JPH10308439A - Method for detecting disconnection of electrostatic chuck circuit - Google Patents

Method for detecting disconnection of electrostatic chuck circuit

Info

Publication number
JPH10308439A
JPH10308439A JP9128041A JP12804197A JPH10308439A JP H10308439 A JPH10308439 A JP H10308439A JP 9128041 A JP9128041 A JP 9128041A JP 12804197 A JP12804197 A JP 12804197A JP H10308439 A JPH10308439 A JP H10308439A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
substrate
disconnection
voltage
detecting step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9128041A
Other languages
Japanese (ja)
Other versions
JP3271548B2 (en
Inventor
Masayasu Tanjiyou
正安 丹上
Nobuo Nagai
宣夫 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP12804197A priority Critical patent/JP3271548B2/en
Publication of JPH10308439A publication Critical patent/JPH10308439A/en
Application granted granted Critical
Publication of JP3271548B2 publication Critical patent/JP3271548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for detecting disconnection in which disconnection detection can be exactly operated without being affected by a noise or the like, and any adverse influence on the peel characteristics of a substrate from an electrostatic chuck can be prevented. SOLUTION: This method includes a disconnection detection process and the following residual charge elimination process. In the disconnection detection process, when a substrate 4 is not placed on an electrostatic chuck 6, a voltage higher than that at the time of attracting and holding the substrate 4 is impressed from a DC power source 14 to the electrostatic chuck 6, currents I1 and I2 running between the DC power source 14 and the electrostatic chuck 6 at that time are measured by current meters 16 and 17, and the disconnection of the electrostatic chuck circuit is detected according to the size of the currents. In the residual charge elimination process, a changeover switch 20 is switched to a contact (b) side, a DC voltage with a polarity opposite to that in the disconnection detection process is impressed from the DC power source 14 to the electrostatic chuck 6, and a residual charge in the electrostatic chuck 6 in the disconnection detection process is eliminated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばイオン注
入装置、イオンビームエッチング装置、プラズマCVD
装置、薄膜形成装置等において、被処理物である基板を
静電気によって吸着保持する静電チャックに電圧を供給
する回路の断線を検知する静電チャック回路の断線検知
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation apparatus, an ion beam etching apparatus, and a plasma CVD.
The present invention relates to a disconnection detection method of an electrostatic chuck circuit that detects a disconnection of a circuit that supplies a voltage to an electrostatic chuck that attracts and holds a substrate to be processed by static electricity in an apparatus, a thin film forming apparatus, and the like.

【0002】[0002]

【従来の技術】図3は、従来の静電チャック回路の一例
を示す図である。この静電チャック回路は、基板(例え
ば半導体ウェーハ)4を静電気によって吸着し保持する
静電チャック6と、この静電チャック6に(より具体的
にはその各電極10、11に)直流電圧を印加して基板
4を吸着保持させる直流電源14と、この直流電源14
と静電チャック6との間を入切する双極形のスイッチ1
8とを備えている。
2. Description of the Related Art FIG. 3 is a diagram showing an example of a conventional electrostatic chuck circuit. The electrostatic chuck circuit includes an electrostatic chuck 6 for attracting and holding a substrate (for example, a semiconductor wafer) 4 by static electricity, and applying a DC voltage to the electrostatic chuck 6 (more specifically, to each of the electrodes 10 and 11). A DC power supply 14 for applying and holding the substrate 4 by suction;
Switch 1 for turning on and off between the electrostatic chuck 6
8 is provided.

【0003】静電チャック6は、複数の(この例では二
つの)電極10および11を絶縁体8内の表面近くに埋
め込んで成る。電極10および11は、例えば、共に半
円形をしていて両者が相対向して円形を成すように絶縁
体8内に埋め込まれている。この静電チャック6は、こ
の例では二つの電極10および11を有するので双極形
と呼ばれるが、電極を三つ以上設けるタイプのものもあ
る。
The electrostatic chuck 6 has a plurality of (two in this example) electrodes 10 and 11 embedded near a surface in an insulator 8. The electrodes 10 and 11 are, for example, embedded in the insulator 8 so as to have a semicircular shape, and to face each other to form a circular shape. This electrostatic chuck 6 is called a bipolar type because it has two electrodes 10 and 11 in this example, but there is also a type in which three or more electrodes are provided.

【0004】直流電源14は、この例では双極出力形の
ものであり、同値で逆極性の出力電圧+Vおよび−Vを
出力して、それらを静電チャック6の各電極10、11
にそれぞれ印加することができる。この直流電源14
は、その出力電流I1 およびI2 (静電チャック6は対
称性を有しているので通常は|I1 |≒|I2 |)をそ
れぞれ計測する二つの電流計16および17を有してい
る。但し、上記のように通常は|I1 |≒|I2 |だか
ら、電流計はどちらか一つでも良い。また、直流電源1
4を、一つの極性の出力電圧Vのみを出力する通常の直
流電源にする場合もあり、その場合はもちろん電流計も
一つで良い。これらのことは、後述する発明の実施の形
態においても同様である。
The DC power supply 14 is of a bipolar output type in this example, outputs output voltages + V and −V of the same value and of opposite polarities, and outputs the output voltages + V and −V to the respective electrodes 10, 11 of the electrostatic chuck 6.
Respectively. This DC power supply 14
Has two ammeters 16 and 17 for measuring their output currents I 1 and I 2 (usually | I 1 | ≒ | I 2 | because the electrostatic chuck 6 has symmetry). ing. However, since normally | I 1 | ≒ | I 2 | as described above, only one of the ammeters may be used. DC power supply 1
4 may be a normal DC power supply that outputs only an output voltage V of one polarity, and in that case, of course, only one ammeter may be used. The same applies to the embodiments of the invention described later.

