JPH10306704A - Gas turbine blade - Google Patents

Gas turbine blade

Info

Publication number
JPH10306704A
JPH10306704A JP9119415A JP11941597A JPH10306704A JP H10306704 A JPH10306704 A JP H10306704A JP 9119415 A JP9119415 A JP 9119415A JP 11941597 A JP11941597 A JP 11941597A JP H10306704 A JPH10306704 A JP H10306704A
Authority
JP
Japan
Prior art keywords
steam
blade
cooling
turbine
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9119415A
Other languages
Japanese (ja)
Inventor
Sunao Aoki
素直 青木
Eisaku Ito
栄作 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9119415A priority Critical patent/JPH10306704A/en
Priority to EP98929867A priority patent/EP1010860B1/en
Priority to PCT/JP1998/003055 priority patent/WO2000001928A1/en
Priority claimed from PCT/JP1998/003055 external-priority patent/WO2000001928A1/en
Publication of JPH10306704A publication Critical patent/JPH10306704A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy the cooling performance to be required as a turbine blade, with a low steam amount by making a ratio of the thickness of a gas turbine blade cooled by passing through the steam to the length of a chord a specific value or less. SOLUTION: The steam for cooling flows in a turbine stationary blade 2, for example, from a basic end of a passage (a) of turbine in a radial direction, is returned on the next passage of turbine at a point thereof, and then flows similarly, to cool the stationary blade 2. On this occasion, the more a ratio (t/c) of the thickness of the blade 2 to the length of a chord is reduced, the more a steam flowing speed is increased under a condition that the steam flowing amount is constant. Further the heat conductivity is similarly increased. Whereby by adjusting t/c to be not more than 0.15 corresponding to the minimum heat conductivity required by the cooling performance of the blade, the blade can be effectively cooled, and the low steam flowing amount suitable as a combined cycle, can be kept. Even when the steam is leaked, the plant performance is hardly affected thereby, because the original steam amount for cooling is small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンの翼
中に蒸気を通して有効に冷却する場合に適用されるガス
タービン翼に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine blade applied to a case where steam is efficiently cooled by passing steam through the blade of the gas turbine.

【0002】[0002]

【従来の技術】従来のコンバインドサイクル用のガスタ
ービンを図4〜図6に示す。ガスタービン1にはタービ
ン静翼2と動翼4が交互に配置されている。また静翼2
には冷却蒸気配管3が設けられている。さらに静翼2中
には図6に示すように複数の径方向の流路aが設けられ
ている。
2. Description of the Related Art A conventional combined cycle gas turbine is shown in FIGS. In the gas turbine 1, turbine vanes 2 and rotor blades 4 are alternately arranged. In addition, stationary blade 2
Is provided with a cooling steam pipe 3. Further, a plurality of radial flow paths a are provided in the stationary blade 2 as shown in FIG.

【0003】以上において、ガスタービン1へ図示しな
い燃焼器から高温の主流ガスが送られ、静翼2を介して
動翼4に作用し、高速でロータを回転させ発電が行れ
る。このとき、静翼2には、冷却蒸気配管3から冷却蒸
気3が供給され、翼2内を径方向に流れて、内面から冷
却される。その後蒸気は次の系統へ送られる。
In the above, a high-temperature mainstream gas is sent from a combustor (not shown) to the gas turbine 1 and acts on the moving blades 4 via the stationary blades 2 to rotate the rotor at high speed to generate power. At this time, the cooling steam 3 is supplied from the cooling steam pipe 3 to the stationary blade 2, flows in the blade 2 in the radial direction, and is cooled from the inner surface. Then the steam is sent to the next system.

【0004】このように、コンバインドサイクルでは熱
効率向上のため、蒸気冷却が提案されている。
As described above, in the combined cycle, steam cooling has been proposed in order to improve thermal efficiency.

【0005】また従来の空気によるインピンジ冷却を図
7〜図9に示す。径方向に区画された静翼2の区画内
に、内面と所定の間隔を持ち、かつ多数の孔を持つイン
サート5a〜5cが挿入されている。また翼2の表面に
も所定のパターンの孔があけられている。
FIGS. 7 to 9 show conventional impingement cooling by air. Inserts 5a to 5c having a predetermined interval from the inner surface and having a large number of holes are inserted into the radially divided section of the stationary blade 2. The surface of the wing 2 is also provided with a predetermined pattern of holes.

【0006】冷却空気はインサート5a〜5cにはい
り、図9に示すように、各孔より翼2の内面に向け噴出
し、冷却する。その後、表面の孔より噴出しフィルム冷
却する。
[0006] Cooling air enters the inserts 5a to 5c and blows out from the respective holes toward the inner surface of the wing 2 to cool as shown in FIG. Thereafter, the film is ejected from the holes on the surface to cool the film.

【0007】[0007]

【発明が解決しようとする課題】上記従来のものは次の
ような問題点があった。
The above-mentioned prior art has the following problems.

