes during traveling, and the timing at which this portion is electrically insulated is changed. Exists. According to the present embodiment, even in such a mode, by connecting the vehicle body 9 and the earth brush 7 by the resistor 14, the harmonic current can be reliably passed through the vehicle body 9 along the path shown by the broken line. Can suppress the fluctuation of the electric potential, so that the occurrence of the induction trouble can be prevented. In addition, in the embodiments of FIGS. 1, 2 and 7, the resistor 14 may be an internal resistance of the electric wire.

【0009】図8は、本発明の第3の実施形態を示す。
本実施形態は、接地スイッチ6からアースブラシ7の間
を平行平板24を用いて接続することに特徴がある。平
行平板24は主回路電線13に比べて交流インピーダン
スが小さいため、平行平板24を用いることにより、接
地回路の交流インピーダンスを低減することができる。
本実施形態では、高調波電流が同図中に破線で示すよ
うな経路、即ち、インバータ回路4から接地スイッチ
6、平行平板24、アースブラシ7、均圧線17、モー
タフレーム16、モータの浮遊容量12、モータ線11
の経路で流れても、平行平板24での電圧降下が図6の
主回路電線13の場合よりも小さくなるので、車体9の
電位変動を抑制でき、誘導障害の発生を防止できる。な
お、本実施形態は、台車装置8と車体9の接続部分に絶
縁処置15を施した場合について説明したが、図5の台
車装置8と車体9の接続部分に絶縁処置15を施さない
場合についても同様に適用できる。
FIG. 8 shows a third embodiment of the present invention.
The present embodiment is characterized in that the ground switch 6 and the ground brush 7 are connected using a parallel plate 24. Since the parallel plate 24 has a smaller AC impedance than the main circuit wire 13, the use of the parallel plate 24 can reduce the AC impedance of the ground circuit.
In the present embodiment, the path of the harmonic current as indicated by the broken line in the figure, that is, the path from the inverter circuit 4 to the ground switch 6, parallel plate 24, ground brush 7, equalizing line 17, motor frame 16, motor floating Capacity 12, motor wire 11
6, the voltage drop in the parallel flat plate 24 is smaller than that in the case of the main circuit wire 13 in FIG. 6, so that the potential fluctuation of the vehicle body 9 can be suppressed, and the occurrence of an induction failure can be prevented. In the present embodiment, the case where the insulation treatment 15 is applied to the connection portion between the bogie device 8 and the vehicle body 9 is described. However, the case where the insulation treatment 15 is not applied to the connection portion between the bogie device 8 and the vehicle body 9 in FIG. Can be similarly applied.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
接地回路の交流インピーダンスにおける、高調波電流に
よる電圧降下を低減し、車体の電位変動を抑制するの
で、半導体のスイッチングによって発生する高調波電流
による無線装置や信号機器への誘導障害を抑制すること
ができる。また、本発明によれば、アースブラシと車体
の間に抵抗体を接続するのみであるので、抵抗器の固定
や配線が簡易であり、安価に高調波電流による無線装置
や信号機器への誘導障害を抑制することができる。
As described above, according to the present invention,
Since the voltage drop due to the harmonic current in the AC impedance of the grounding circuit is reduced and the potential fluctuation of the vehicle body is suppressed, it is possible to suppress the induction trouble to the wireless device and the signal device due to the harmonic current generated by the switching of the semiconductor. it can. Further, according to the present invention, since only the resistor is connected between the ground brush and the vehicle body, the fixing and wiring of the resistor are simple, and the induction of the harmonic current into the wireless device or the signal device is inexpensive. Obstacles can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態による電気車両の接地
回路
FIG. 1 is a diagram showing a ground circuit of an electric vehicle according to a first embodiment of the present invention;

【図2】本発明の第2の実施形態FIG. 2 shows a second embodiment of the present invention.

【図3】車体と台車を絶縁していない車両における従来
技術の接地回路
FIG. 3 shows a prior art ground circuit in a vehicle in which the car body and the bogie are not insulated.

【図4】車体と台車を絶縁している車両における従来技
術の接地回路
FIG. 4 shows a prior art grounding circuit in a vehicle insulating a car body and a bogie.

【図5】図3における高調波電流の経路を示す図FIG. 5 is a diagram showing a path of a harmonic current in FIG. 3;

【図6】図4における高調波電流の経路を示す図FIG. 6 is a diagram showing a path of a harmonic current in FIG. 4;

【図7】本発明の具体的な実現例を示す図FIG. 7 is a diagram showing a specific example of realization of the present invention.