【0005】スイッチ18を入れて直流電源14から静
電チャック6に上記電圧を印加すると、基板4と電極1
0、11間に正負の電荷が溜まり、その間に働く静電力
(またはジョンソンラーベック力)によって、基板4が
静電チャック6に吸着保持される。その状態で、基板4
にイオンビーム2を照射する等して基板4にイオン注入
等の処理を施すことができる。
When the switch 18 is turned on and the above voltage is applied from the DC power supply 14 to the electrostatic chuck 6, the substrate 4 and the electrode 1
Positive and negative charges accumulate between 0 and 11, and the electrostatic force (or Johnson-Rahbek force) acting between them causes the substrate 4 to be attracted and held on the electrostatic chuck 6. In that state, the substrate 4
The substrate 4 can be subjected to a treatment such as ion implantation by irradiating the substrate 4 with the ion beam 2.

【0006】処理の際に、基板4にはイオンビーム2等
によって熱入力が加えられるけれども、静電チャック6
による基板4の吸着が正常であれば、基板4は静電チャ
ック6を介して十分に冷却される。静電チャック6は、
通常は冷媒等によって冷却される。
During processing, heat input is applied to the substrate 4 by the ion beam 2 or the like.
Is normal, the substrate 4 is sufficiently cooled through the electrostatic chuck 6. The electrostatic chuck 6
Usually, it is cooled by a refrigerant or the like.

【0007】基板4の処理の際に、直流電源14から静
電チャック6までの回路に断線があって、直流電源14
から電圧を出力しているのに、静電チャック6に電圧が
印加されていないと、基板4を静電チャック6によって
吸着しない状態で基板4を処理することになり、その場
合は基板4と静電チャック6間の熱伝導性が悪化して基
板4の冷却が不十分になって基板4の温度上昇が過大に
なり、基板4を(より具体的には、例えば、基板4の表
面に設けられたレジスト等を)損傷することになる。
When the circuit from the DC power supply 14 to the electrostatic chuck 6 is disconnected during the processing of the substrate 4, the DC power supply 14
If no voltage is applied to the electrostatic chuck 6 while the voltage is output from the substrate 4, the substrate 4 is processed in a state where the substrate 4 is not attracted by the electrostatic chuck 6, and in this case, the substrate 4 The thermal conductivity between the electrostatic chucks 6 deteriorates, the cooling of the substrate 4 becomes insufficient, the temperature rise of the substrate 4 becomes excessive, and the substrate 4 is moved (more specifically, for example, on the surface of the substrate 4). (E.g., provided resist).

【0008】これを防ぐために従来は、直流電源14か
ら静電チャック6に流れる電流I1、I2 を電流計1
6、17によって時々測定して、その電流I1 、I2
大小によって静電チャック6への電圧印加を確認してい
た。
Conventionally, to prevent this, currents I 1 and I 2 flowing from the DC power supply 14 to the electrostatic chuck 6 are measured by an ammeter 1.
The voltage applied to the electrostatic chuck 6 was confirmed by measuring the currents I 1 and I 2 from time to time by measuring the currents 6 and 17.

【0009】[0009]

【発明が解決しようとする課題】静電チャック6は一種
のコンデンサと見ることができるので、この静電チャッ
ク6内には、周知のように、それに印加する電圧を切っ
ても残留電荷が存在しており、この残留電荷が小さくな
るまでは静電チャック6から基板4を剥離する(離脱さ
せる)ことができないという課題が存在している。静電
チャック6から基板4を剥離するまでに長時間を要する
ほど、待ち時間が長くなって基板処理のスループットが
低下する。また、無理に剥がそうとすると基板4を破損
する。従って、残留電荷が多いほど、基板の剥離特性が
悪化する。
Since the electrostatic chuck 6 can be regarded as a kind of capacitor, there is a residual charge in the electrostatic chuck 6 even when the voltage applied thereto is cut off, as is well known. Thus, there is a problem that the substrate 4 cannot be peeled (separated) from the electrostatic chuck 6 until the residual charge is reduced. The longer it takes to peel the substrate 4 from the electrostatic chuck 6, the longer the waiting time and the lower the throughput of substrate processing. In addition, the substrate 4 will be damaged if it is forcibly peeled off. Therefore, the more the residual charges, the worse the peeling characteristics of the substrate.

【0010】上記残留電荷は静電チャック6への印加電
圧に比例するので、上記問題を避けるために近年は、直
流電源14から静電チャック6に印加する電圧を小さく
する傾向にあり、そのようにすると電流計16、17に
流れる電流I1 、I2 が非常に小さくなって、周りから
のノイズや配線の途中(端子台を含む)でのリーク電流
等が無視できなくなり、電流計16、17に流れる電流
1 、I2 の大小によって静電チャック6への電圧印加
を確認する、即ち静電チャック回路の断線を検知するこ
とが困難になっている。
Since the residual charge is proportional to the voltage applied to the electrostatic chuck 6, the voltage applied from the DC power supply 14 to the electrostatic chuck 6 has recently been reduced to avoid the above problem. In this case, the currents I 1 and I 2 flowing through the ammeters 16 and 17 become very small, and noise from the surroundings and leak current in the middle of the wiring (including the terminal block) cannot be ignored. It is difficult to confirm the voltage application to the electrostatic chuck 6, that is, to detect the disconnection of the electrostatic chuck circuit, depending on the magnitudes of the currents I 1 and I 2 flowing in the circuit 17.

