JPH10307277A - Projection type display device - Google Patents

Projection type display device

Info

Publication number
JPH10307277A
JPH10307277A JP9355587A JP35558797A JPH10307277A JP H10307277 A JPH10307277 A JP H10307277A JP 9355587 A JP9355587 A JP 9355587A JP 35558797 A JP35558797 A JP 35558797A JP H10307277 A JPH10307277 A JP H10307277A
Authority
JP
Japan
Prior art keywords
optical system
projection
liquid crystal
mirror
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9355587A
Other languages
Japanese (ja)
Inventor
Minoru Sekine
実 関根
Yoshiharu Oi
好晴 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9355587A priority Critical patent/JPH10307277A/en
Publication of JPH10307277A publication Critical patent/JPH10307277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To laterally arrange an illumination optical system with respect to a projection optical system, to make a projected picture bright in a state where neither optical systems mechanically interfere each other and to reduce the capacity of a projection type display device by bending the optical axis of illuminating light in a specified direction. SOLUTION: The optical path of the illumination optical system is bent by a reflection mirror 15 put between a light source 1 located at the 1st focal position of an elliptical mirror 2 and a uniformizing lens 3 located at a 2nd focal position in the longitudinal direction (depth direction of paper surface) of a reflection type liquid crystal element 8, and is in a direction parallel with the paper surface, and made incident on the surface of the reflection type liquid crystal display element. In the case of viewing from a side surface in a breadth direction, the incident angle γ of a main light beam made incident on the display element 8 satisfies 2 deg.<=γ<=20 deg., and the outgoing angle δ of the main light beam outgoing therefrom satisfies 2 deg.<=δ<=20 deg.. An angle formed by an optical axis from the center of the light source 1 to the mirror 15 with the surface of the mirror 15 has the inclination of γ/2 on the surface in the breadth direction of the display element 8 and has the inclination of 15 deg. to 75 deg. on the plane in the longitudinal direction of the display element 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透過散乱型の反射
型表示素子を用いた投射型表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type display apparatus using a transmission-scattering type reflection type display element.

【0002】[0002]

【従来の技術】投射型表示装置は画像を一定の距離だけ
離れたスクリーンに投射し、直視型の表示装置に比べて
大きな投射画像を得ることを目的としている。CRTを
用いた投射型表示装置が以前は多く使用されていたが、
近年液晶表示素子を用いた投射型表示装置が多く使用さ
れてきている。この投射型表示装置用の液晶表示素子と
してはツイステッドネマチック(TN)型液晶表示素子
がよく知られている。しかし、TN型液晶表示素子は、
偏光板を用いることが必須のために、光の損失が大きい
という問題があった。
2. Description of the Related Art The purpose of a projection display device is to project an image on a screen separated by a predetermined distance, and to obtain a projection image larger than that of a direct-view display device. Previously, projection display devices using CRTs were often used,
2. Description of the Related Art In recent years, projection display devices using liquid crystal display elements have been widely used. A well-known twisted nematic (TN) type liquid crystal display element is used as a liquid crystal display element for the projection display device. However, the TN type liquid crystal display element is
Since it is essential to use a polarizing plate, there is a problem that light loss is large.

【0003】このため、投射型表示装置に用いる光変調
手段として、偏光板を用いなくてよい透過散乱型の表示
素子を用いることが提案されている。この散乱性を有す
る表示素子としては、サスペンジョンディスプレイ素
子、レーザ書き込みモード液晶素子やダイナミック・ス
キャッタリング(DSM)の液晶素子等が従来から知ら
れていた。
For this reason, it has been proposed to use a transmission-scattering type display element which does not need to use a polarizing plate as the light modulation means used in the projection type display device. As the display element having such a scattering property, a suspension display element, a laser writing mode liquid crystal element, a liquid crystal element of dynamic scattering (DSM) and the like have been conventionally known.

【0004】これらの透過散乱型の表示素子を用いた投
射型表示装置では、透過散乱により光の透過状況を制御
するため、散乱光の除去が必要となる。このため、絞り
機構を備えたシュリーレン光学系の使用が必要となる。
これは、例えば、SIDプロシーディングズ Vol.
18/2 第2クオーター1977、134〜146
頁、「ライトバルブのためのプロジェクションシステ
ム」等に記載されている。
In a projection display device using these transmission-scattering type display elements, it is necessary to remove scattered light in order to control the state of light transmission by transmission scattering. Therefore, it is necessary to use a schlieren optical system having a stop mechanism.
This is described, for example, in SID Proceedings Vol.
18/2 2nd quarter 1977, 134-146
Page, "Projection system for light valves" and the like.

【0005】また、最近、液晶を高分子のマトリックス
に分散させたような液晶/高分子複合体素子(以下分散
型液晶素子という)が開発されている。これは、主とし
て高分子と液晶の屈折率の一致不一致により透過散乱を
制御するものであり、電圧の印加状態により透過散乱が
制御できる。このような液晶/高分子複合体素子を用い
た投射型表示装置も知られている(特開平5−1969
23、特開平7−5419)。
Recently, a liquid crystal / polymer composite device in which liquid crystal is dispersed in a polymer matrix (hereinafter referred to as a dispersion type liquid crystal device) has been developed. In this method, transmission scattering is controlled mainly by the inconsistency between the refractive indices of the polymer and the liquid crystal, and the transmission scattering can be controlled by the voltage application state. A projection display device using such a liquid crystal / polymer composite element is also known (Japanese Patent Laid-Open No. 5-1969).
23, JP-A-7-5419).

【0006】この透過散乱型の分散型液晶素子は、電圧
制御型の素子であり、高い散乱性能と高い透過率とを有
し、従来の偏光板を用いた光吸収型のTN液晶素子やS
TN液晶素子よりも明るい表示を行うことができる。
The dispersion type liquid crystal element of the transmission scattering type is a voltage control type element, has a high scattering performance and a high transmittance, and has a light absorption type TN liquid crystal element using a conventional polarizing plate or an S-type liquid crystal element.
Brighter display can be performed than the TN liquid crystal element.

【0007】透過散乱型の分散型液晶素子では、反射型
で用いると光は往復2回の光路で液晶層を通過するの
で、同じ散乱性能を得るのに透過型の約半分の厚みでよ
く、駆動電圧を低くできる。このような反射型の投射型
表示装置についても、前記公知文献に記載されている。
具体的には、デルタ型に配置した2枚のダイクロイック
ミラー面を挟むように配置した3枚の反射型液晶素子に
よって、投射表示を行うものである。
In a transmission scattering type dispersion type liquid crystal element, when the reflection type is used, light passes through the liquid crystal layer in two round trip optical paths, so that the thickness of about half the transmission type is required to obtain the same scattering performance. The driving voltage can be reduced. Such a reflective projection display device is also described in the above-mentioned known document.
Specifically, projection display is performed by three reflective liquid crystal elements arranged so as to sandwich two dichroic mirror surfaces arranged in a delta type.