【0008】(1) インピンジ冷却の場合、インサー
トの挿入の容易さ、およびインサート内の圧力分布の均
一化のため、翼厚とコード長の比t/cが通常0.2以
上となる。
(1) In the case of impingement cooling, the ratio t / c of the blade thickness to the cord length is usually 0.2 or more in order to facilitate the insertion of the insert and to make the pressure distribution in the insert uniform.

【0009】これと同形状のt/cの翼を蒸気冷却に使
用すると、蒸気冷却では対流冷却としなければならない
ので、大量の蒸気が必要となる。
When a blade having the same shape as that of t / c is used for steam cooling, a large amount of steam is required because convection cooling is required for steam cooling.

【0010】(2) したがって、コンバインドサイク
ルの蒸気タービン用蒸気の大半を必要とすることもあ
る。さらに、蒸気冷却配管中でもれがあった場合、コン
バインドサイクル(ボトミングサイクル)に与える影響
が大きく、プラントが機能しなくなる恐れがある。
(2) Therefore, most of the steam for the combined cycle steam turbine may be required. Furthermore, if there is a leak in the steam cooling pipe, the influence on the combined cycle (bottoming cycle) is large, and the plant may not function.

【0011】(3) 複雑な蒸気冷却配管の配管径が大
きくなり、そのコスト・スペース・配管の取り回しが問
題となる。
(3) The diameter of a complicated steam cooling pipe becomes large, and its cost, space, and pipe management become problems.

【0012】[0012]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0013】すなわち、蒸気を通して冷却するガスター
ビン翼において、上記ガスタービン翼の翼厚さとコード
長の比を0.15以下とする。
That is, in a gas turbine blade cooled through steam, the ratio of the blade thickness of the gas turbine blade to the cord length is set to 0.15 or less.

【0014】以上において、冷却用の蒸気はタービン翼
中を流れ翼を冷却する。この場合、蒸気流量を一定とす
れば、翼厚さとコード長の比、t/cが小さくなるほど
蒸気流速は増加する。また熱伝達率も同様に増加する。
In the above, the cooling steam flows through the turbine blades to cool the blades. In this case, assuming that the steam flow rate is constant, the steam flow rate increases as the ratio of the blade thickness to the cord length, t / c, decreases. The heat transfer coefficient also increases.

【0015】したがって、t/cを翼の冷却性能から要
求される最低熱伝達率に対応する0.15以下とするこ
とにより、翼が有効に冷却されるとともに、コンバイン
ドサイクルとしての適切な蒸気流量を維持できる。
Therefore, by setting t / c to 0.15 or less, which corresponds to the minimum heat transfer coefficient required from the cooling performance of the blade, the blade is effectively cooled, and the appropriate steam flow rate as a combined cycle is achieved. Can be maintained.

【0016】よって、仮に蒸気もれがあった場合でも、
もともとの冷却用蒸気量が少ないため、プラント性能に
与える影響が小さい。また、蒸気配管の配管径を小さく
することができる。これはプラントの複雑な配管系統の
省コスト、省スペースに役立つ。
Therefore, even if steam leaks,
Since the original amount of cooling steam is small, the effect on plant performance is small. Further, the diameter of the steam pipe can be reduced. This helps save cost and space in the complex piping system of the plant.

【0017】[0017]

【発明の実施の形態】本発明の実施の一形態を図1〜図
3により説明する。なお、従来例で説明した部分は同一
の番号をつけ説明を省略し、この発明に関する部分を主
体に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The parts described in the conventional example are assigned the same reference numerals, and the description thereof will be omitted. The parts related to the present invention will be mainly described.

【0018】図1にて、蒸気冷却用のガスタービン静翼
2のプロフィルのt/cを0.15以下とする。
In FIG. 1, the profile t / c of the gas turbine stationary blade 2 for steam cooling is set to 0.15 or less.

【0019】以上において、冷却用の蒸気はタービン静
翼2中を、例えば、流路aの基端から径方向に流れ、先
端部で次の流路をリターンし、以下同様に順次流れ静翼
2を冷却する。
In the above description, the cooling steam flows in the turbine vane 2 in the radial direction, for example, from the base end of the flow path a, returns to the next flow path at the tip end, and then flows sequentially in the same manner. Cool 2

【0020】この場合、蒸気流量を一定とすれば、図2
に示すように翼2厚さとコード長の比、t/cが小さく
なるほど蒸気流速は増加する。また熱伝達率も図3に示
すように、同様に増加する。
In this case, if the steam flow rate is constant, FIG.
As shown in the figure, the steam flow velocity increases as the ratio of the blade 2 thickness to the cord length, t / c, decreases. The heat transfer coefficient also increases as shown in FIG.

【0021】したがって、t/cを翼の冷却性能から要
求される最低熱伝達率α1 に対応する0.15以下とす
ることにより、翼が有効に冷却されるとともに、コンバ
インドサイクルとしての適切な低蒸気流量を維持でき
る。
[0021] Therefore, by setting 0.15 corresponding to t / c the minimum heat transfer coefficient alpha 1 required from the cooling performance of the wing, with the wing is effectively cooled, suitable as a combined cycle Low steam flow can be maintained.