【0011】例えば、図4に示すように、電流計16、
17に流れる電流I1 、I2 は、スイッチ18を切った
状態(これは直流電源14から静電チャック6までに断
線が起きている場合に相当する)でも流れる直流電源内
部消費電流(以下、内部電流と言う)IL と、スイッチ
18を入れたときに静電チャック6を経由して流れるこ
とになる増加電流IA との和になる。この内、内部電流
L は直流電源14の出力電圧Vにほぼ比例し、増加電
流IA は直流電源14の出力電圧Vの2乗にほぼ比例す
る。
For example, as shown in FIG.
The currents I 1 and I 2 flowing through the DC power supply 17 are the internal consumption currents of the DC power supply (hereinafter, referred to as “current disconnection” from the DC power supply 14 to the electrostatic chuck 6) even when the switch 18 is turned off. This is the sum of I L and the increased current I A that flows through the electrostatic chuck 6 when the switch 18 is turned on. Among the internal current I L is approximately proportional to the output voltage V of the DC power supply 14, the increase current I A is approximately proportional to the square of the output voltage V of the DC power supply 14.

【0012】従来は直流電源14の出力電圧Vを例えば
400V程度にしており、従って直流電源14から静電
チャック6までに断線が起きていない場合に電流計1
6、17に流れる電流(約60μA)と断線が起きてい
る場合の電流(約40μA)との差が大きくてノイズ等
の影響を受けにくかったのであるが、近年は上述した理
由から直流電源14の出力電圧を例えば100V程度に
小さくするので、断線が起きていない場合に電流計1
6、17に流れる電流(約12μA)と断線が起きてい
る場合の電流(約10μA)との差が非常に小さく、こ
れではノイズ等の影響を受けて断線検知を正確に行うこ
とは困難である。
Conventionally, the output voltage V of the DC power supply 14 is set to, for example, about 400 V. Therefore, when a disconnection does not occur from the DC power supply 14 to the electrostatic chuck 6, the ammeter 1 is used.
The difference between the current (about 60 .mu.A) flowing through the transistors 6 and 17 and the current (about 40 .mu.A) in the case of a disconnection was large, making it difficult to be affected by noise or the like. Output voltage is reduced to, for example, about 100 V.
The difference between the current (about 12 .mu.A) flowing through 6, 17 and the current (about 10 .mu.A) when the disconnection occurs is very small, which makes it difficult to accurately detect the disconnection due to the influence of noise and the like. is there.

【0013】そこでこの発明は、ノイズ等の影響を受け
ずに断線検知を正確に行うことができ、しかも静電チャ
ックからの基板の剥離特性に悪影響を与えない断線検知
方法を提供することを主たる目的とする。
Accordingly, the present invention mainly provides a disconnection detecting method which can accurately detect a disconnection without being affected by noise or the like and which does not adversely affect the peeling characteristic of a substrate from an electrostatic chuck. Aim.

【0014】[0014]

【課題を解決するための手段】この発明に係る断線検知
方法の一つは、静電チャックに基板を載せていないとき
に、前記直流電源から静電チャックに対して、基板の吸
着保持時よりも高い電圧を印加し、そのときに直流電源
と静電チャックとの間に流れる電流を測定し、その電流
の大小によって静電チャック回路の断線検知を行う断線
検知工程と、この断線検知工程に次いで、静電チャック
に対して断線検知工程時とは逆極性の直流電圧を印加し
て、断線検知工程時の静電チャック内の残留電荷を消去
する残留電荷消去工程とを備えることを特徴としている
(請求項1)。基板の吸着保持時とは、基板を静電チャ
ックに吸着保持して処理をする時、という意味である
(以下同様)。
One of the disconnection detecting methods according to the present invention is a method for detecting a disconnection of a substrate from the DC power supply to the electrostatic chuck when the substrate is not held on the electrostatic chuck. A high voltage is applied, a current flowing between the DC power supply and the electrostatic chuck at that time is measured, and a disconnection detecting step of detecting a disconnection of the electrostatic chuck circuit based on the magnitude of the current, and a disconnection detecting step. Next, a DC voltage having a polarity opposite to that of the disconnection detecting step is applied to the electrostatic chuck to remove a residual charge in the electrostatic chuck during the disconnection detecting step. (Claim 1). The term "at the time of holding the substrate by suction" means that the processing is performed by holding the substrate by suction at the electrostatic chuck (the same applies hereinafter).

【0015】また、この発明に係る断線検知方法の他の
ものは、静電チャックに基板を載せていないときに、前
記直流電源から静電チャックに対して、基板の吸着保持
時よりも高い電圧を印加し、そのときに直流電源と静電
チャックとの間に流れる電流を測定し、その電流の大小
によって静電チャック回路の断線検知を行う断線検知工
程と、この断線検知工程に次いで、静電チャックに対し
て減衰振動電圧を印加して、断線検知工程時の静電チャ
ック内の残留電荷を消去する残留電荷消去工程とを備え
ることを特徴としている(請求項2)。
In another method of detecting a disconnection according to the present invention, when a substrate is not placed on an electrostatic chuck, a higher voltage is applied to the electrostatic chuck from the DC power supply than when the substrate is held by suction. Is applied, a current flowing between the DC power supply and the electrostatic chuck at that time is measured, and a disconnection detecting step of detecting disconnection of the electrostatic chuck circuit based on the magnitude of the current; and, following the disconnection detecting step, And a residual charge erasing step of applying a damped oscillation voltage to the electric chuck to erase residual charges in the electrostatic chuck at the time of the disconnection detecting step.