【0008】また、透過散乱型の反射型液晶素子を用
い、白色光源をRGBの3色に色分離した後、各々の色
光を変調する3個の反射型液晶素子を用いた投射型表示
装置も知られている(特開平4−142528の第5
図、特開平4−232917の第1図)。
Further, a projection type display apparatus using a reflection type liquid crystal element of a transmission / scattering type, color-separating a white light source into three colors of RGB, and using three reflection type liquid crystal elements for modulating each color light is also known. Known (Japanese Patent Laid-Open No. 4-142528, No. 5)
FIG. 1 of JP-A-4-232917.

【0009】これらの公知例ではいずれも、照明光学系
の集光鏡として楕円鏡を用い、照明光学系から出射され
た光を1個の凸レンズによって平行光化した後、3個の
透過散乱型の反射型液晶素子へと入射している。
In each of these known examples, an elliptical mirror is used as a converging mirror of the illumination optical system, and the light emitted from the illumination optical system is collimated by one convex lens, and then three transmission scattering type light beams are emitted. To the reflection type liquid crystal element.

【0010】ここで、色分離合成系として互いに45°
で交差するダイクロイックプリズムが平行光化用凸レン
ズと反射型液晶素子との間に配置されて用いられてい
る。この場合、投射レンズと平行光化用凸レンズ及び照
明光学系と平行光化用凸レンズとの間に空間が必要とな
り、投射型表示装置の容積の増大を招いていた。
Here, the color separation / synthesis system is set at 45 ° to each other.
A dichroic prism that intersects with the convex lens for parallel light and the reflective liquid crystal element is used. In this case, a space is required between the projection lens and the parallelizing convex lens, and between the illumination optical system and the parallelizing convex lens, and the volume of the projection display device is increased.

【0011】一般に、反射型液晶素子を用いた投射型表
示装置の場合、入射光と反射光は同一光軸上ではなく、
偏心させて用いられる。すなわち、反射型液晶素子の反
射面に対してある角度で入射し、入射光軸とは異なる反
射光軸に沿って反射するようにされる。したがって、反
射型液晶素子の有効面に対応して光を損失なく利用する
ためには、色分離合成系及び平行光化用凸レンズの有効
面が反射型液晶素子の反射面に比べて大きな面積を必要
とする。
In general, in the case of a projection type display device using a reflection type liquid crystal element, incident light and reflected light are not on the same optical axis,
Used with eccentricity. That is, the light is incident on the reflection surface of the reflection type liquid crystal element at a certain angle, and is reflected along a reflection optical axis different from the incident optical axis. Therefore, in order to use light without loss corresponding to the effective surface of the reflective liquid crystal element, the effective surface of the color separation / synthesis system and the convex lens for parallelizing light has a larger area than the reflective surface of the reflective liquid crystal element. I need.

【0012】さらに、反射型液晶素子を用いる投射型表
示装置においては、照明光学系と投射光学系が反射型液
晶素子に対して同一側に配置されることに加えて、投射
型表示装置が机や床付近の比較的低い位置に置かれる場
合は、置かれた水平面に対して投射画面を高い位置に、
逆に天井付近に置かれた場合は低い位置に、投射できる
ような機能が要求されるため、偏心投射光学系とするこ
とが不可欠となる。
Further, in a projection type display device using a reflection type liquid crystal element, in addition to the illumination optical system and the projection optical system being arranged on the same side with respect to the reflection type liquid crystal element, the projection type display device can be used as a desk top. If the projector is placed at a relatively low position near the floor,
Conversely, when the projector is placed near the ceiling, a function that can project light at a low position is required, so that an eccentric projection optical system is indispensable.

【0013】すなわち、反射型液晶素子を用いた投射型
表示装置の光学系を設計する場合、一般的には、投射光
学系に関して偏心光学設計が必要とされ、反射型液晶素
子の有効画面の中心位置が投射レンズの光軸と離れるた
めに、投射レンズの設計有効画面サイズを反射型液晶素
子の有効画面サイズよりも大きくして設計する必要があ
る。
That is, when designing an optical system of a projection type display device using a reflection type liquid crystal element, an eccentric optical design is generally required for the projection optical system, and the center of the effective screen of the reflection type liquid crystal element is generally required. Since the position is apart from the optical axis of the projection lens, it is necessary to design the projection lens so that the design effective screen size is larger than the reflection screen type liquid crystal element.

【0014】この場合、投射レンズは反射型液晶素子の
画面中心と同軸の設計をするときよりも大きくなり、光
学系も複雑になり、容積・重量・コストの増大を招きや
すい。特に、TN型液晶表示素子の場合、偏光板による
光量低下を補うために入射角や反射角を大きくとる必要
があり、このため投射光学系の開口絞りを大きくして光
学的に明るい(すなわち、Fナンバーの小さい)投射レ
ンズ系が必要となり、解像力低下、光学レンズ枚数増
加、複雑化等を招いて、大型で高価な投射型表示装置と
なっていた。
In this case, the projection lens becomes larger than when the design is made coaxial with the center of the screen of the reflection type liquid crystal element, the optical system becomes complicated, and the volume, weight and cost tend to increase. In particular, in the case of a TN-type liquid crystal display element, it is necessary to increase the incident angle and the reflection angle in order to compensate for the decrease in the amount of light due to the polarizing plate. This requires a projection lens system (with a small F-number), which leads to a reduction in resolution, an increase in the number of optical lenses, a complication, and the like, resulting in a large and expensive projection display device.

【0015】[0015]

【発明が解決しようとする課題】図4は、反射型液晶素
子を用いた投射型表示装置の従来例の側面図であり、色
分解光学系のダイクロイックミラー以外に本発明のよう
な照明光学系の光路を変更する光学素子を持たない例を
示している。
FIG. 4 is a side view of a conventional example of a projection type display device using a reflection type liquid crystal element. In addition to a dichroic mirror of a color separation optical system, an illumination optical system according to the present invention is used. 2 shows an example having no optical element for changing the optical path.

【0016】図4において、1は光源、2は集光反射
鏡、3は均一化レンズ、4は開口絞りであり、これら1
〜4で照明光学系を構成している。5、6は色分離合成
用ダイクロイックミラー、7はコリメータレンズ、8は
反射型液晶素子、9はその反射面である。10は投射レ
ンズ鏡筒、11は開口絞りであり、10と11とで投射
光学系を構成している。
In FIG. 4, 1 is a light source, 2 is a condenser mirror, 3 is a uniforming lens, and 4 is an aperture stop.
To 4 constitute an illumination optical system. Reference numerals 5 and 6 denote dichroic mirrors for color separation / synthesis, 7 denotes a collimator lens, 8 denotes a reflection type liquid crystal element, and 9 denotes a reflection surface thereof. 10 is a projection lens barrel, 11 is an aperture stop, and 10 and 11 constitute a projection optical system.

【0017】14は光学系全体の筐体、16は反射型液
晶素子の光軸、γは光軸16に対する照明光学系の光軸
との傾角(入射角)、δは光軸16に対する投射光学系
の光軸との傾角(出射角)を示している。なお、図1の
場合と同様、図4では反射型液晶素子は1個のみ示して
いるが、図1に対する図2の17と18のようにさらに
2個の反射型液晶素子が配置されている。
Reference numeral 14 denotes a housing of the entire optical system, 16 denotes an optical axis of the reflective liquid crystal element, γ denotes an inclination angle (incident angle) of the optical axis 16 with respect to the optical axis of the illumination optical system, and δ denotes a projection optics with respect to the optical axis 16. The tilt angle (outgoing angle) with the optical axis of the system is shown. As in the case of FIG. 1, FIG. 4 shows only one reflective liquid crystal element, but two more reflective liquid crystal elements are arranged as shown in FIGS. .

【0018】図4の光学系の場合、明るくかつ小型化し
ようとすると、照明光学系の集光鏡2や均一化レンズ
3、開口絞り4等の光学素子及びそれら保持する機構部
品等と、投射光学系の投射レンズとが、図4に示すよう
に機械的に干渉(ぶつかりあって)しやすかった。
In the case of the optical system shown in FIG. 4, in order to make the optical system brighter and smaller, the optical elements such as the condenser mirror 2, the uniformizing lens 3, the aperture stop 4, etc. of the illumination optical system, the mechanical components for holding them, and the projection As shown in FIG. 4, the projection lens of the optical system easily mechanically interfered (collimated).

【0019】これを避けるために、照明光学系と投射光
学系の間隔を大きくして、反射型液晶素子の光軸に対す
る照明光学系の入射角γ又は投射光学系の出射角δを大
きくする必要がある。しかし、この場合、側面から見た
場合の入出射光束の幅が大きくなるため、光学系の各素
子の必要面積が大きくなり、光学系がさらに大きくな
る。また、透過散乱型の反射型液晶素子を使用する場合
には、γ又はδが大きくなると、前述のように、透過散
乱型の液晶表示素子の優れた透過/散乱効果が減少する
問題があった。一方、これを避けるために、機械的干渉
をする照明光学系の反射鏡等光学素子の一部を切り取れ
ば、照明光線が減少し、明るさが低下する。
To avoid this, it is necessary to increase the distance between the illumination optical system and the projection optical system to increase the incident angle γ of the illumination optical system or the emission angle δ of the projection optical system with respect to the optical axis of the reflective liquid crystal element. There is. However, in this case, since the width of the incoming / outgoing light beam when viewed from the side is increased, the required area of each element of the optical system is increased, and the optical system is further enlarged. In addition, when a transmission-scattering type reflection type liquid crystal element is used, there is a problem that as γ or δ increases, the excellent transmission / scattering effect of the transmission-scattering type liquid crystal display element decreases as described above. . On the other hand, in order to avoid this, if a part of an optical element such as a reflecting mirror of an illumination optical system that causes mechanical interference is cut off, the number of illumination light beams is reduced, and the brightness is reduced.

【0020】以上のように、反射型液晶素子を用いた投
射型表示装置としては種々の提案がなされいるが、特
に、液晶光学素子表面の入射角/反射角を大きくせず、
かつ照明光学系と投射光学系が機械的な干渉を起こさ
ず、反射型液晶素子の画像を明るくスクリーンに投射す
る、小型かつ簡素な投射型表示装置が望まれていた。
As described above, various proposals have been made for a projection type display device using a reflection type liquid crystal element. However, in particular, the incident angle / reflection angle on the surface of the liquid crystal optical element is not increased.
In addition, there has been a demand for a small and simple projection display device that does not cause mechanical interference between the illumination optical system and the projection optical system and projects the image of the reflective liquid crystal element on the screen brightly.

【0021】[0021]

【課題を解決するための手段】本発明は前述の課題を解
決すべくなされたものであり、光源と集光鏡とが備えら
れた照明光学系と、透過散乱型の反射型表示素子と、色
分解合成光学系と、投射光学系とが設けられた投射型表
示装置において、照明光学系と投射光学系の間の光路に
偏心性結像手段が配置され、短手方向側面から見て反射
型表示素子に入射される主光線の入射角γは2°≦γ≦
20°を満足し、反射型表示素子から出射される主光線
の出射角δが2°≦δ≦20°を満足し、集光鏡と色分
解合成光学系の間に光路を折り曲げる機能を有する反射
鏡が配置され、光源の中心から反射鏡までの光軸と反射
鏡の面とがなす角度が、表示素子の短手方向の面内で
は、γ/2の傾きを有し、かつ、表示素子の長手方向の
面内では、15〜75°の傾きを有することを特徴とす
る投射型表示装置を提供する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has an illumination optical system provided with a light source and a condensing mirror; a transmission-scattering-type reflective display element; In a projection display device provided with a color separation / synthesis optical system and a projection optical system, an eccentric imaging unit is disposed in an optical path between the illumination optical system and the projection optical system, and the light is reflected when viewed from the lateral side. Angle γ of the principal ray incident on the display device is 2 ° ≦ γ ≦
20 °, the emission angle δ of the principal ray emitted from the reflective display element satisfies 2 ° ≦ δ ≦ 20 °, and has a function to bend the optical path between the condenser mirror and the color separation / synthesis optical system. A reflecting mirror is disposed, and an angle formed between an optical axis from the center of the light source to the reflecting mirror and a surface of the reflecting mirror has a slope of γ / 2 in a plane in a short-side direction of the display element, and a display is performed. There is provided a projection display device characterized by having an inclination of 15 to 75 ° in a plane in the longitudinal direction of the element.

【0022】また、光源と集光鏡とが備えられた照明光
学系と、透過散乱型の反射型表示素子と、色分解合成光
学系と、投射光学系とが設けられた投射型表示装置にお
いて、反射型表示素子の長手方向が投射型表示装置の底
面にほぼ平行に配置され、投射光学系の上部又は下部に
反射鏡と照明光学系とが配置され、投射光学系の光軸と
照明光学系の光軸とがいずれも投射型表示装置の底面に
ほぼ平行にかつ底面から見た場合に両者の光軸が30〜
150°の角度をもって交差するように配置され、照明
光学系の反射鏡が側面から見た場合に照明光学系の光軸
に対してγ/2の傾きを有し、底面から見た場合に照明
光学系の光軸に対して15〜75°の傾きを有し、照明
光学系の反射鏡により反射された光が反射型表示素子に
入射角2°≦γ≦20°で入射し、反射型表示素子から
出射角2°≦δ≦20°で出射し、投射光学系で投射さ
れることを特徴とする投射型表示装置を提供する。
Also, in a projection type display apparatus provided with an illumination optical system provided with a light source and a condenser mirror, a transmission / scattering type reflection type display element, a color separation / synthesis optical system, and a projection optical system. The longitudinal direction of the reflective display element is arranged substantially parallel to the bottom surface of the projection display device, the reflecting mirror and the illumination optical system are arranged above or below the projection optical system, and the optical axis of the projection optical system and the illumination optical system are arranged. The optical axes of the system are substantially parallel to the bottom surface of the projection display device, and when viewed from the bottom surface, both optical axes are 30 to
It is arranged so as to intersect at an angle of 150 °, and the reflecting mirror of the illumination optical system has an inclination of γ / 2 with respect to the optical axis of the illumination optical system when viewed from the side, and the illumination when viewed from the bottom. The light having an inclination of 15 to 75 ° with respect to the optical axis of the optical system, the light reflected by the reflector of the illumination optical system is incident on the reflective display element at an incident angle of 2 ° ≦ γ ≦ 20 °, A projection type display device is provided which emits light from a display element at an emission angle of 2 ° ≦ δ ≦ 20 ° and is projected by a projection optical system.

【0023】本発明によれば、照明光の光軸を折り曲げ
ることにより照明光学系を横配置し、照明光学系と投射
光学系が機械的な干渉を起こさず、反射型液晶素子の画
像を明るくスクリーンに投射する、小型かつ簡素な投射
型表示装置が得られる。
According to the present invention, the illumination optical system is laterally arranged by bending the optical axis of the illumination light, and the illumination optical system and the projection optical system do not cause mechanical interference, and the image of the reflection type liquid crystal element is brightened. A small and simple projection display device that projects onto a screen is obtained.

【0024】[0024]

【発明の実施の形態】図1と図2に、本発明の投射型表
示装置の側面図と平面図を示す。分かりやすくするため
に図2では投射光学系の投射レンズ鏡筒を点線で示し、
照明光学系と重ねて表示している。
1 and 2 show a side view and a plan view, respectively, of a projection type display device according to the present invention. For simplicity, FIG. 2 shows the projection lens barrel of the projection optical system with a dotted line,
The display is overlapped with the illumination optical system.

【0025】図1、図2において、1は光源、2は集光
反射鏡、3は均一化レンズ、4は開口絞りであり、これ
ら1〜4で照明光学系を構成している。5、6は色分離
合成用ダイクロイックミラー、7はコリメータレンズ、
8、17、18は反射型液晶素子、9はその反射面であ
る。10は投射レンズ鏡筒、11は開口絞りであり、1
0と11とで投射光学系を構成している。
In FIGS. 1 and 2, reference numeral 1 denotes a light source, 2 denotes a condenser mirror, 3 denotes a uniformizing lens, and 4 denotes an aperture stop. These components 1 to 4 constitute an illumination optical system. 5 and 6 are dichroic mirrors for color separation / synthesis, 7 is a collimator lens,
8, 17 and 18 are reflection type liquid crystal elements, and 9 is its reflection surface. 10 is a projection lens barrel, 11 is an aperture stop, and 1
0 and 11 constitute a projection optical system.

【0026】12は反射型液晶素子の長手方向面内での
反射鏡面上の基準線、13は反射型液晶素子の短手方向
面内で反射鏡面上での基準線、14は光学系全体の筐
体、15は照明光学系の光軸を折り曲げるための反射
鏡、16は反射型液晶素子の光軸、19は照明光学系の
光軸を示している。
Reference numeral 12 denotes a reference line on the reflection mirror surface in the longitudinal plane of the reflection type liquid crystal element, reference numeral 13 denotes a reference line on the reflection mirror surface in the short side surface of the reflection type liquid crystal element, and reference numeral 14 denotes the entire optical system. A housing, 15 is a reflecting mirror for bending the optical axis of the illumination optical system, 16 is an optical axis of the reflective liquid crystal element, and 19 is an optical axis of the illumination optical system.

【0027】γは光軸16に対する照明光学系の光軸と
の傾角(入射角)、δは光軸16に対する投射光学系の
光軸との傾角(出射角)、ωは反射型液晶素子の長手方
向面内で反射鏡面上の基準線12と照明光学系の光軸1
9とのなす角度、θは反射型液晶素子の短手方向面内で
反射鏡面上の基準線13と照明光学系の光軸19とのな
す角度を示している。
Γ is the inclination angle (incident angle) of the illumination optical system with respect to the optical axis 16 with respect to the optical axis, δ is the inclination angle (emission angle) of the projection optical system with respect to the optical axis 16, and ω is the inclination angle of the reflection type liquid crystal element. The reference line 12 on the reflecting mirror surface in the longitudinal plane and the optical axis 1 of the illumination optical system
The angle .theta. Indicates the angle between the reference line 13 on the reflecting mirror surface and the optical axis 19 of the illumination optical system in the lateral plane of the reflective liquid crystal element.

【0028】なお、本発明における光軸16は、最も後
ろ側に配置された反射型液晶素子8の反射面9に垂直な
線である。実際には照明光学系からの光線及び反射型液
晶素子の反射面で反射して戻ってきて投射光学系に出射
する光線は、コリメータレンズ7を透過し屈折される
が、これが屈折されないで透過するとしたときの仮想の
反射点を定める。この反射点を通り、最も後ろ側に配置
された反射型液晶素子8の反射面9に垂直な線を光軸1
6とし、これに対する照明光学系の光軸との傾角(入射
角)をγとし、投射光学系の光軸との傾角(出射角)を
δとする。このため、反射型液晶素子8のコリメータレ
ンズ7の形状が図1の面から見て、上下対称であれば、
この入射角γ=出射角δとなる。
The optical axis 16 in the present invention is a line perpendicular to the reflection surface 9 of the reflection type liquid crystal element 8 arranged at the rearmost side. Actually, the light beam from the illumination optical system and the light beam reflected by the reflection surface of the reflective liquid crystal element and returned to the projection optical system are transmitted through the collimator lens 7 and refracted. The virtual reflection point at the time of doing is determined. A line passing through this reflection point and perpendicular to the reflection surface 9 of the reflection type liquid crystal element 8 disposed on the rearmost side is defined as an optical axis 1
6, and the inclination angle (incident angle) with respect to the optical axis of the illumination optical system is γ, and the inclination angle (emission angle) with the optical axis of the projection optical system is δ. Therefore, if the shape of the collimator lens 7 of the reflection type liquid crystal element 8 is vertically symmetric when viewed from the plane of FIG.
This incident angle γ = emission angle δ.

【0029】本発明における反射鏡の基準線12、13
について説明する。本発明では反射型液晶素子8の長手
方向はこの投射型表示装置の基準底面(通常はケース底
面)に平行に配置する。この反射型液晶素子8の長手方
向に平行な面であって、反射型液晶素子8の光軸16に
平行な面を光軸平行面とする。
The reference lines 12, 13 of the reflecting mirror in the present invention
Will be described. In the present invention, the longitudinal direction of the reflective liquid crystal element 8 is arranged in parallel with the reference bottom surface (usually, the case bottom surface) of the projection display device. A plane parallel to the longitudinal direction of the reflective liquid crystal element 8 and parallel to the optical axis 16 of the reflective liquid crystal element 8 is defined as an optical axis parallel plane.

【0030】一方、投射光学系からの光線の光軸19が
反射鏡15に到達する点を反射点とする。この反射点を
通る光軸平行面を定め、この光軸平行面と反射鏡の境面
との交差線を長手方向面内での基準線12とする。この
基準線12と光軸19との角度をωとする。この反射鏡
15の境面上で基準線12に直交する線を基準線13と
し、この基準線12と光軸19との角度をθとする。
On the other hand, the point where the optical axis 19 of the light beam from the projection optical system reaches the reflecting mirror 15 is defined as a reflection point. A plane parallel to the optical axis passing through the reflection point is determined, and an intersection line between the plane parallel to the optical axis and the boundary surface of the reflecting mirror is defined as a reference line 12 in the longitudinal plane. The angle between the reference line 12 and the optical axis 19 is ω. A line orthogonal to the reference line 12 on the boundary surface of the reflecting mirror 15 is defined as a reference line 13, and an angle between the reference line 12 and the optical axis 19 is defined as θ.

【0031】図1及び図2の例では、反射型液晶素子8
の反射面9が投射型表示装置の基準底面に垂直であり、
光軸16が基準底面に平行に配置されている。このた
め、図1に示す基準線13は、基準底面に垂直な線から
θ=γ/2傾斜している。
In the example of FIGS. 1 and 2, the reflective liquid crystal element 8
Is perpendicular to the reference bottom surface of the projection display device,
The optical axis 16 is arranged parallel to the reference bottom surface. Therefore, the reference line 13 shown in FIG. 1 is inclined by θ = γ / 2 from a line perpendicular to the reference bottom surface.

【0032】図3は、図1、図2の投射型表示装置の正
面図である。分かりやすくするために、照明光学系、反
射鏡、投射レンズ鏡筒を実線で示し、かつ重ねて表示し
ており、かつ一部の後方に配置されている部材は省略し
ている。実際の配置では、反射鏡15は投射レンズ鏡筒
10の影に隠れて一部見えない配置となる。また、図3
にのみ照明光学系内に凹レンズ20が配置されていると
ころが示されている。
FIG. 3 is a front view of the projection type display device shown in FIGS. For the sake of simplicity, the illumination optical system, the reflecting mirror, and the projection lens barrel are shown by solid lines and overlapped, and members arranged behind some of them are omitted. In an actual arrangement, the reflection mirror 15 is arranged so as to be partially hidden by the shadow of the projection lens barrel 10. FIG.
2 shows that the concave lens 20 is arranged in the illumination optical system.

【0033】本発明では、投射型表示装置全体の容積を
小さくするために、反射型液晶素子はその短手方向が図
1の上下方向になるようにされることが好ましい。この
配置は、ダイクロイックミラーのサイズの面からも有利
となる。
In the present invention, in order to reduce the volume of the entire projection type display device, it is preferable that the short-side direction of the reflection type liquid crystal element be the vertical direction in FIG. This arrangement is also advantageous in terms of the size of the dichroic mirror.

【0034】図1、図2、図3では、液晶照明光学系の
光源の反射鏡として楕円鏡を用いているが、放物面鏡で
も光源の反射鏡としての大きさは楕円鏡と大きく変わら
ない。また、放物面鏡の場合、光源の光束がほぼ平行光
となるため、そのままでは反射型液晶素子の有効画面サ
イズと同等以上の大きさの光束が必要となる。この場
合、さらに、放物面鏡の直後に凸レンズ等の光束を収斂
させて小さくする必要がある。
In FIGS. 1, 2 and 3, an elliptical mirror is used as a reflector of the light source of the liquid crystal illumination optical system, but the size of the parabolic mirror as the reflector of the light source is substantially different from that of the elliptical mirror. Absent. Further, in the case of a parabolic mirror, the light flux of the light source is almost parallel light, so that a light flux having a size equal to or larger than the effective screen size of the reflection type liquid crystal element is required as it is. In this case, it is necessary to converge a light beam from a convex lens or the like immediately after the parabolic mirror to make it smaller.

【0035】図1において、照明光学系の光路は、反射
型液晶素子の長手方向(図1紙面の奥行き方向)で楕円
鏡の第1焦点位置にある照明光学系の光源と、その第2
焦点位置に置かれる光源均一化レンズとの間に置かれた
反射鏡によって折り曲げられて紙面と平行な方向にな
り、反射型液晶素子表面に入射する。
In FIG. 1, the optical path of the illumination optical system is composed of a light source of the illumination optical system at the first focal position of the elliptical mirror in the longitudinal direction of the reflective liquid crystal element (the depth direction of the plane of FIG. 1) and its second light source.
The light is bent by a reflecting mirror placed between the lens and the light source equalizing lens placed at the focal position, becomes a direction parallel to the paper surface, and enters the reflective liquid crystal element surface.

【0036】ここで、光源はある大きさを有するため、
光源の共役像は第2焦点位置を中心としてある大きさに
散らばるが、ここに置かれた開口絞りと均一化レンズに
より、開口絞りの大きさを有する均一化した明るさを有
する共役光源像となっている。この関係を図1の上の方
向から見た平面図が図2である。
Here, since the light source has a certain size,
The conjugate image of the light source is scattered to a certain size around the second focal position, and the conjugate light source image having uniform brightness having the size of the aperture stop is formed by the aperture stop and the uniformizing lens placed here. Has become. FIG. 2 is a plan view of this relationship as viewed from above in FIG.

【0037】さらに、照明光学系の光源中心から該反射
鏡迄の光軸と反射鏡の基準線のなす角度を、反射型液晶
素子の短手方向を含む面内(図1紙面内)ではθ、か
つ、反射型液晶素子の長手方向を含む面内(図2紙面
内)ではωとすると、反射鏡の傾きは、θとωの値によ
って決まる。
Further, the angle formed by the optical axis from the center of the light source of the illumination optical system to the reflecting mirror and the reference line of the reflecting mirror is θ in a plane including the lateral direction of the reflective liquid crystal element (in the plane of FIG. 1). In addition, assuming that ω is in a plane including the longitudinal direction of the reflective liquid crystal element (in the plane of FIG. 2), the inclination of the reflecting mirror is determined by the values of θ and ω.

【0038】図1の側面図において、θを反射型液晶素
子の入射中心点に入射する照明光学系の光軸のγに対し
てその半分、すなわち、γ/2とする。これにより、照
明光学系の光軸は、反射鏡で折り曲げられた後、反射型
液晶素子面に対してγとなり、かつ、折り曲げられる前
の光源と楕円鏡の光軸は0°、すなわち、反射型液晶素
子の反射面の法線と平行にできる。
In the side view of FIG. 1, θ is set to a half of γ of the optical axis of the illumination optical system which enters the central point of incidence of the reflection type liquid crystal element, that is, γ / 2. Accordingly, the optical axis of the illumination optical system becomes γ with respect to the reflective liquid crystal element surface after being bent by the reflecting mirror, and the optical axes of the light source and the elliptical mirror before bending are 0 °, that is, Can be made parallel to the normal of the reflection surface of the liquid crystal device.

【0039】また、反射型液晶素子を有する投射型表示
装置は、一般に反射型液晶素子の長手方向と平行な方向
を水平面とするため、上記の照明光学系の光源と楕円鏡
の光軸は、図3に示すように、投射型表示装置の安定し
た水平面と平行にでき、より製作しやすい構造となる。
In a projection type display device having a reflection type liquid crystal element, since the direction parallel to the longitudinal direction of the reflection type liquid crystal element is generally a horizontal plane, the light source of the illumination optical system and the optical axis of the elliptical mirror are: As shown in FIG. 3, the projection type display device can be made parallel to a stable horizontal plane, and the structure becomes easier to manufacture.

【0040】さらに、図2において、ωを15〜75°
の範囲とすることにより、該反射鏡に入射前の照明光学
系の光源と楕円鏡の光軸は、反射型液晶素子の長手方向
と平行な面内において、反射後の照明光学系の光軸に対
して30〜150°の範囲内に折り曲げた方向にでき
る。
Further, in FIG.
The optical axis of the light source of the illumination optical system and the optical axis of the elliptical mirror before being incident on the reflecting mirror are within the plane parallel to the longitudinal direction of the reflective liquid crystal element, Can be bent in the range of 30 to 150 °.

【0041】すなわち、照明光学系と反射型液晶素子と
の間に反射鏡を挿入するとともに、照明光学系の光源中
心から反射鏡迄の光軸と反射鏡のなす角度を、反射型液
晶素子の短手方向の面内ではγ/2の傾きを有し、か
つ、反射型液晶素子の長手方向の面内では15〜75°
の傾きを有することにより、照明光線の光路を折り曲げ
て、照明光学系の光源と反射鏡の位置を、投射光学系と
の機械的干渉を起こしやすい位置から離れた位置に変え
ることができ、かつ、その光軸の角度を安定した水平面
と平行にすることができる。
That is, a reflecting mirror is inserted between the illumination optical system and the reflective liquid crystal element, and the angle between the optical axis from the center of the light source of the illumination optical system to the reflecting mirror and the angle of the reflecting mirror is adjusted. It has an inclination of γ / 2 in the plane in the lateral direction, and 15 to 75 ° in the plane in the longitudinal direction of the reflective liquid crystal element.
By having the inclination of, the optical path of the illumination light beam can be bent, and the position of the light source and the reflector of the illumination optical system can be changed to a position away from a position where mechanical interference with the projection optical system is likely to occur, and The angle of the optical axis can be made parallel to a stable horizontal plane.

【0042】このような条件範囲を満たすことにより、
小型化と明るさとを両立させつつ照明光学系と投射光学
系の機械的干渉を避ける課題を解決し、小型かつ軽量か
つ安価な反射型の投射型表示装置を実現できる。
By satisfying such a condition range,
It is possible to solve the problem of avoiding mechanical interference between the illumination optical system and the projection optical system while achieving both miniaturization and brightness, and to realize a small, lightweight, and inexpensive reflective projection display device.

【0043】なお、反射鏡により照明光学系の光軸を折
り曲げる場合、図1で照明光学系の光軸が図の上下方向
になるようにする配置も考えられるが、この場合には、
照明光学系の端が大きく突き出し、本発明の配置に比し
て投射型表示装置の容積がかなり大きくなる。また、こ
の場合には、反射鏡の調整が面倒になる。
When the optical axis of the illumination optical system is bent by a reflecting mirror, an arrangement in which the optical axis of the illumination optical system in FIG. 1 is in the vertical direction in the figure can be considered.
The end of the illumination optical system protrudes greatly, and the volume of the projection display device becomes considerably large as compared with the arrangement of the present invention. In this case, the adjustment of the reflecting mirror is troublesome.

【0044】[0044]

【実施例】【Example】

「例1」図1においてγ=10°、かつ、図2において
ω=45°となるように配置した。この場合、反射鏡の
傾角θはθ=γ/2=5°となり、反射鏡に入射前の照
明光学系の光源と楕円鏡の光軸は、反射型液晶素子の長
手方向と平行な面内に置くことができ、かつ、その面内
で反射後の照明光学系の光軸と90°の方向にすること
ができた。
"Example 1" The arrangement was such that γ = 10 ° in FIG. 1 and ω = 45 ° in FIG. In this case, the tilt angle θ of the reflecting mirror is θ = γ / 2 = 5 °, and the light source of the illumination optical system and the optical axis of the elliptical mirror before entering the reflecting mirror are in a plane parallel to the longitudinal direction of the reflective liquid crystal element. And it could be oriented at 90 ° with respect to the optical axis of the illumination optical system after reflection in that plane.

【0045】これにより、照明光学系の光源と楕円鏡
は、その光軸が投射型表示装置のケースの底面の水平面
と平行の安定した面内でかつ、投射光学系と機械的干渉
を起こしにくい直角な方向の光学配置となしえた。
As a result, the light source and the elliptical mirror of the illumination optical system have stable optical axes parallel to the horizontal plane of the bottom surface of the case of the projection display device, and are unlikely to cause mechanical interference with the projection optical system. Optical arrangement in a perpendicular direction was achieved.

【0046】反射型液晶素子としては、アクティブマト
リクス基板を用いた分散型液晶素子を3枚用い、投射表
示を行ったところTN型液晶表示素子を用いた場合より
も明るい表示が得られた。
When three dispersion type liquid crystal elements using an active matrix substrate were used as the reflection type liquid crystal elements and projection display was performed, brighter display was obtained than when the TN type liquid crystal display element was used.

【0047】「例2」図1においてγ=15°、かつ、
図2においてω=30°となるように配置した。この場
合、反射鏡の傾角θはθ=γ/2=7. 5°となり、反
射鏡に入射前の照明光学系の光源と楕円鏡の光軸は、反
射型液晶素子の長手方向と平行な面内に置くことがで
き、かつ、その面内で反射後の照明光学系の光軸と60
°の方向になしえた。
Example 2 In FIG. 1, γ = 15 ° and
In FIG. 2, they are arranged so that ω = 30 °. In this case, the inclination angle θ of the reflecting mirror is θ = γ / 2 = 7.5 °, and the optical axes of the light source and the elliptical mirror of the illumination optical system before entering the reflecting mirror are parallel to the longitudinal direction of the reflective liquid crystal element. The optical axis of the illumination optical system after being reflected in the plane and 60
° direction.

【0048】これにより、照明光学系の光源と楕円鏡
は、その光軸が投射型表示装置のケースの底面の水平面
と平行の安定した面内でかつ、図2の面内では上側の反
射型液晶素子に近い位置となり、この方向で幅の小さ
い、より小型な光学配置となしえた。
As a result, the light source and the elliptical mirror of the illumination optical system are in a stable plane whose optical axis is parallel to the horizontal plane of the bottom surface of the case of the projection display device, and in the plane of FIG. The position was closer to the liquid crystal element, and a smaller optical arrangement having a smaller width in this direction was achieved.

【0049】この例においても、反射型液晶素子として
は、アクティブマトリクス基板を用いた分散型液晶素子
を3枚用い、投射表示を行ったところTN型液晶表示素
子を用いた場合よりも明るい表示が得られた。
Also in this example, three dispersion type liquid crystal elements using an active matrix substrate were used as the reflection type liquid crystal elements, and projection display was performed. As a result, a brighter display was obtained than when a TN type liquid crystal display element was used. Obtained.

【0050】[0050]

【発明の効果】本発明によれば、照明光の光軸を特定の
方向に折り曲げることにより、照明光学系を投射光学系
に対して横配置し、照明光学系と投射光学系が機械的な
干渉を起こさないようにできる。これにより、投射型表
示装置の投射像を明るくでき、かつ投射型表示装置の容
積を小さくできる。
According to the present invention, the illumination optical system is arranged laterally with respect to the projection optical system by bending the optical axis of the illumination light in a specific direction, so that the illumination optical system and the projection optical system are mechanically arranged. It does not cause interference. Thereby, the projection image of the projection display device can be brightened, and the volume of the projection display device can be reduced.

【0051】また、偏心系であるにもかかわらず、光源
光学系は底面に平行に配置すればよいので、組立が容易
であり、かつ反射鏡の調整も偏心のための角度調整はθ
=γ/2であり、もう1つの角度ωも照明光学系の光軸
から定まるので、調整が容易となり、組立の生産性がよ
い。
In addition, despite the eccentric system, the light source optical system only has to be disposed parallel to the bottom surface, so that the assembly is easy and the angle adjustment for the eccentricity of the reflecting mirror can be adjusted by θ.
= Γ / 2, and the other angle ω is also determined from the optical axis of the illumination optical system, so that adjustment is easy and assembly productivity is good.

【0052】さらに、高速応答で透過散乱性能に優れた
分散型液晶素子を用いてそれを反射型で使用すれば、T
N型液晶素子に比して高電圧という欠点を抑制でき、ア
クティブマトリクス基板自体も低耐圧のものでよいた
め、高性能の透過散乱型の反射型液晶素子の製造が容易
になる利点もある。また、本発明はその効果を損しない
範囲で種々の応用ができる。
Further, if a dispersion type liquid crystal element having a high-speed response and excellent transmission scattering performance is used and used in a reflection type, T
Since the drawback of a high voltage can be suppressed as compared with the N-type liquid crystal element, and the active matrix substrate itself may have a low withstand voltage, there is an advantage that it is easy to manufacture a high-performance transmission-scattering reflective liquid crystal element. In addition, the present invention can be applied to various applications as long as the effect is not impaired.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学系全体の基本的構成の側面図。FIG. 1 is a side view of a basic configuration of an entire optical system according to the present invention.

【図2】本発明の光学系全体の基本的構成の平面図。FIG. 2 is a plan view of a basic configuration of the entire optical system of the present invention.

【図3】本発明の光学系全体の基本的構成の正面図。FIG. 3 is a front view of the basic configuration of the entire optical system of the present invention.

【図4】従来例の光学系全体の基本的構成の側面図。FIG. 4 is a side view of a basic configuration of the entire optical system of a conventional example.

【符号の説明】[Explanation of symbols]

1:光源 2:集光反射鏡 3:均一化レンズ 4:開口絞り 5、6:色分離合成用ダイクロイックミラー 7:コリメータレンズ 8、17、18:反射型液晶素子 9:反射面 10:投射レンズ鏡筒 11:開口絞り 12:反射型液晶素子の長手方向面内で反射鏡面上の基
準線 13:反射型液晶素子の短手方向面内で反射鏡面上の基
準線 14:光学系全体の筐体 15:反射鏡 16:反射型液晶素子の光軸 19:照明光学系の光軸 20:凹レンズ γ:反射型液晶素子の光軸と照明光学系の光軸との傾角 δ:反射型液晶素子の光軸と投射光学系の光軸との傾角 θ:反射型液晶素子の長手方向面内で反射鏡面上の基準
線と照明光学系の光軸のなす角度 ω:反射型液晶素子の短手方向面内で反射鏡面上の基準
線と照明光学系の光軸のなす角度
1: Light source 2: Condensing reflector 3: Uniform lens 4: Aperture stop 5, 6: Dichroic mirror for color separation / synthesis 7: Collimator lens 8, 17, 18: Reflective liquid crystal element 9: Reflecting surface 10: Projection lens Lens tube 11: Aperture stop 12: Reference line on reflective mirror surface in longitudinal plane of reflective liquid crystal element 13: Reference line on reflective mirror surface in lateral direction plane of reflective liquid crystal element 14: Enclosure of entire optical system Body 15: Reflecting mirror 16: Optical axis of reflective liquid crystal element 19: Optical axis of illumination optical system 20: Concave lens γ: Tilt angle between optical axis of reflective liquid crystal element and optical axis of illumination optical system δ: Reflective liquid crystal element Angle between the optical axis of the projection optical system and the optical axis of the projection optical system θ: the angle between the reference line on the reflecting mirror surface and the optical axis of the illumination optical system in the longitudinal plane of the reflection type liquid crystal element ω: short side of the reflection type liquid crystal element Angle between the reference line on the mirror surface in the direction plane and the optical axis of the illumination optical system

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G03B 33/12 G03B 33/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G03B 33/12 G03B 33/12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光源と集光鏡とが備えられた照明光学系
と、透過散乱型の反射型表示素子と、色分解合成光学系
と、投射光学系とが設けられた投射型表示装置におい
て、照明光学系と投射光学系の間の光路に偏心性結像手
段が配置され、短手方向側面から見て反射型表示素子に
入射される主光線の入射角γは2°≦γ≦20°を満足
し、反射型表示素子から出射される主光線の出射角δが
2°≦δ≦20°を満足し、集光鏡と色分解合成光学系
の間に光路を折り曲げる機能を有する反射鏡が配置さ
れ、光源の中心から反射鏡までの光軸と反射鏡の面とが
なす角度が、表示素子の短手方向の面内では、γ/2の
傾きを有し、かつ、表示素子の長手方向の面内では、1
5〜75°の傾きを有することを特徴とする投射型表示
装置。
An illumination optical system including a light source and a condensing mirror, a transmission-scattering reflective display element, a color separation / synthesis optical system, and a projection optical system are provided. An eccentric imaging means is arranged in the optical path between the illumination optical system and the projection optical system, and the incident angle γ of the principal ray incident on the reflective display element as viewed from the lateral side is 2 ° ≦ γ ≦ 20. °, the emission angle δ of the chief ray emitted from the reflective display element satisfies 2 ° ≦ δ ≦ 20 °, and a reflection having a function of bending an optical path between the condenser mirror and the color separation / synthesis optical system. A mirror is disposed, and an angle formed by an optical axis from the center of the light source to the reflecting mirror and a surface of the reflecting mirror has a slope of γ / 2 in a plane in a lateral direction of the display element, and In the longitudinal plane of
A projection display device having an inclination of 5 to 75 [deg.].
【請求項2】光源と集光鏡とが備えられた照明光学系
と、透過散乱型の反射型表示素子と、色分解合成光学系
と、投射光学系とが設けられた投射型表示装置におい
て、反射型表示素子の長手方向が投射型表示装置の底面
にほぼ平行に配置され、投射光学系の上部又は下部に反
射鏡と照明光学系とが配置され、投射光学系の光軸と照
明光学系の光軸とがいずれも投射型表示装置の底面にほ
ぼ平行にかつ底面から見た場合に両者の光軸が30〜1
50°の角度をもって交差するように配置され、照明光
学系の反射鏡が側面から見た場合に照明光学系の光軸に
対してγ/2の傾きを有し、底面から見た場合に照明光
学系の光軸に対して15〜75°の傾きを有し、照明光
学系の反射鏡により反射された光が反射型表示素子に入
射角2°≦γ≦20°で入射し、反射型表示素子から出
射角2°≦δ≦20°で出射し、投射光学系で投射され
ることを特徴とする投射型表示装置。
2. A projection type display apparatus comprising: an illumination optical system provided with a light source and a condenser mirror; a transmission / scattering type reflection type display element; a color separation / synthesis optical system; and a projection optical system. The longitudinal direction of the reflective display element is arranged substantially parallel to the bottom surface of the projection display device, the reflecting mirror and the illumination optical system are arranged above or below the projection optical system, and the optical axis of the projection optical system and the illumination optical system are arranged. The optical axes of the system are substantially parallel to the bottom surface of the projection display device, and when viewed from the bottom surface, both optical axes are 30 to 1
It is arranged so as to intersect at an angle of 50 °, and the reflecting mirror of the illumination optical system has an inclination of γ / 2 with respect to the optical axis of the illumination optical system when viewed from the side, and the illumination when viewed from the bottom. The light having an inclination of 15 to 75 ° with respect to the optical axis of the optical system, the light reflected by the reflector of the illumination optical system is incident on the reflective display element at an incident angle of 2 ° ≦ γ ≦ 20 °, A projection-type display device, wherein light is emitted from a display element at an emission angle of 2 ° ≦ δ ≦ 20 ° and is projected by a projection optical system.
JP9355587A 1997-03-03 1997-12-24 Projection type display device Pending JPH10307277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9355587A JPH10307277A (en) 1997-03-03 1997-12-24 Projection type display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4811597 1997-03-03
JP9-48115 1997-03-03
JP9355587A JPH10307277A (en) 1997-03-03 1997-12-24 Projection type display device

Publications (1)

Publication Number Publication Date
JPH10307277A true JPH10307277A (en) 1998-11-17

Family

ID=26388337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9355587A Pending JPH10307277A (en) 1997-03-03 1997-12-24 Projection type display device

Country Status (1)

Country Link
JP (1) JPH10307277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508557B1 (en) 2000-06-28 2003-01-21 Koninklijke Philips Electronics N.V. Reflective LCD projector
WO2003032048A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co., Ltd. Projection display device and back projection display device using the display device
WO2003032049A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co., Ltd. Projection type display unit, rear projector and multi-vision system
CN100353255C (en) * 2002-12-26 2007-12-05 杨继永 High-brightness liquid-crystal projecting systems

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6508557B1 (en) 2000-06-28 2003-01-21 Koninklijke Philips Electronics N.V. Reflective LCD projector
WO2003032048A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co., Ltd. Projection display device and back projection display device using the display device
WO2003032049A1 (en) * 2001-10-01 2003-04-17 Matsushita Electric Industrial Co., Ltd. Projection type display unit, rear projector and multi-vision system
US6966658B2 (en) 2001-10-01 2005-11-22 Matsushita Electric Industrial Co., Ltd. Projection type display apparatus rear projection and multi-vision system
US7055959B2 (en) 2001-10-01 2006-06-06 Matsushita Electric Industrial Co., Ltd. Projection display device and back projection display device using the display device
US7134757B2 (en) 2001-10-01 2006-11-14 Matsushita Electric Industrial Co., Ltd. Projection type display apparatus, rear projection, and multi-vision system
CN1300624C (en) * 2001-10-01 2007-02-14 松下电器产业株式会社 Projection type display unit, rear projector and multi-vision system
US7255450B2 (en) 2001-10-01 2007-08-14 Matsushita Electric Industrial Co., Ltd. Projection type display apparatus, rear projector and multi-vision system
CN100385286C (en) * 2001-10-01 2008-04-30 松下电器产业株式会社 Projection type display device and back projection type display device using the same
CN100353255C (en) * 2002-12-26 2007-12-05 杨继永 High-brightness liquid-crystal projecting systems

Similar Documents

Publication Publication Date Title
KR100382953B1 (en) Picture display device
JP3509338B2 (en) Optical system of reflective LCD projector
JP2643713B2 (en) LCD projection display
US7460301B2 (en) Image display apparatus, and transmissive screen and reflecting mirror used for same
US20020057420A1 (en) Projection-type display apparatus
US20040001254A1 (en) Offset projection for slim rear projection displays
JPH03241983A (en) Rear projection type receiver
JPH09218379A (en) Wide viewing angle liquid crystal projection lens system
JP4956887B2 (en) Projection optical device and image display device using the same
JP4420087B2 (en) Lighting device and projector
JP3192251B2 (en) Reflective liquid crystal display
US6831707B2 (en) Liquid crystal display element and projection type liquid crystal display device
US6172815B1 (en) Dichroic prism and projection display apparatus
US7331679B2 (en) Reflection unit having a mirror array, and projection display system employing the same
US5839808A (en) Projection optical system
JPH10307277A (en) Projection type display device
JPH10339852A (en) Projection type display device
JP4749712B2 (en) Beam splitter with folded optical path for rear projection display
JP2001221949A (en) Rear projection optical system
JP2707242B2 (en) Projection type liquid crystal display
JP2002090874A (en) Optical device and projection-type display apparatus using the same
JPH10301057A (en) Reflection type projecting display device
JP2005531039A5 (en)
JP2003287809A (en) Rear projection type video display device
JP3277911B2 (en) Projection display device