【0022】よって、仮に蒸気もれがあった場合でも、
もともとの冷却用蒸気量が少ないため、プラント性能に
与える影響が小さい。また、蒸気配管3の配管径を小さ
くすることができる。これはプラントの複雑な配管系統
の省コスト、省スペースに役立つ。
Therefore, even if there is steam leakage,
Since the original amount of cooling steam is small, the effect on plant performance is small. Further, the pipe diameter of the steam pipe 3 can be reduced. This helps save cost and space in the complex piping system of the plant.

【0023】[0023]

【発明の効果】以上に説明したように、本発明によれば
翼厚さとコード長の比を0.15以下としたので、低蒸
気量で、タービン翼として要求される冷却性能を満すこ
とができる。
As described above, according to the present invention, since the ratio of the blade thickness to the cord length is set to 0.15 or less, it is possible to satisfy the cooling performance required for a turbine blade with a low steam amount. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態の静翼の断面図である。FIG. 1 is a sectional view of a stationary blade according to an embodiment of the present invention.

【図2】上記一形態の作用説明図である。FIG. 2 is an operation explanatory view of the above-described embodiment.

【図3】上記一形態の作用説明図である。FIG. 3 is an operation explanatory view of the embodiment.

【図4】上記一形態および従来例のガスタービンの断面
図である。
FIG. 4 is a cross-sectional view of the gas turbine according to the embodiment and the conventional example.

【図5】同従来例の静翼の詳細図である。FIG. 5 is a detailed view of a stationary blade of the conventional example.

【図6】同従来例の図5のA−A視図である。6 is an AA view of FIG. 5 of the conventional example.

【図7】同従来例の他の例の静翼の縦断面図である。FIG. 7 is a longitudinal sectional view of another example of the stationary blade of the conventional example.

【図8】同従来例の他の例の静翼の横断面図である。FIG. 8 is a cross-sectional view of another example of the conventional stationary vane.

【図9】同従来例の他の例の図8のB部詳細図である。FIG. 9 is a detailed view of a portion B in FIG. 8 of another example of the conventional example.

【符号の説明】[Explanation of symbols]

1 ガスタービン 2 タービン静翼 3 冷却蒸気配管 4 動翼 5a〜5b インサート t 翼厚 c コード長 DESCRIPTION OF SYMBOLS 1 Gas turbine 2 Turbine stationary blade 3 Cooling steam pipe 4 Moving blade 5a-5b Insert t Blade thickness c Cord length

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 蒸気を通して冷却するガスタービン翼に
おいて、上記ガスタービン翼の翼厚さとコード長の比を
0.15以下とすることを特徴とするガスタービン翼。
1. A gas turbine blade for cooling through steam, wherein a ratio between a blade thickness of the gas turbine blade and a cord length is 0.15 or less.
JP9119415A 1997-05-09 1997-05-09 Gas turbine blade Withdrawn JPH10306704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9119415A JPH10306704A (en) 1997-05-09 1997-05-09 Gas turbine blade
EP98929867A EP1010860B1 (en) 1997-05-09 1998-07-07 Gas turbine blade
PCT/JP1998/003055 WO2000001928A1 (en) 1997-05-09 1998-07-07 Gas turbine blade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9119415A JPH10306704A (en) 1997-05-09 1997-05-09 Gas turbine blade
PCT/JP1998/003055 WO2000001928A1 (en) 1997-05-09 1998-07-07 Gas turbine blade

Publications (1)

Publication Number Publication Date
JPH10306704A true JPH10306704A (en) 1998-11-17

Family

ID=14760909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9119415A Withdrawn JPH10306704A (en) 1997-05-09 1997-05-09 Gas turbine blade

Country Status (1)

Country Link
JP (1) JPH10306704A (en)

Similar Documents

Publication Publication Date Title
US6506013B1 (en) Film cooling for a closed loop cooled airfoil
US5488825A (en) Gas turbine vane with enhanced cooling
US4183716A (en) Air-cooled turbine blade
US6036441A (en) Series impingement cooled airfoil
US5695319A (en) Gas turbine
US8870537B2 (en) Near-wall serpentine cooled turbine airfoil
US7497655B1 (en) Turbine airfoil with near-wall impingement and vortex cooling
JP6283462B2 (en) Turbine airfoil
US6435814B1 (en) Film cooling air pocket in a closed loop cooled airfoil
JP3238344B2 (en) Gas turbine vane
EP1001137A2 (en) Axial serpentine cooled airfoil
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
JP4627840B2 (en) Pressure compensated turbine nozzle
KR100658013B1 (en) Stator Vane and Method for Cooling Stator Vane
US3844678A (en) Cooled high strength turbine bucket
JP2011522158A (en) Turbine airfoil with metering cooling cavity
US6261054B1 (en) Coolable airfoil assembly
JP2009191848A (en) Method and device for cooling rotary component in steam turbine
KR20010101372A (en) Method of cooling a combustion turbine
US20040101400A1 (en) Cooled turbine assembly
JP2953842B2 (en) Turbine vane
EP1094200A1 (en) Gas turbine cooled moving blade
US6939107B2 (en) Spanwisely variable density pedestal array
US20030082050A1 (en) Device for sealing turbomachines
JP4867203B2 (en) gas turbine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040803