【0016】上記方法によれば、断線検知工程におい
て、静電チャックに対して基板の吸着保持時よりも高い
電圧を印加して断線検知を行うので、静電チャック回路
に断線が起きている場合と起きていない場合との電流差
が大きくなり、従ってノイズ等の影響を受けずに断線検
知を正確に行うことができる。
According to the above method, in the disconnection detecting step, the disconnection is detected by applying a higher voltage to the electrostatic chuck than at the time of holding the substrate by suction. Therefore, the current difference between the case and the case where it does not occur becomes large, so that disconnection detection can be accurately performed without being affected by noise or the like.

【0017】しかも、上記のような断線検知工程だけだ
と、断線検知のために比較的大きい、即ち基板の吸着保
持時よりも高い電圧を印加するので、断線検知工程後に
静電チャック内に比較的大きい残留電荷が溜まったまま
になり、これを放置しておくとその後の基板の剥離特性
に悪影響を与える。これに対してこの発明では、断線検
知工程に続く残留電荷消去工程において、静電チャック
に対して断線検知工程時とは逆極性の直流電圧を印加す
る(請求項1)、または減衰振動電圧を印加する(請求
項2)ので、断線検知工程による静電チャック内の残留
電荷を速やかに消去することができる。従って、断線検
知工程後の基板の剥離特性に悪影響を与えない。
Furthermore, in the above-described disconnection detecting step alone, a relatively large voltage is applied for detecting the disconnection, that is, a voltage higher than that at the time of holding the substrate by suction. A large residual charge remains, and if left unchecked, adversely affects the subsequent peeling characteristics of the substrate. On the other hand, in the present invention, in the residual charge erasing step following the disconnection detecting step, a DC voltage having a polarity opposite to that in the disconnection detecting step is applied to the electrostatic chuck (claim 1), or the damped oscillation voltage is applied. Since the voltage is applied (claim 2), the residual charge in the electrostatic chuck due to the disconnection detecting step can be quickly erased. Therefore, it does not adversely affect the peeling characteristics of the substrate after the disconnection detecting step.

【0018】[0018]

【発明の実施の形態】図1は、この発明に係る断線検知
方法を実施する静電チャック回路の一例を示す図であ
る。図3の従来例と同一または相当する部分には同一符
号を付し、以下においては当該従来例との相違点を主に
説明する。
FIG. 1 is a diagram showing an example of an electrostatic chuck circuit for implementing a disconnection detecting method according to the present invention. Parts that are the same as or correspond to those in the conventional example of FIG. 3 are denoted by the same reference numerals, and differences from the conventional example will be mainly described below.

【0019】この例においては、前述した上記直流電源
14と静電チャック6との間に、より具体的には前述し
たスイッチ18と静電チャック6との間に、直流電源1
4から静電チャック6に印加する電圧の極性を逆転させ
る双極双投形の切換スイッチ20を設けている。この切
換スイッチ20は、図示例のように接点a側に切り換え
れば、直流電源14からの出力電圧+Vおよび−Vは、
静電チャック6の電極10および11にそれぞれ印加さ
れ、接点b側に切り換えれば、直流電源14からの出力
電圧+Vおよび−Vは、上記とは逆転して、静電チャッ
ク6の電極11および10にそれぞれ印加される。
In this example, the DC power supply 1 is connected between the DC power supply 14 and the electrostatic chuck 6, more specifically, between the switch 18 and the electrostatic chuck 6.
A switch 20 of a double-pole double-throw type for reversing the polarity of the voltage applied from 4 to the electrostatic chuck 6 is provided. When the changeover switch 20 is switched to the contact a side as shown in the illustrated example, the output voltages + V and -V from the DC power supply 14 become
When the voltage is applied to the electrodes 10 and 11 of the electrostatic chuck 6 and is switched to the contact b side, the output voltages + V and -V from the DC power supply 14 are reversed from the above, and the electrodes 11 and 10 respectively.

【0020】この回路を用いた断線検知方法の例を説明
すると、まず次のような断線検知工程を行い、それに次
いで次のような残留電荷消去工程を行う。
An example of a disconnection detecting method using this circuit will be described. First, the following disconnection detecting step is performed, and then the following residual charge erasing step is performed.

【0021】断線検知工程においては、静電チャック6
に基板4を載せていないときに、まずスイッチ18を切
った状態で、直流電源14から基板の吸着保持時(例え
ば前述したように±100V程度)よりも高い電圧(例
えば±400V程度)を出力させて、直流電源14から
スイッチ18までの回路の内部電流IL を電流計16、
17によって測定する。このとき、例えば、図4を参照
して先に説明したように、約40μAの内部電流IL
流れる。
In the disconnection detecting step, the electrostatic chuck 6
When the substrate 4 is not placed on the substrate, the switch 18 is first turned off, and a voltage (for example, about ± 400 V) higher than that at the time of holding and holding the substrate (for example, about ± 100 V as described above) is output from the DC power supply 14. Then, the internal current I L of the circuit from the DC power supply 14 to the switch 18 is
Measured by 17. In this case, for example, as described above with reference to FIG. 4, through the internal current I L to about 40 .mu.A.

【0022】次に、スイッチ18を入れて、直流電源1
4からの±400Vの出力電圧を静電チャック6に印加
し、そのときに直流電源14と静電チャック6との間に
流れる電流I1 、I2 を電流計16、17によって測定
する。このとき、図4を参照して先に説明したように、
直流電源14から静電チャック6までの回路に断線が起
きていなければ、上記内部電流IL に加えて約20μA
の増加電流IA が更に流れるので、約60μAの電流I
1 およびI2 が流れる。断線が起きていれば、増加電流
A は20μAほどには増加しないので、電流I1 およ
びI2 は60μAよりも十分に小さくなる。従って、ス
イッチ18を入れたときの電流I1 、I2 の大小によっ
て、即ちスイッチ18を入れたときに所定の(この例で
は約60μAの)電流I1 およびI2 が流れるか否かに
よって、静電チャック回路の断線検知を行うことができ
る。
Next, the switch 18 is turned on and the DC power supply 1 is turned on.
4 is applied to the electrostatic chuck 6, and currents I 1 and I 2 flowing between the DC power supply 14 and the electrostatic chuck 6 at that time are measured by ammeters 16 and 17. At this time, as described above with reference to FIG.
Unless occurred disconnection circuit from the DC power supply 14 to the electrostatic chuck 6, about 20μA in addition to the internal current I L
Of the current I A of about 60 μA
1 and I 2 flow. If occurs disconnected, since increasing the current I A does not increase as much as 20 .mu.A, current I 1 and I 2 is sufficiently smaller than 60 .mu.A. Therefore, depending on the magnitudes of the currents I 1 and I 2 when the switch 18 is turned on, that is, depending on whether predetermined currents (about 60 μA in this example) I 1 and I 2 flow when the switch 18 is turned on. Disconnection of the electrostatic chuck circuit can be detected.

【0023】このようにこの断線検知工程においては、
静電チャック6に対して、基板の吸着保持時よりも高い
電圧を印加して断線検知を行うので、静電チャック回路
に断線が起きている場合と起きていない場合との電流差
が大きくなり、従って、ノイズ等の影響を受けずに断線
検知を正確に行うことができる。
As described above, in this disconnection detecting step,
Since the disconnection detection is performed by applying a higher voltage to the electrostatic chuck 6 than at the time of holding the substrate by suction, the current difference between when the disconnection occurs in the electrostatic chuck circuit and when the disconnection does not occur increases. Therefore, disconnection detection can be accurately performed without being affected by noise or the like.

【0024】しかし、上記のような断線検知工程だけだ
と、断線検知のために比較的大きい電圧を印加するの
で、断線検知工程後に静電チャック6内に比較的大きい
残留電荷が溜まったままになり、これを放置しておくと
その後の基板の剥離特性に悪影響を与える。そこでこの
発明は、上記断線検知工程に続いて残留電荷消去工程を
行う。
However, if only the above-described disconnection detecting step is performed, a relatively large voltage is applied for detecting the disconnection, so that a relatively large residual charge remains in the electrostatic chuck 6 after the disconnection detecting step. If left unattended, it will adversely affect the subsequent peeling properties of the substrate. Therefore, in the present invention, a residual charge erasing step is performed following the disconnection detecting step.

【0025】残留電荷消去工程においては、この例では
切換スイッチ20を上記工程時とは反対側に(即ち接点
b側に)切り換えて、直流電源14から静電チャック6
に対して断線検知工程とは逆極性の直流電圧を印加し
て、断線検知工程時の静電チャック6内の残留電荷を消
去する。
In the residual charge erasing step, in this example, the changeover switch 20 is switched to the opposite side (that is, to the contact b side) in the above step, and the DC power supply 14
Then, a DC voltage having a polarity opposite to that of the disconnection detecting step is applied to erase residual charges in the electrostatic chuck 6 during the disconnection detecting step.

【0026】これを詳述すると、基板4を載せていない
状態での静電チャック6の(より具体的にはその電極1
0と11間の)静電容量をC0 とし、断線検知工程時に
±V0 の直流電圧を印加したとすると、静電チャック6
内の残留電荷Q0 は、概ね次式で表される。係数に2が
あるのは、+V0 と−V0 とを直列に印加するからであ
る。
In more detail, the electrostatic chuck 6 (more specifically, its electrode 1
Assuming that the capacitance (between 0 and 11) is C 0 and a DC voltage of ± V 0 is applied during the disconnection detection step, the electrostatic chuck 6
Residual charge Q 0 of the inner is generally expressed by the following equation. The coefficient has 2 because + V 0 and −V 0 are applied in series.

【0027】[0027]

【数1】Q0 =2C0 0 ## EQU1 ## Q 0 = 2C 0 V 0

【0028】従って、この残留電荷消去工程において
は、上記残留電荷Q0 にほぼ相当する量の電荷を逆極性
で供給するのが好ましく、そのようにすれば、残留電荷
を過不足なく消去することができる。
Therefore, in this residual charge erasing step, it is preferable to supply an amount of electric charge substantially equivalent to the residual electric charge Q 0 in the opposite polarity. Can be.

【0029】例えば、残留電荷消去工程において静電チ
ャック6に流れる電流をI0 (これは先に図4を参照し
て説明した増加電流IA に相当する)とし、逆極性電圧
の印加時間をtとすると、概ね次式を満たすように逆極
性電圧を印加すれば良い。
[0029] For example, the current flowing to the electrostatic chuck 6 in residual charge erasing step and I 0 (which corresponds to an increase current I A described above with reference to FIG. 4), the application time of the reverse polarity voltage Assuming that t, the reverse polarity voltage may be applied so as to substantially satisfy the following equation.

【0030】[0030]

【数2】∫I0 dt=Q0 =2C0 0 ∫I 0 dt = Q 0 = 2C 0 V 0

【0031】もっとも、静電チャック6内の残留電荷を
完全に0に消去する必要はなく、基板の剥離特性に悪影
響を与えない程度に小さく消去すれば良い。
However, it is not necessary to completely erase the residual charge in the electrostatic chuck 6 to zero, but it is sufficient to erase the residual charge as small as not to adversely affect the peeling characteristics of the substrate.

【0032】上記のような残留電荷消去工程を設けるこ
とによって、断線検知工程による静電チャック6内の残
留電荷を速やかに消去することができるので、断線検知
工程において静電チャック6に比較的大きな電圧を印加
して断線検知精度を高めることができると共に、そのと
きの残留電荷を速やかに消去することができるので、断
線検知工程後の基板の剥離特性に悪影響を与えない。即
ち、静電チャック6に対する基板4の着脱を速やかにか
つ基板4を破損することなく行うことができる。
By providing the residual charge erasing step as described above, the residual charge in the electrostatic chuck 6 due to the disconnection detecting step can be quickly erased. The voltage can be applied to improve the disconnection detection accuracy, and the residual charge at that time can be quickly erased, so that the peeling characteristic of the substrate after the disconnection detection step is not adversely affected. That is, the substrate 4 can be quickly attached to and detached from the electrostatic chuck 6 without damaging the substrate 4.

【0033】なお、上記のような断線検知工程および残
留電荷消去工程は、例えば、複数枚の基板4を1ロット
としてロット処理する場合は、1ロット処理の間ごとに
行ったり、あるいはその他、基板4の処理の合間に行う
のが好ましく、そのようにすれば、断線検知を行っても
それが基板4の処理に待ち時間を生じさせないので、基
板処理のスループットを低下させずに済む。また、静電
チャック6を複数台有していて各静電チャック6上で基
板4を1枚ずつ交互に、あるいは1ロットずつ交互に処
理する場合は、処理に使用していない方の静電チャック
6で断線検知をより頻繁に行っても良く、そのようにす
れば、基板処理の信頼性がより向上すると共に、スルー
プットも低下させずに済む。
The disconnection detecting step and the residual charge erasing step as described above are performed, for example, in each lot processing when a plurality of substrates 4 are processed as one lot. It is preferable to perform the processing in the interval between the processings of Steps 4 and 4. In such a case, even if the disconnection detection is performed, the processing does not cause a waiting time in the processing of the substrate 4, so that the throughput of the substrate processing does not need to be reduced. Further, when a plurality of electrostatic chucks 6 are provided and the substrates 4 are alternately processed one by one or one lot at a time on each electrostatic chuck 6, the electrostatic capacitor which is not used for the processing is used. The disconnection detection may be performed more frequently by the chuck 6, so that the reliability of the substrate processing is further improved and the throughput is not reduced.

【0034】図2は、この発明に係る断線検知方法を実
施する静電チャック回路の他の例を示す図である。図1
の例との相違点を主体に説明すると、この例では、切換
スイッチ20の接点b側に、コンデンサCとインダクタ
Lとを有する直列共振回路22を設けている。このコン
デンサCとインダクタLに抵抗器を直列に挿入しても良
いが、通常は配線に抵抗成分が含まれているので、敢え
て抵抗器を挿入しなくても良い。
FIG. 2 is a diagram showing another example of the electrostatic chuck circuit for implementing the disconnection detecting method according to the present invention. FIG.
In this example, a series resonance circuit 22 having a capacitor C and an inductor L is provided on the contact b side of the changeover switch 20. A resistor may be inserted in series between the capacitor C and the inductor L. However, since the wiring normally contains a resistance component, it is not necessary to insert a resistor.

【0035】この例においても、断線検知工程は図1の
例の場合と同様に行う。
Also in this example, the disconnection detecting step is performed in the same manner as in the example of FIG.

【0036】断線検知工程後の残留電荷消去工程におい
ては、切換スイッチ20を接点b側に切り換えるだけで
良い。そのようにすれば、断線検知工程で静電チャック
6内に溜まった残留電荷をエネルギー源として、上記直
列共振回路22において減衰振動電圧が発生し、それが
静電チャック6に(より具体的にはその電極10と11
との間に)印加されることになる。この減衰振動は、静
電チャック6内の残留電荷が0になるまで続くが、回路
の時定数は通常は非常に小さいので、極めて短時間で消
滅する。これによって、静電チャック6内の残留電荷を
速やかに消去することができる。
In the residual charge erasing step after the disconnection detecting step, it is only necessary to switch the changeover switch 20 to the contact b side. By doing so, a damped oscillating voltage is generated in the series resonance circuit 22 using the residual charges accumulated in the electrostatic chuck 6 in the disconnection detecting step as an energy source, and the damped oscillation voltage is generated in the electrostatic chuck 6 (more specifically, Are the electrodes 10 and 11
). This damped oscillation continues until the residual charge in the electrostatic chuck 6 becomes zero, but disappears in a very short time because the time constant of the circuit is usually very small. Thus, the residual charges in the electrostatic chuck 6 can be quickly erased.

【0037】なお、上記直列共振回路22を設けること
によって簡単に減衰振動電圧を静電チャック6に印加す
ることができるけれども、これ以外の手段によって、例
えば別に設けた減衰振動電圧発生回路によって、静電チ
ャック6に減衰振動電圧を印加するようにしても良い。
Although the damped oscillation voltage can be easily applied to the electrostatic chuck 6 by providing the series resonance circuit 22, the static oscillation can be performed by other means, for example, by a separately provided damped oscillation voltage generating circuit. A damped oscillation voltage may be applied to the electric chuck 6.

【0038】[0038]

【発明の効果】以上のようにこの発明によれば、断線検
知工程において、静電チャックに対して基板の吸着保持
時よりも高い電圧を印加して断線検知を行うので、静電
チャック回路に断線が起きている場合と起きていない場
合との電流差が大きくなり、従ってノイズ等の影響を受
けずに断線検知を正確に行うことができる。従って、信
頼性の高い基板処理が可能になる。
As described above, according to the present invention, in the disconnection detecting step, the disconnection is detected by applying a higher voltage to the electrostatic chuck than at the time of holding the substrate by suction. The current difference between the case where the disconnection has occurred and the case where the disconnection has not occurred becomes large, so that the disconnection can be accurately detected without being affected by noise or the like. Therefore, highly reliable substrate processing can be performed.

【0039】しかも、断線検知工程に続く残留電荷消去
工程において、静電チャックに対して断線検知工程時と
は逆極性の直流電圧を印加する(請求項1)、または減
衰振動電圧を印加する(請求項2)ので、断線検知工程
による静電チャック内の残留電荷を速やかに消去するこ
とができ、従って断線検知工程後の基板の剥離特性に悪
影響を与えない。即ち、静電チャックに対する基板の着
脱を速やかにかつ基板を破損することなく行うことがで
きる。
Further, in the residual charge erasing step following the disconnection detecting step, a DC voltage having a polarity opposite to that in the disconnection detecting step is applied to the electrostatic chuck (claim 1), or a damped oscillation voltage is applied ( According to the second aspect, the residual charge in the electrostatic chuck in the disconnection detecting step can be quickly erased, and therefore, the peeling characteristic of the substrate after the disconnection detecting step is not adversely affected. That is, the substrate can be quickly attached to and detached from the electrostatic chuck without damaging the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る断線検知方法を実施する静電チ
ャック回路の一例を示す図である。
FIG. 1 is a diagram illustrating an example of an electrostatic chuck circuit that implements a disconnection detection method according to the present invention.

【図2】この発明に係る断線検知方法を実施する静電チ
ャック回路の他の例を示す図である。
FIG. 2 is a diagram illustrating another example of an electrostatic chuck circuit that implements the disconnection detection method according to the present invention.

【図3】従来の静電チャック回路の一例を示す図であ
る。
FIG. 3 is a diagram illustrating an example of a conventional electrostatic chuck circuit.

【図4】直流電源の出力電圧と静電チャック回路に流れ
る電流との関係の一例を示す図である。
FIG. 4 is a diagram illustrating an example of a relationship between an output voltage of a DC power supply and a current flowing in an electrostatic chuck circuit.

【符号の説明】[Explanation of symbols]

4 基板 6 静電チャック 10、11 電極 14 直流電源 16、17 電流計 18 スイッチ 20 切換スイッチ 22 直列共振回路 4 Substrate 6 Electrostatic chuck 10, 11 Electrode 14 DC power supply 16, 17 Ammeter 18 Switch 20 Changeover switch 22 Series resonance circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の電極を絶縁体内に有していて基板
を静電気によって吸着保持する静電チャックと、この静
電チャックの各電極に直流電圧を印加して基板を吸着保
持させる直流電源とを備える静電チャック回路におい
て、静電チャックに基板を載せていないときに、前記直
流電源から静電チャックに対して、基板の吸着保持時よ
りも高い電圧を印加し、そのときに直流電源と静電チャ
ックとの間に流れる電流を測定し、その電流の大小によ
って静電チャック回路の断線検知を行う断線検知工程
と、この断線検知工程に次いで、静電チャックに対して
断線検知工程時とは逆極性の直流電圧を印加して、断線
検知工程時の静電チャック内の残留電荷を消去する残留
電荷消去工程とを備えることを特徴とする静電チャック
回路の断線検知方法。
An electrostatic chuck having a plurality of electrodes in an insulator and adsorbing and holding a substrate by static electricity, a DC power supply for applying a DC voltage to each electrode of the electrostatic chuck and adsorbing and holding the substrate. In the electrostatic chuck circuit provided with, when the substrate is not placed on the electrostatic chuck, a higher voltage is applied to the electrostatic chuck from the DC power supply than at the time of holding and holding the substrate. A disconnection detecting step of measuring a current flowing between the electrostatic chuck and the disconnection of the electrostatic chuck circuit based on the magnitude of the current, and a disconnection detecting step for the electrostatic chuck following the disconnection detecting step. And a residual charge erasing step of erasing residual charges in the electrostatic chuck at the time of the disconnection detecting step by applying a DC voltage having a reverse polarity.
【請求項2】 複数の電極を絶縁体内に有していて基板
を静電気によって吸着保持する静電チャックと、この静
電チャックの各電極に直流電圧を印加して基板を吸着保
持させる直流電源とを備える静電チャック回路におい
て、静電チャックに基板を載せていないときに、前記直
流電源から静電チャックに対して、基板の吸着保持時よ
りも高い電圧を印加し、そのときに直流電源と静電チャ
ックとの間に流れる電流を測定し、その電流の大小によ
って静電チャック回路の断線検知を行う断線検知工程
と、この断線検知工程に次いで、静電チャックに対して
減衰振動電圧を印加して、断線検知工程時の静電チャッ
ク内の残留電荷を消去する残留電荷消去工程とを備える
ことを特徴とする静電チャック回路の断線検知方法。
2. An electrostatic chuck having a plurality of electrodes in an insulator and holding a substrate by electrostatic attraction, and a DC power supply for applying a DC voltage to each electrode of the electrostatic chuck to attract and hold the substrate. In the electrostatic chuck circuit provided with, when the substrate is not placed on the electrostatic chuck, a higher voltage is applied to the electrostatic chuck from the DC power supply than at the time of holding and holding the substrate. A disconnection detecting step of measuring a current flowing between the electrostatic chuck and the disconnection of the electrostatic chuck circuit based on the magnitude of the current, and applying an attenuated oscillation voltage to the electrostatic chuck following the disconnection detecting step And a residual charge erasing step of erasing residual charges in the electrostatic chuck at the time of the disconnection detecting step.
JP12804197A 1997-04-30 1997-04-30 Disconnection detection method of electrostatic chuck circuit Expired - Fee Related JP3271548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12804197A JP3271548B2 (en) 1997-04-30 1997-04-30 Disconnection detection method of electrostatic chuck circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12804197A JP3271548B2 (en) 1997-04-30 1997-04-30 Disconnection detection method of electrostatic chuck circuit

Publications (2)

Publication Number Publication Date
JPH10308439A true JPH10308439A (en) 1998-11-17
JP3271548B2 JP3271548B2 (en) 2002-04-02

Family

ID=14975056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12804197A Expired - Fee Related JP3271548B2 (en) 1997-04-30 1997-04-30 Disconnection detection method of electrostatic chuck circuit

Country Status (1)

Country Link
JP (1) JP3271548B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072918A (en) * 2000-06-06 2002-03-12 Semiconductor Energy Lab Co Ltd Element substrate and inspection method and inspection device thereof
KR20220077878A (en) 2020-12-02 2022-06-09 도쿄엘렉트론가부시키가이샤 Wiring abnormality detection method and plasma processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979545A (en) * 1982-10-29 1984-05-08 Toshiba Corp Electrostatic chucking device
JPH06151567A (en) * 1992-11-02 1994-05-31 Nippon Steel Corp Electrostatic chuck device
JPH06198532A (en) * 1993-01-06 1994-07-19 Nissin Electric Co Ltd Electrostatic chuck
JPH0878511A (en) * 1994-09-09 1996-03-22 Hitachi Ltd Method and apparatus for electrostatic attraction
JPH08250579A (en) * 1995-03-14 1996-09-27 Mitsubishi Electric Corp Power source for electrostatic chuck of manufacture of semiconductor and manufacture of the semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979545A (en) * 1982-10-29 1984-05-08 Toshiba Corp Electrostatic chucking device
JPH06151567A (en) * 1992-11-02 1994-05-31 Nippon Steel Corp Electrostatic chuck device
JPH06198532A (en) * 1993-01-06 1994-07-19 Nissin Electric Co Ltd Electrostatic chuck
JPH0878511A (en) * 1994-09-09 1996-03-22 Hitachi Ltd Method and apparatus for electrostatic attraction
JPH08250579A (en) * 1995-03-14 1996-09-27 Mitsubishi Electric Corp Power source for electrostatic chuck of manufacture of semiconductor and manufacture of the semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072918A (en) * 2000-06-06 2002-03-12 Semiconductor Energy Lab Co Ltd Element substrate and inspection method and inspection device thereof
KR20220077878A (en) 2020-12-02 2022-06-09 도쿄엘렉트론가부시키가이샤 Wiring abnormality detection method and plasma processing apparatus

Also Published As

Publication number Publication date
JP3271548B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US8149562B2 (en) System for decharging a wafer or substrate after dechucking from an electrostatic chuck
US6243251B1 (en) Electrostatic chuck, and method of and apparatus for processing sample using the chuck
US7541283B2 (en) Plasma processing method and plasma processing apparatus
US20070285869A1 (en) Method of determining the correct average bias compensation voltage during a plasma process
US11664233B2 (en) Method for releasing sample and plasma processing apparatus using same
JP2004047511A (en) Method for releasing, method for processing, electrostatic attracting device, and treatment apparatus
KR20110098814A (en) De-clamping wafers from an electrostatic chuck
EP1061639A2 (en) Chucking system amd method
JP2002532877A (en) Apparatus and method for actively controlling surface potential of electrostatic chuck
JP4484883B2 (en) Method for treating adsorbed material
JPH10163280A (en) Inspection method and equipment
JPH08191099A (en) Electrostatic chuck and its manufacture
JP3271548B2 (en) Disconnection detection method of electrostatic chuck circuit
JP4226101B2 (en) Substrate removal method from electrostatic chuck plate surface
JPH01321136A (en) Deterioration sensing device for electrostatic chuck
GB2293689A (en) Electrostatic chuck
JP3913355B2 (en) Processing method
Shim et al. Dechuck operation of Coulomb type and Johnsen-Rahbek type of electrostatic chuck used in plasma processing
JP2008294257A (en) Separation method of semiconductor substrate and electrostatic chuck device
JP4579206B2 (en) Detachment state determination method and vacuum processing apparatus
JPH0722499A (en) Method and apparatus for manufacturing semiconductor
JPH0621346A (en) Integrated linear high-voltage device
JPH0878512A (en) Method and apparatus for electrostatic attraction
JP2000100918A (en) Power supply for electrostatic chuck plate
JP4169839B2 (en) Vacuum processing apparatus and vacuum processing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees