JPH10312795A - Electrode for battery and battery with it - Google Patents

Electrode for battery and battery with it

Info

Publication number
JPH10312795A
JPH10312795A JP9160357A JP16035797A JPH10312795A JP H10312795 A JPH10312795 A JP H10312795A JP 9160357 A JP9160357 A JP 9160357A JP 16035797 A JP16035797 A JP 16035797A JP H10312795 A JPH10312795 A JP H10312795A
Authority
JP
Japan
Prior art keywords
electrode
metal
active material
battery
metal active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9160357A
Other languages
Japanese (ja)
Inventor
Yoji Hirai
洋司 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEIYOU SHOJI KK
Original Assignee
HEIYOU SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEIYOU SHOJI KK filed Critical HEIYOU SHOJI KK
Priority to JP9160357A priority Critical patent/JPH10312795A/en
Publication of JPH10312795A publication Critical patent/JPH10312795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the holding force of a metal active material, accelerate the electrochemical reaction of the active material and an electrolyte, reduce the internal resistance of a battery, and allow a quick charge/discharge by kneading the metal active material into the fibered metal of a fine wire-like random-orientation aggregate, and forming a plate-like body with the prescribed thickness. SOLUTION: This electrode 1 is provided with a fibered metal 3 and a metal active material 4, and the fibered metal 3 is formed as a fine wire-like random- orientation aggregate. Lead is gelatinized by dilute sulfuric acid as the metal active material 4 for a negative electrode, for example, and it is kneaded between the constituting metal fibers of the fibered metal 3 under pressure. The metal active material 4 entering complicated intervals can be firmly held by the complex shape of the fibered metal of the random-orientation aggregate constituting the electrode 1 and mutual entangling. When powdery activated carbon is mixed in the metal active material 4 constituting the electrode 1, the surface area is increased, the electrochemical reaction of the metal active material 4 and an electrolyte is accelerated, and a quick charging/discharing can be made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池用電極
(以下単に「電極」と略称する)及びそれを用いた電池
の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a secondary battery (hereinafter, simply referred to as "electrode") and an improvement of a battery using the same.

【0002】[0002]

【従来の技術】従来例えば図4に示すように、電極17
として鉛/アンチモン又は鉛/カルシウム合金等製の金
属鋳造格子形状又は網目格子形状の集電体7に金属活物
質16として鉛を担持しているが、金属活物質16の鉛
は反応表面積を広く求め且つ電解液の通過を良くして反
応効率を高める為に海綿粒状の多孔性構造とされてい
る。又、活性炭を用いた例として、例えばリチューム電
池で負電極にリチューム合金を用い、正電極に繊維間に
正極活物質を充填し圧縮成型した活性炭素繊維布を用い
たものがある(特開昭62−226561号公報記
載)。
2. Description of the Related Art Conventionally, as shown in FIG.
As a metal active material 16, lead is supported on a current collector 7 in the form of a metal casting lattice or a mesh lattice made of lead / antimony or a lead / calcium alloy, but the lead of the metal active material 16 has a large reaction surface area. In order to improve the reaction efficiency by improving the passage of the electrolyte solution, the porous structure is spongy granular. Further, as an example using activated carbon, for example, a lithium battery using a lithium alloy for a negative electrode, a positive electrode filled with a positive electrode active material between fibers and compression molding using an activated carbon fiber cloth is disclosed in No. 62-226561).

【0003】[0003]

【発明が解決しようとする課題】従来の鋳造格子形状か
らなる電極は、鋳造製法による格子形状が単純な為、海
綿粒状の鉛活物質の担持力が不足し海綿粒状鉛活物質の
脱落が発生することがある。又鉛活物質の海綿状細孔構
造では電気化学反応を満たすための機能が不足し、より
充電時間の短縮が求められていた。又、正極活物質を充
填し圧縮成型した活性炭素繊維布を用いた電池は、特性
がコンデンサ的であり、電池としての容量が小さいとい
う制約があった。本発明は、金属活物質担持力を強化
し、活物質と電解液の電気化学反応を加速し、電池内部
抵抗を低減するとともに急速充放電を可能にする電極と
それを用いた電池を得ることを目的とする。
In the conventional electrode having a cast grid shape, since the grid shape obtained by the casting method is simple, the supporting force of the sponge granular lead active material is insufficient and the sponge granular lead active material falls off. May be. In addition, the spongy pore structure of the lead active material lacks a function for satisfying the electrochemical reaction, and a shorter charging time has been required. In addition, a battery using an activated carbon fiber cloth which is filled with a positive electrode active material and compression-molded has characteristics such as characteristics of a capacitor and a small capacity as a battery. An object of the present invention is to obtain an electrode that enhances the metal active material supporting force, accelerates an electrochemical reaction between an active material and an electrolyte, reduces internal resistance of a battery, and enables rapid charging and discharging, and a battery using the same. With the goal.

【0004】[0004]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明にあっては、細線状でランダム配向
集合体の繊維状金属間に金属活物質が練り込まれ所定厚
みの板状体に形成されている電池用電極により解決し
た。請求項2の発明にあっては、請求項1に記載の電池
用電極において、繊維状金属間に金属活物質と粉状活性
炭の混合物が練り込まれている電池用電極とすることが
できる。請求項3の発明にあっては、金属鋳造格子形状
又は網目格子形状の集電体に金属活物質と粉状活性炭の
混合物が練り込まれ所定厚みの板状体に形成されている
電池用電極により解決した。請求項4の発明にあって
は、請求項1〜3のいずれかに記載の電池用電極におい
て、繊維状金属及び金属活物質は、鉛、マンガン、鉄、
亜鉛、ニッケル、リチュウム、アルミニウム、銅、銀、
チタン、ジルコニウム、ランタン、金、及び白金のいず
れかの単体又は合金を素材とした電池用電極とすること
ができる。
In order to achieve the above object, according to the first aspect of the present invention, a metal active material is kneaded between fibrous metals of a thin line and randomly oriented aggregate and has a predetermined thickness. The problem was solved by the battery electrode formed on the plate-like body. According to the second aspect of the present invention, in the battery electrode according to the first aspect, a battery electrode in which a mixture of a metal active material and powdered activated carbon is kneaded between fibrous metals can be provided. According to the third aspect of the present invention, an electrode for a battery is provided in which a mixture of a metal active material and powdered activated carbon is kneaded into a current collector of a metal casting grid shape or a mesh grid shape to form a plate having a predetermined thickness. Solved by. In the invention according to claim 4, in the battery electrode according to any one of claims 1 to 3, the fibrous metal and the metal active material include lead, manganese, iron,
Zinc, nickel, lithium, aluminum, copper, silver,
An electrode for a battery can be made of any one of titanium, zirconium, lanthanum, gold, and platinum, or an alloy thereof.

【0005】請求項5の発明にあっては、請求項1〜4
のいずれかに記載の電池用電極を負電極及び正電極とし
て配設した電池により解決した。請求項6の発明にあっ
ては、請求項5に記載の電池において、電極の周辺部適
所に沿って繊維状活性炭が配設されている電池とするこ
とができる。請求項7の発明にあっては、金属鋳造格子
形状又は網目格子形状の集電体に金属活物質が担持され
た電極の周辺部適所に沿って繊維状活性炭が配設されて
いる電池により解決した。
According to the invention of claim 5, claims 1 to 4 are provided.
The problem was solved by a battery in which the battery electrode described in any one of the above was disposed as a negative electrode and a positive electrode. According to the invention of claim 6, in the battery of claim 5, it is possible to provide a battery in which fibrous activated carbon is disposed along an appropriate portion around the electrode. According to the invention of claim 7, a battery is provided in which a fibrous activated carbon is disposed along an appropriate position around an electrode in which a metal active material is supported on a current collector in the form of a metal casting grid or a mesh grid. did.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。図1は、本発明の電極の一例の概略
(a)正面図、(b)側面図である。図2は、本発明の
電極の他例の概略正面図である。図3は、本発明の電極
を用いた電池の一例の概略側断面図である。図4は、従
来の電極の一例の概略正面図である。図5は、図4の電
極に繊維状活性炭を配設した本発明の電池の一例の概略
側断面図である。図6は、図5の電池と従来の電池の一
例の放電持続時間と充放電回数との関係を示すグラフで
ある。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic (a) front view and (b) side view of an example of the electrode of the present invention. FIG. 2 is a schematic front view of another example of the electrode of the present invention. FIG. 3 is a schematic side sectional view of an example of a battery using the electrode of the present invention. FIG. 4 is a schematic front view of an example of a conventional electrode. FIG. 5 is a schematic side sectional view of an example of the battery of the present invention in which fibrous activated carbon is provided on the electrode of FIG. FIG. 6 is a graph showing the relationship between the discharge duration and the number of times of charging and discharging of the battery of FIG. 5 and an example of a conventional battery.

【0007】図1において、本発明の電極1は、繊維状
金属3と金属活物質4とを有している。電極1上部には
コ字状の保持材6の開口部が挟込まれ、保持材6に連結
されて電極1から外部への放電又は電極1への外部から
の充電に必要な導体の配線5を備えている。繊維状金属
3は、細線状でランダム配向集合体として形成されてい
る。この繊維状金属3は、例えば0.3mmの細線状ス
テンレス鋼に鉛メッキを施したものを用いランダム配向
集合体とし、ステンレス鋼と希硫酸等との化学変化を防
止するようにするのが望ましいが、鉛、マンガン、鉄、
亜鉛、ニッケル、リチュウム、アルミニウム、銅、銀、
チタン、ジルコニウム、ランタン、金、及び白金のいず
れかの単体又は合金を素材として選定することができ、
以下の他例においても同様である。金属活物質4は、負
電極用として例えば鉛を希硫酸等によりゲル状にして繊
維状金属3の構成金属繊維間に圧力下で練り込まれてい
るが、金属活物質としては繊維状金属3に用いられる前
記した他材料が素材として選定でき、以下の他例におい
ても同様である。電極1は、繊維状金属3と金属活物質
4とで所定厚みの板状体とした後加熱乾燥して得られる
が、例えば2mmの板厚で200℃で3時間乾燥する。
又正電極用としては例えば過酸化鉛を希硫酸等によりゲ
ル状にして繊維状金属3の構成金属繊維間に圧力下で練
り込まれている。電極1を構成するランダム配向集合体
の繊維状金属の有する複雑形状と相互交洛により、その
錯綜した間隔に入り込んだ金属活物質4を強固に担持可
能とされている。
In FIG. 1, an electrode 1 of the present invention has a fibrous metal 3 and a metal active material 4. An opening of a U-shaped holding member 6 is sandwiched in the upper part of the electrode 1, and is connected to the holding member 6 so as to connect conductors 5 necessary for discharging from the electrode 1 to the outside or charging the electrode 1 from the outside. It has. The fibrous metal 3 is formed as a thin line and a random orientation aggregate. The fibrous metal 3 is preferably made of, for example, 0.3 mm fine linear stainless steel plated with lead and used as a randomly oriented aggregate to prevent chemical change between the stainless steel and dilute sulfuric acid. But lead, manganese, iron,
Zinc, nickel, lithium, aluminum, copper, silver,
Titanium, zirconium, lanthanum, gold, and any single or alloy of platinum can be selected as the material,
The same applies to other examples below. The metal active material 4 is, for negative electrode, for example, gelled with lead sulfuric acid or the like and kneaded under pressure between the constituent metal fibers of the fibrous metal 3. The other materials described above can be selected as the raw materials, and the same applies to the following other examples. The electrode 1 is obtained by forming a plate-like body having a predetermined thickness with the fibrous metal 3 and the metal active material 4 and then heating and drying the plate. For example, the electrode 1 is dried at 200 ° C. for 3 hours with a plate thickness of 2 mm.
For the positive electrode, for example, lead peroxide is gelled with diluted sulfuric acid or the like and kneaded under pressure between the constituent metal fibers of the fibrous metal 3. Due to the complicated shape and mutual interaction of the fibrous metal of the randomly oriented aggregate constituting the electrode 1, the metal active material 4 entering the complicated interval can be firmly supported.

【0008】図2において、本発明の電極2は、集電体
7と金属活物質4と粉状活性炭8よりなっている。集電
体7上部には配線5が連結されている。集電体7は前記
図4について説明したと同様の金属鋳造格子形状又は網
目格子形状の例えば鉛/アンチモン又は鉛/カルシウム
合金等で作られている。金属活物質4は負電極用として
例えば鉛を希硫酸等によりゲル状にし、これに粉状活性
炭8を混合したゲル状混合物を、集電体7の格子状間隙
に練り込み、所定厚さの板状体とした後乾燥し電極2が
得られるが、例えば2mmの板厚で200℃で3時間乾
燥する。又正電極用としては例えば過酸化鉛を希硫酸等
によりゲル状にし、これに粉状活性炭8を混合したゲル
状混合物を、集電体7の格子状間隙に練り込んでいる。
電極2を構成する金属活物質4中に混合した粉状活性炭
8の増大した表面積が電極における金属活物質と電解液
の電気化学反応を加速せしめ、電池内部抵抗を低減する
とともに急速充放電を可能にした。電極2を構成する集
電体7に代えて、前記図1において説明した電極1の繊
維状金属3間に金属活物質4と粉状活性炭8とを混合し
たゲル状混合物を練り込ませると、金属活物質4を強固
に担持し且つ電気化学反応を加速せしめる作用を合わせ
有することが可能となる。
In FIG. 2, the electrode 2 of the present invention comprises a current collector 7, a metal active material 4, and a powdered activated carbon 8. The wiring 5 is connected to the upper part of the current collector 7. The current collector 7 is made of, for example, lead / antimony or a lead / calcium alloy in the form of a metal casting lattice or a mesh lattice similar to that described with reference to FIG. For the metal active material 4, for example, lead is gelled with dilute sulfuric acid or the like for use as a negative electrode, and a gel-like mixture obtained by mixing powdered activated carbon 8 with the mixture is kneaded into the grid-like gap of the current collector 7 to obtain a predetermined thickness. The electrode 2 is obtained by drying after forming into a plate-shaped body. For the positive electrode, for example, lead peroxide is gelled with diluted sulfuric acid or the like, and a gel-like mixture obtained by mixing powdery activated carbon 8 with the gel is kneaded into the lattice-shaped gap of the current collector 7.
The increased surface area of the powdered activated carbon 8 mixed in the metal active material 4 constituting the electrode 2 accelerates the electrochemical reaction between the metal active material and the electrolyte in the electrode, reduces the internal resistance of the battery and enables rapid charging and discharging. I made it. When a gel-like mixture obtained by mixing a metal active material 4 and powdered activated carbon 8 between the fibrous metals 3 of the electrode 1 described in FIG. 1 is kneaded instead of the current collector 7 constituting the electrode 2, It is possible to have a function of firmly supporting the metal active material 4 and accelerating the electrochemical reaction.

【0009】図3において、本発明の電極1を用いた電
池10は、容器15内部に負電極1の対面に正電極11
が配設され、負電極1と正電極11の間隙には多孔性絶
縁物として例えばガラス繊維マット製のセパレータ13
が挿着され、負電極1及び正電極11上部から保持材
(図示省略)を介して外部への放電又は外部からの充電
に必要な配線5、5を備え、容器15内部には電解液1
4として例えば希硫酸が負電極1、正電極11及びセパ
レータ13を浸すように充満されている。負電極1は、
例えばステンレス鋼に鉛メッキした繊維状金属3と鉛の
金属活物質4よりなっている。正電極11は、例えばス
テンレス鋼に鉛メッキした繊維状金属3と過酸化鉛の金
属活物質よりなっている。更に選択的構成として、図3
に示す通り負電極1の例えば側面に沿ってフェルト状の
繊維状活性炭12を特別な加工をすることなく、接触状
態に配設するのが望ましい。この繊維状活性炭12の配
設箇所は、負電極1の側面が最も好ましいがこれに限定
されず、上部又は底部の周辺部適所であってもよい。又
配設箇所は負電極1及び/又は正電極11であってもよ
い。電池10は、電極1、11を構成するランダム配向
の金属繊維間隔に入り込んだ金属活物質が強固に担持さ
れており電池として、活物質と電解液の電気化学反応を
加速し持続する。加えて、繊維状活性炭12を電極1、
11の周辺部適所に配設することにより、繊維状活性炭
12の増大した表面積が電極における金属活物質と電解
液の電気化学反応をより加速せしめることが可能とな
る。電池10においては、電極1、11に代えて電極2
の構成のものを用いてもよく、又電極2を構成する集電
体7に代えて、繊維状金属3に金属活物質4と粉状活性
炭8とを混合したゲル状混合物を練り込ませる構成とし
てもよい。
In FIG. 3, a battery 10 using the electrode 1 of the present invention has a positive electrode 11 inside a container 15 opposite to the negative electrode 1.
Is provided in the gap between the negative electrode 1 and the positive electrode 11 as a porous insulator, for example, a separator 13 made of glass fiber mat.
Are provided, wirings 5 and 5 necessary for discharging to the outside or charging from the outside via a holding material (not shown) from the upper part of the negative electrode 1 and the positive electrode 11 are provided.
For example, diluted sulfuric acid 4 is filled so as to immerse the negative electrode 1, the positive electrode 11, and the separator 13. The negative electrode 1 is
For example, it is composed of a fibrous metal 3 plated with lead on stainless steel and a metal active material 4 of lead. The positive electrode 11 is made of, for example, a fibrous metal 3 lead-plated on stainless steel and a metal active material of lead peroxide. As a further optional configuration, FIG.
As shown in FIG. 7, it is desirable to arrange the felt-like fibrous activated carbon 12 in a contact state along a side surface of the negative electrode 1 without any special processing. The location of the fibrous activated carbon 12 is most preferably on the side surface of the negative electrode 1, but is not limited to this, and may be a suitable location around the top or bottom. Further, the disposition location may be the negative electrode 1 and / or the positive electrode 11. In the battery 10, the metal active material that has entered the spaces between the randomly oriented metal fibers constituting the electrodes 1 and 11 is firmly supported, and as a battery, the electrochemical reaction between the active material and the electrolyte is accelerated and maintained. In addition, the fibrous activated carbon 12 is
By disposing the fibrous activated carbon 12 at an appropriate position in the periphery of the electrode 11, the increased surface area of the fibrous activated carbon 12 can further accelerate the electrochemical reaction between the metal active material and the electrolyte in the electrode. In the battery 10, instead of the electrodes 1 and 11, the electrode 2
And a gel-like mixture obtained by mixing the metal active material 4 and the powdered activated carbon 8 into the fibrous metal 3 in place of the current collector 7 constituting the electrode 2. It may be.

【0010】図5において、本発明の電池19は、容器
15内部に負電極17の対面に正電極18が配設され、
負電極17と正電極18の間隙には多孔性絶縁物として
例えばガラス繊維マット製のセパレータ13が挿着さ
れ、負電極17及び正電極18上部から保持材(図示省
略)を介して外部への放電又は外部からの充電に必要な
配線5、5を備え、容器15内部には電解液14として
例えば希硫酸が負電極17、正電極18及びセパレータ
13を浸すように充満されている。負電極17は、例え
ば図4について説明したように、鉛/アンチモン又は鉛
/カルシウム合金等製の金属鋳造格子形状又は網目格子
形状の集電体7に金属活物質16として鉛を担持し海綿
粒状とされ、正電極18は、負電極17の鉛に代えて過
酸化鉛の金属活物質よりなっている。そして、図3の電
極1と同様に例えば側面に沿ってフェルト状の繊維状活
性炭12を特別な加工をすることなく、接触状態に配設
してある。この繊維状活性炭12の配設箇所は、負電極
17の側面が最も好ましいがこれに限定されず、上部又
は底部の周辺部適所であってもよい。又配設箇所は負電
極17及び/又は正電極18であってもよい。繊維状活
性炭12を電極17、18の周辺部適所に配設すること
により、繊維状活性炭13の増大した表面積が電極にお
ける金属活物質と電解液の電気化学反応を加速せしめる
ことが可能となる。
In FIG. 5, a battery 19 of the present invention has a positive electrode 18 disposed inside a container 15 opposite to a negative electrode 17.
A separator 13 made of, for example, a glass fiber mat is inserted as a porous insulator into the gap between the negative electrode 17 and the positive electrode 18, and the separator 13 is provided from above the negative electrode 17 and the positive electrode 18 to the outside via a holding material (not shown). Wirings 5 and 5 necessary for discharging or charging from the outside are provided, and a container 15 is filled with, for example, dilute sulfuric acid as an electrolytic solution 14 so as to immerse the negative electrode 17, the positive electrode 18, and the separator 13. As described with reference to FIG. 4, for example, the negative electrode 17 supports lead as the metal active material 16 on the current collector 7 in the form of a metal casting lattice or mesh lattice made of lead / antimony or a lead / calcium alloy, and has a sponge grain shape. The positive electrode 18 is made of a lead peroxide metal active material instead of the lead of the negative electrode 17. In the same manner as the electrode 1 of FIG. 3, for example, a felt-like fibrous activated carbon 12 is arranged in a contact state along a side surface without special processing. The location of the fibrous activated carbon 12 is most preferably on the side surface of the negative electrode 17, but is not limited to this, and may be a suitable location on the top or bottom. Further, the disposition location may be the negative electrode 17 and / or the positive electrode 18. By arranging the fibrous activated carbon 12 in a suitable position around the electrodes 17 and 18, the increased surface area of the fibrous activated carbon 13 can accelerate the electrochemical reaction between the metal active material and the electrolyte in the electrode.

【0011】[0011]

【実施例】図5で説明した容器15内部に鉛/アンチモ
ン合金等製の金属鋳造格子形状の集電体7に鉛を担持し
海綿粒状とされた負電極17の対面に、過酸化鉛を担持
した正電極18が配設され、負電極17と正電極18の
間隙にガラス繊維マット製のセパレータ13が挿着さ
れ、容器15内部には電解液14として希硫酸が充満さ
れ、負電極17の側面に沿ってフェノール樹脂を出発原
料とした比表面積2000m/gの繊維状活性炭12
を配設した電池19を実施例とした。電池19と鉛活物
質量、サイズ、電解液量及び充電時間、容器等を同一条
件とし図4で説明した従来の電極だけを用いた電池を比
較例とした。実施例及び比較例の各電池を用い、下記条
件下において第1回〜第6回の繰返し充放電テストを行
った。 充電設定:2.5V定電圧、60分充電 放電設定:1.7V時迄1A定電流放電 深度放電:1.7V時以後正電極、負電極の両配線を直
結し60分深度放電 電池外部温度:約3℃ そのテスト結果を、図5及び第1回充放電〜第6回
充放電の対比データとして下記に示す。ここで、「A」
は各充電時間経過時に電池に流れている電流をアンペア
表示したものをいい、「内部抵抗値」とは充電後の電池
内抵抗をいい、「持続時間」とはIA放電1.7V迄の
時間をいう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a container 15 described with reference to FIG. 5, lead is carried on a current collector 7 in the form of a metal casting lattice made of a lead / antimony alloy or the like. A supported positive electrode 18 is arranged, a separator 13 made of glass fiber mat is inserted into a gap between the negative electrode 17 and the positive electrode 18, and a dilute sulfuric acid is filled in the container 15 as an electrolyte 14. Activated carbon having a specific surface area of 2000 m 2 / g using a phenol resin as a starting material.
The battery 19 provided with was used as an example. A battery using only the conventional electrode described with reference to FIG. 4 under the same conditions as the battery 19 with the amount of the lead active material, the size, the amount of the electrolytic solution, the charging time, the container, and the like was used as a comparative example. The first to sixth repeated charge / discharge tests were performed using the batteries of the examples and the comparative examples under the following conditions. Charge setting: 2.5V constant voltage, 60 minutes charge Discharge setting: 1A constant current discharge until 1.7V depth depth discharge: After 1.7V, both positive electrode and negative electrode wires are directly connected and 60 minutes deep discharge Battery external temperature : About 3 ° C. The test results are shown in FIG. 5 and as comparison data of the first charge / discharge to the sixth charge / discharge. Where "A"
Indicates the current flowing through the battery in amperes at the time of each charging time. "Internal resistance value" refers to the internal resistance of the battery after charging, and "Duration" is the time up to 1.7V IA discharge. Say.

【0012】 第1回充放電対比データ 実施例 比較例 充電10分時 1.77A 0.35A 充電20分時 1.15A 0.34A 充電30分時 0.79A 0.31A 充電40分時 0.61A 0.28A 充電50分時 0.59A 0.27A 充電60分時 0.39A 0.19A 充電後内部抵抗 33mmΩ 46mmΩ 放電持続時間 34分56秒 6分11秒 第2回充放電対比データ 実施例 比較例 充電10分時 1.69A 0.21A 充電20分時 1.19A 0.22A 充電30分時 0.72A 0.19A 充電40分時 0.54A 0.16A 充電50分時 0.43A 0.13A 充電60分時 0.37A 0.11A 充電後内部抵抗 33mmΩ 63mmΩ 放電持続時間 31分44秒 3分33秒 第3回充放電対比データ 実施例 比較例 充電10分時 1.28A 0.18A 充電20分時 1.09A 0.19A 充電30分時 0.75A 0.14A 充電40分時 0.54A 0.10A 充電50分時 0.40A 0.09A 充電60分時 0.33A 0.07A 充電後内部抵抗 33mmΩ 77mmΩ 放電持続時間 26分36秒 2分20秒 第4回充放電対比データ 実施例 比較例 充電10分時 1.02A 0.12A 充電20分時 0.85A 0.10A 充電30分時 0.56A 0.08A 充電40分時 0.38A 0.07A 充電50分時 0.32A 0.07A 充電60分時 0.28A 0.06A 充電後内部抵抗 34mmΩ 149mmΩ 放電持続時間 16分50秒 0分22秒 第5回充放電対比データ 実施例 比較例 充電10分時 1.08A 0.04A 充電20分時 0.68A 0.10A 充電30分時 0.37A 0.07A 充電40分時 0.29A 0.06A 充電50分時 0.25A 0.05A 充電60分時 0.23A 0.05A 充電後内部抵抗 34mmΩ 145mmΩ 放電持続時間 16分46 0分16秒 第6回充放電対比データ 実施例 比較例 充電10分時 0.94A 0.09A 充電20分時 0.74A 0.07A 充電30分時 0.43A 0.05A 充電40分時 0.27A 0.05A 充電50分時 0.22A 0.04A 充電60分時 0.20A 0.04A 充電後内部抵抗 34mmΩ 159mmΩ 放電持続時間 15分21秒 0分10秒First Charge / Discharge Comparison Data Example Comparative Example 10 minutes charge 1.77A 0.35A 20 minutes charge 1.15A 0.34A 30 minutes charge 0.79A 0.31A 40 minutes charge 0. 61A 0.28A At 50 minutes of charging 0.59A 0.27A At 60 minutes of charging 0.39A 0.19A Internal resistance after charging 33mmΩ 46mmΩ Duration of discharge 34 minutes 56 seconds 6 minutes 11 seconds Second charge / discharge comparison data Example Comparative Example 10 minutes charging 1.69A 0.21A 20 minutes charging 1.19A 0.22A 30 minutes charging 0.72A 0.19A 40 minutes charging 0.54A 0.16A 50 minutes charging 0.43A 0 .13A 60 minutes after charging 0.37A 0.11A Internal resistance after charging 33mmΩ 63mmΩ Discharge duration 31 minutes 44 seconds 3 minutes 33 seconds Third charge / discharge comparison data Example ratio Example 10 minutes charging 1.28A 0.18A 20 minutes charging 1.09A 0.19A 30 minutes charging 0.75A 0.14A 40 minutes charging 0.54A 0.10A 50 minutes charging 0.40A 0. 09A 60 minutes at charge 0.33A 0.07A Internal resistance after charge 33mmΩ 77mmΩ Duration of discharge 26 minutes 36 seconds 2 minutes 20 seconds 4th charge / discharge comparison data Example Comparative example 10 minutes at charge 1.02A 0.12A charge 20 minutes 0.85A 0.10A Charge 30 minutes 0.56A 0.08A Charge 40 minutes 0.38A 0.07A Charge 50 minutes 0.32A 0.07A Charge 60 minutes 0.28A 0.06A Charge Internal resistance after 34 mmΩ 149 mmΩ Discharge duration 16 minutes 50 seconds 0 minutes 22 seconds 5th charge / discharge comparison data Example Comparative example 10 minutes at charge 1.08A 0.04A Charge 2 0 minute 0.68A 0.10A 30 minute charge 0.37A 0.07A 40 minute charge 0.29A 0.06A 50 minute charge 0.25A 0.05A 60 minute charge 0.23A 0.05A charge Internal resistance after 34 mmΩ 145 mmΩ Discharge duration 16 minutes 46 minutes 16 seconds 6th charge / discharge comparison data Example Comparative example 10 minutes at charge 0.94A 0.09A 20 minutes at charge 0.74A 0.07A 30 minutes at charge 0.43A 0.05A Charge 40 minutes 0.27A 0.05A Charge 50 minutes 0.22A 0.04A Charge 60 minutes 0.20A 0.04A Internal resistance after charging 34mmΩ 159mmΩ Discharge duration 15 minutes 21 seconds 0 Minute 10 seconds

【0013】以上のテスト結果より明らかな通り、実施
例の放電持続時間は比較例の放電持続時間を大幅に上回
っており、充放電テストを繰り返す毎に実施例及び比較
例共放電持続時間は減少してゆくが、第4回〜第6回充
放電テストでは比較例の放電持続時間は22〜10秒と
殆ど放電不能であったのに対して、実施例では16分5
0秒〜15分21秒と良好な放電持続時間が得られてい
る。放電持続時間において実施例が比較例に比し優れて
いることは、両者に同様に施した2.5V定電圧、60
分充電において、実施例が充電効率及び充電後の内部抵
抗において比較例に比し優れていることからも裏付けら
れている。
As is clear from the above test results, the discharge duration of the example significantly exceeds the discharge duration of the comparative example, and the discharge duration of both the example and the comparative example decreases each time the charge / discharge test is repeated. In the fourth to sixth charge-discharge tests, the discharge duration of the comparative example was 22 to 10 seconds, which was almost impossible to discharge.
A good discharge duration of 0 seconds to 15 minutes and 21 seconds was obtained. The fact that the example is superior to the comparative example in terms of the discharge duration is that a constant voltage of 2.5 V, 60
In the case of minute charging, this is supported by the fact that the embodiment is superior to the comparative example in charging efficiency and internal resistance after charging.

【0014】[0014]

【発明の効果】本発明の電池用電極によれば、電極を構
成するランダム配向集合体の繊維状金属の有する複雑形
状と相互交洛により、その錯綜した間隔に入り込んだ金
属活物質を強固に担持可能であり、この電極を用いた電
池は繰返し使用が有効である。又電極を構成する金属活
物質中に粉状活性炭を混合することにより表面積を増大
し、電極における金属活物質と電解液の電気化学反応を
加速せしめ、この電極を用いた電池は内部抵抗が低減さ
れ急速充放電が可能である。更に電極の周辺部適所に沿
って特別な加工をすることなく繊維状活性炭を配設した
電池は、繊維状活性炭の増大した表面積が電極における
金属活物質と電解液の電気化学反応をより加速せしめる
ことでき、経済的に電池寿命の延長が可能である。
According to the battery electrode of the present invention, due to the complicated shape and mutual interaction of the fibrous metal of the random orientation aggregate constituting the electrode, the metal active material that has entered the complicated interval can be firmly strengthened. It can be supported, and a battery using this electrode is effective for repeated use. In addition, the surface area is increased by mixing powdered activated carbon into the metal active material constituting the electrode, which accelerates the electrochemical reaction between the metal active material and the electrolyte at the electrode, and the battery using this electrode has a reduced internal resistance. And rapid charging and discharging is possible. In addition, the battery in which the fibrous activated carbon is disposed without special processing along the periphery of the electrode without special processing, the increased surface area of the fibrous activated carbon accelerates the electrochemical reaction between the metal active material and the electrolyte at the electrode. It is possible to extend the battery life economically.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極の一例の概略(a)正面図、
(b)側面図である。
FIG. 1 is a schematic (a) front view of an example of an electrode of the present invention,
(B) It is a side view.

【図2】本発明の電極の他例の概略正面図である。FIG. 2 is a schematic front view of another example of the electrode of the present invention.

【図3】本発明の電極を用いた電池の一例の概略側断面
図である。
FIG. 3 is a schematic side sectional view of an example of a battery using the electrode of the present invention.

【図4】従来の電極の一例の概略正面図である。FIG. 4 is a schematic front view of an example of a conventional electrode.

【図5】図4の電極に繊維状活性炭を配設した本発明の
電池の一例の概略側断面図である。
5 is a schematic sectional side view of an example of the battery of the present invention in which fibrous activated carbon is provided on the electrode of FIG.

【図6】図5の電池と従来の電池の一例の放電持続時間
と充放電回数との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the discharge duration and the number of times of charging and discharging of the battery of FIG. 5 and an example of a conventional battery.

【符号の説明】[Explanation of symbols]

1、2、11、17、18 電極 3 繊維状金属 4、16 金属活物質 5 配線 6 保持材 7 集電材 8 粉状活性炭 9 10、19 電池 12 繊維状活性炭 13 セパレータ 14 電解液 15 容器 1, 2, 11, 17, 18 Electrode 3 Fibrous metal 4, 16 Metal active material 5 Wiring 6 Holding material 7 Current collector 8 Powdered activated carbon 9 10, 19 Battery 12 Fibrous activated carbon 13 Separator 14 Electrolyte 15 Container

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 細線状でランダム配向集合体の繊維状金
属間に金属活物質が練り込まれ所定厚みの板状体に形成
されていることを特徴とする電池用電極。
1. An electrode for a battery, wherein a metal active material is kneaded between fibrous metals of a thin line-shaped randomly oriented aggregate to form a plate having a predetermined thickness.
【請求項2】 請求項1に記載の電池用電極において、
繊維状金属間に金属活物質と粉状活性炭の混合物が練り
込まれていることを特徴とする電池用電極。
2. The battery electrode according to claim 1, wherein
An electrode for a battery, wherein a mixture of a metal active material and powdered activated carbon is kneaded between fibrous metals.
【請求項3】 金属鋳造格子形状又は網目格子形状の集
電体に金属活物質と粉状活性炭の混合物が練り込まれ所
定厚みの板状体に形成されていることを特徴とする電池
用電極。
3. An electrode for a battery, wherein a mixture of a metal active material and powdered activated carbon is kneaded into a current collector in the form of a metal casting grid or a mesh grid to form a plate having a predetermined thickness. .
【請求項4】 請求項1〜3のいずれかに記載の電池用
電極において、繊維状金属及び金属活物質は、鉛、マン
ガン、鉄、亜鉛、ニッケル、リチュウム、アルミニウ
ム、銅、銀、チタン、ジルコニウム、ランタン、金、及
び白金のいずれかの単体又は合金を素材としたことを特
徴とする電池用電極。
4. The battery electrode according to claim 1, wherein the fibrous metal and the metal active material are lead, manganese, iron, zinc, nickel, lithium, aluminum, copper, silver, titanium, An electrode for a battery, comprising a single substance or an alloy of zirconium, lanthanum, gold, and platinum.
【請求項5】 請求項1〜4のいずれかに記載の電池用
電極を負電極及び正電極として配設したことを特徴とす
る電池。
5. A battery comprising the battery electrode according to claim 1 as a negative electrode and a positive electrode.
【請求項6】 請求項5に記載の電池において、電極の
周辺部適所に沿って繊維状活性炭が配設されていること
を特徴とする電池。
6. The battery according to claim 5, wherein a fibrous activated carbon is provided along a suitable portion around the electrode.
【請求項7】 金属鋳造格子形状又は網目格子形状の集
電体に金属活物質が担持された電極の周辺部適所に沿っ
て繊維状活性炭が配設されていることを特徴とする電
池。
7. A battery characterized in that fibrous activated carbon is provided along an appropriate portion around an electrode on which a metal active material is supported on a current collector in the form of a metal casting grid or a mesh grid.
JP9160357A 1997-05-14 1997-05-14 Electrode for battery and battery with it Pending JPH10312795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9160357A JPH10312795A (en) 1997-05-14 1997-05-14 Electrode for battery and battery with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9160357A JPH10312795A (en) 1997-05-14 1997-05-14 Electrode for battery and battery with it

Publications (1)

Publication Number Publication Date
JPH10312795A true JPH10312795A (en) 1998-11-24

Family

ID=15713234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9160357A Pending JPH10312795A (en) 1997-05-14 1997-05-14 Electrode for battery and battery with it

Country Status (1)

Country Link
JP (1) JPH10312795A (en)

Similar Documents

Publication Publication Date Title
JP7328129B2 (en) Positive plate for lead-acid battery, lead-acid battery
JP2002231247A (en) Control valve-type lead-acid battery
JPH10312795A (en) Electrode for battery and battery with it
US4507855A (en) Lead acid electric storage cell and a positive electrode therefor
US4508147A (en) Method of manufacturing a positive electrode for a lead acid electric storage cell
JP3575145B2 (en) Negative electrode plate for lead storage battery and method for producing the same
JPS5894770A (en) Leakage-less closed type lead battery
SU1644259A1 (en) Bipolar electrode of electric cell
JP6730406B2 (en) Lead acid battery
JP2002198085A (en) Lead storage battery
JPS62160659A (en) Lead storage battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JPH0765819A (en) Electrode plate for lead storage battery
JP2929894B2 (en) Manufacturing method of sealed lead-acid battery
JPH0234757Y2 (en)
JP2021086732A (en) Positive electrode plate for lead acid battery, and lead acid battery
JPH0244658A (en) Sealed lead-acid battery
JP2004199949A (en) Manufacturing method of electrode plate for lead-acid storage battery
CN116114084A (en) Method of manufacturing lead acid battery assembly
JP2024025093A (en) Lead storage battery
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH0451943B2 (en)
JP2021086730A (en) Method for manufacturing positive electrode plate for lead acid battery
JP2855677B2 (en) Sealed lead-acid battery
JP2787058B2 (en) Method for manufacturing electrode plate for lead-acid battery