【図8】本発明の第3の実施形態FIG. 8 shows a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…集電装置,2…スイッチ,3…車体接地,4…イン
バータ回路,5…モータ,6…接地スイッチ,7…アー
スブラシ,8…台車装置,9…車体,10…箱接地,1
1…モータ線,12…モータの浮遊容量,13…主回路
電線,14…抵抗,15…絶縁処置,16…モータフレ
ーム,17…均圧線,18…主回路電線の配線インダク
タンス,19…車体の配線インダクタンス,20…車
輪,21…レール,22…インバータ箱,23…絶縁端
子台,24…平行平板
DESCRIPTION OF SYMBOLS 1 ... Current collector, 2 ... Switch, 3 ... Body ground, 4 ... Inverter circuit, 5 ... Motor, 6 ... Ground switch, 7 ... Ground brush, 8 ... Bogie device, 9 ... Body, 10 ... Box ground, 1
DESCRIPTION OF SYMBOLS 1 ... Motor wire, 12 ... Motor floating capacity, 13 ... Main circuit electric wire, 14 ... Resistance, 15 ... Insulation treatment, 16 ... Motor frame, 17 ... Equalizing wire, 18 ... Wiring inductance of main circuit electric wire, 19 ... Car body Wiring inductance, 20 wheels, 21 rails, 22 inverter box, 23 insulating terminal block, 24 parallel plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 集電装置より電力を受け、半導体のスイ
ッチングにより主電動機を駆動する制御装置を備えた電
気車両の接地回路において、前記制御装置と負極の集電
装置との間の交流インピーダンスを低減するための回路
手段を具備することを特徴とする電気車両の接地回路。
1. A grounding circuit for an electric vehicle having a control device that receives power from a current collector and drives a main motor by switching a semiconductor, wherein an AC impedance between the control device and a negative current collector is determined. A grounding circuit for an electric vehicle, comprising a circuit means for reducing the electric power.
【請求項2】 請求項1において、前記回路手段は、前
記電気車両の車体と前記負極の集電装置の間に接続する
ことを特徴とする電気車両の接地回路。
2. The grounding circuit for an electric vehicle according to claim 1, wherein said circuit means is connected between a vehicle body of said electric vehicle and said negative electrode current collector.
【請求項3】 請求項1において、前記回路手段は、前
記制御装置と負極の集電装置を接続し、前記集電装置か
らの帰線電流を流す主回路導体を平行平板とすることを
特徴とする電気車両の接地回路。
3. The circuit device according to claim 1, wherein the circuit means connects the control device and a negative current collector, and a main circuit conductor through which a retrace current from the current collector flows is a parallel flat plate. Grounding circuit for an electric vehicle.
【請求項4】 集電装置より電力を受け、半導体のスイ
ッチングにより主電動機を駆動する制御装置を備えた電
気車両の接地回路において、前記半導体のスイッチング
によって発生する高調波電流を前記制御装置、前記主電
動機、負極の集電装置、前記負極の集電装置に接続した
抵抗体、前記抵抗体と接続した前記電気車両の車体から
なる経路を通して流すことを特徴とする電気車両の接地
回路。
4. A grounding circuit for an electric vehicle including a control device that receives power from a current collector and drives a main motor by switching a semiconductor, wherein a harmonic current generated by the switching of the semiconductor is controlled by the control device, A grounding circuit for an electric vehicle, wherein the current flows through a path including a main motor, a negative electrode current collector, a resistor connected to the negative electrode current collector, and a body of the electric vehicle connected to the resistor.
【請求項5】 集電装置より電力を受け、半導体のスイ
ッチングにより主電動機を駆動する制御装置を備えた電
気車両の接地回路において、前記半導体のスイッチング
によって発生する高調波電流を前記制御装置、前記集電
装置からの帰線電流を流す平行平板の主回路導体、負極
の集電装置、前記主電動機からなる経路を通して流すこ
とを特徴とする電気車両の接地回路。
5. A grounding circuit for an electric vehicle having a control device that receives power from a current collector and drives a main motor by switching a semiconductor, wherein a harmonic current generated by the switching of the semiconductor is controlled by the control device, A grounding circuit for an electric vehicle, wherein a return current from a current collector is passed through a path including a parallel plate main circuit conductor, a negative electrode current collector, and the main motor.
JP13450197A 1997-05-09 1997-05-09 Electric vehicle ground circuit Expired - Fee Related JP3536142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13450197A JP3536142B2 (en) 1997-05-09 1997-05-09 Electric vehicle ground circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13450197A JP3536142B2 (en) 1997-05-09 1997-05-09 Electric vehicle ground circuit

Publications (2)

Publication Number Publication Date
JPH10313501A true JPH10313501A (en) 1998-11-24
JP3536142B2 JP3536142B2 (en) 2004-06-07

Family

ID=15129809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13450197A Expired - Fee Related JP3536142B2 (en) 1997-05-09 1997-05-09 Electric vehicle ground circuit

Country Status (1)

Country Link
JP (1) JP3536142B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317626B2 (en) 2003-09-09 2008-01-08 Hitachi, Ltd. Power converter
WO2010122692A1 (en) * 2009-04-23 2010-10-28 株式会社 東芝 Electric vehicle control device
KR200454627Y1 (en) 2011-06-24 2011-07-14 이성열 Rail potential reduction device
JP2011166968A (en) * 2010-02-10 2011-08-25 Toshiba Corp Measure against inductive interference in vehicular power converter
CN108688471A (en) * 2018-04-13 2018-10-23 无锡市东鹏金属制品有限公司 High ferro dynamical system is grounded reflux
EP3785977A1 (en) * 2019-08-30 2021-03-03 Hitachi, Ltd. Railway vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317626B2 (en) 2003-09-09 2008-01-08 Hitachi, Ltd. Power converter
US7643323B2 (en) 2003-09-09 2010-01-05 Hitachi, Ltd. Power converter
WO2010122692A1 (en) * 2009-04-23 2010-10-28 株式会社 東芝 Electric vehicle control device
JP2010259202A (en) * 2009-04-23 2010-11-11 Toshiba Corp Electric vehicle controller
CN102405149A (en) * 2009-04-23 2012-04-04 株式会社东芝 Electric vehicle control device
KR101297766B1 (en) * 2009-04-23 2013-08-20 가부시끼가이샤 도시바 Electric motor car control system
US8648554B2 (en) 2009-04-23 2014-02-11 Kabushiki Kaisha Toshiba Electric motor car control system
JP2011166968A (en) * 2010-02-10 2011-08-25 Toshiba Corp Measure against inductive interference in vehicular power converter
KR200454627Y1 (en) 2011-06-24 2011-07-14 이성열 Rail potential reduction device
CN108688471A (en) * 2018-04-13 2018-10-23 无锡市东鹏金属制品有限公司 High ferro dynamical system is grounded reflux
EP3785977A1 (en) * 2019-08-30 2021-03-03 Hitachi, Ltd. Railway vehicle
JP2021036742A (en) * 2019-08-30 2021-03-04 株式会社日立製作所 Railway vehicle

Also Published As

Publication number Publication date
JP3536142B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
US20200186051A1 (en) Electric vehicle, car charger for electric vehicle, and control method thereof
US20170016959A1 (en) Monitoring system for detecting occurrence of leakage current and/or relay short-circuit condition in an electrical system
JP3648123B2 (en) Inverter system grounding structure
JP3536142B2 (en) Electric vehicle ground circuit
JP5601851B2 (en) Measures for inductive obstacles in power converters for vehicles
US20200313724A1 (en) Communication apparatus
US5021725A (en) Circuit arrangement for preventing inductive interference in an electric car
JP2012117929A (en) Voltage detection device
US20160226284A1 (en) Method and apparatus for electrically charging a high-voltage battery from an ac power supply system
JP3243720B2 (en) Circuit device for reducing power switch capacitance
JP2004245600A (en) Insulation resistance detection device
US20230089289A1 (en) Electric circuit structure for an alternating heating and capacitive measuring mode, and associated method
CN208299681U (en) A kind of filter circuit, electric machine controller and automobile
JP3730137B2 (en) Power converter
WO2022016702A1 (en) Electric vehicle ground control system and vehicle approaching control method thereof
US4792703A (en) Earthed circuit for an electric railway car
JP3873208B2 (en) Power converter for vehicle
JP3972343B2 (en) Power converter for vehicle
US4062294A (en) Model railway power supply
JP3972146B2 (en) Power converter
JP2002136153A (en) Power converter
JP2007089395A (en) Electric power conversion system for vehicle
JPH11355910A (en) Power converting device for electric car
CN219938234U (en) EMC optimization circuit of 24V three-phase fan

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees