JPH10303264A - Method and device for evaluating film quality of semiconductor component - Google Patents

Method and device for evaluating film quality of semiconductor component

Info

Publication number
JPH10303264A
JPH10303264A JP12494597A JP12494597A JPH10303264A JP H10303264 A JPH10303264 A JP H10303264A JP 12494597 A JP12494597 A JP 12494597A JP 12494597 A JP12494597 A JP 12494597A JP H10303264 A JPH10303264 A JP H10303264A
Authority
JP
Japan
Prior art keywords
electron
semiconductor device
film quality
stage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12494597A
Other languages
Japanese (ja)
Inventor
Shigeki Amano
茂樹 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMC Japan Co Ltd
Original Assignee
Nippon Steel Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Semiconductor Corp filed Critical Nippon Steel Semiconductor Corp
Priority to JP12494597A priority Critical patent/JPH10303264A/en
Publication of JPH10303264A publication Critical patent/JPH10303264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for the film quality of a semiconductor component, which can appropriately, precisely and stably take measurement. SOLUTION: A film quality of a semiconductor component 4 is evaluated without contact. An electron application device 7 irradiating the semiconductor component placed on a stage 1 with electrons 9 and a measuring ammeter 2 and a voltmeter 3, which are connected to the stage 1, are provided. The electrons 9 are supplied to the measurement object area of the semiconductor component 4 from the electron application device 7. Current and voltage are measured on the stage 1. The electron application device 7 contains an electron generation means, an electric field and focus lens means, an electron measuring means, a measured position recognizing means and a vacuum exhausting means. The film quality of an oxide film is evaluated for the semiconductor component 4 by using an electron application method without contact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子における
膜質特性を、特に非接触で測定し得る評価装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaluation apparatus capable of non-contactly measuring film quality characteristics of a semiconductor device.

【0002】[0002]

【従来の技術】従来、半導体素子の膜質特性、例えばゲ
−ト酸化膜の測定方法において、ゲ−ト酸化膜上に作成
したゲ−ト電極上に直接、測定用針を突き立ててI−V
測定を行い、その測定結果から酸化膜の膜質評価をして
いる。
2. Description of the Related Art Conventionally, in a method for measuring film quality characteristics of a semiconductor device, for example, a gate oxide film, a measuring needle is directly protruded on a gate electrode formed on the gate oxide film to obtain an I-electrode. V
The measurement is performed, and the quality of the oxide film is evaluated from the measurement results.

【0003】図6は、従来の測定方法の例を示してい
る。図6において、ステ−ジ20上にウェハ21を置
き、測定用針22を測定対象位置に突き立てる。測定に
際してステ−ジ20側は、例えば電位0Vまたは接地さ
れている。この場合、図7に示すように、ウェハ21の
ゲ−ト酸化膜23上に作成されたゲ−ト電極24に対し
て直接、測定用針22が突き立てられる。図8は、この
ようにして測定された従来方法によるI−V測定結果を
示している。
FIG. 6 shows an example of a conventional measuring method. In FIG. 6, a wafer 21 is placed on a stage 20, and a measuring needle 22 is pushed up to a position to be measured. At the time of measurement, the stage 20 side is, for example, at a potential of 0 V or grounded. In this case, as shown in FIG. 7, the measuring needle 22 is directly protruded against the gate electrode 24 formed on the gate oxide film 23 of the wafer 21. FIG. 8 shows the results of IV measurement according to the conventional method measured in this way.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の測定
方法において測定用針22は、図示されていない支持手
段によって支持されている。測定対象位置(ゲ−ト電極
24)に対する測定用針22の接触圧力は、ゲ−ト電極
24の下に位置するゲ−ト酸化膜23へ伝わり、酸化膜
を積極的に薄くしてしまう。このため図8から明らかな
ように測定用針22の接触圧力の大小によって、電流測
定値に影響を与える。このように機械的な接触による従
来の測定方法もしくは装置では、適正で正確な測定を行
うのが困難であった。
By the way, in the conventional measuring method, the measuring needle 22 is supported by supporting means (not shown). The contact pressure of the measurement needle 22 with respect to the measurement target position (gate electrode 24) is transmitted to the gate oxide film 23 located below the gate electrode 24, and the oxide film is positively thinned. Therefore, as is apparent from FIG. 8, the magnitude of the contact pressure of the measuring needle 22 affects the measured current value. As described above, it is difficult to perform proper and accurate measurement with the conventional measurement method or apparatus using mechanical contact.

【0005】そこで、本発明は、適正かつ正確な測定を
安定的に行い得る半導体素子の膜質評価方法および装置
を提供することを目的とする。
Accordingly, an object of the present invention is to provide a method and an apparatus for evaluating the film quality of a semiconductor device, which can stably perform proper and accurate measurements.

【0006】[0006]

【課題を解決するための手段】本発明による半導体素子
の膜質評価方法は、半導体素子の膜質を非接触で評価す
る方法であって、測定対象領域に電子を供給し、単位時
間あたりの電子供給量を測定して電子電流を求め、さら
に測定対象領域からのリーク電流を前記電子電流から電
圧に変換し、半導体素子からの電流および電圧を測定す
る。また、本発明の半導体素子の膜質評価方法におい
て、半導体素子をステージ上に載置し、このステージ側
で前記リーク電流を測定することを特徴とする。
A method for evaluating the film quality of a semiconductor device according to the present invention is a method for evaluating the film quality of a semiconductor device in a non-contact manner, comprising supplying electrons to a measurement target area and supplying electrons per unit time. The amount is measured to obtain an electron current, and the leak current from the measurement target area is converted from the electron current to a voltage, and the current and voltage from the semiconductor element are measured. In the method for evaluating a film quality of a semiconductor device according to the present invention, the semiconductor device is mounted on a stage, and the leakage current is measured on the stage side.

【0007】また、本発明の半導体素子の膜質評価装置
は、半導体素子の膜質を非接触で評価する装置であっ
て、ステージ上に載置した半導体素子に対して電子を照
射する電子印加装置と、前記ステージに接続された測定
用電流計および電圧計と、を備え、前記電子印加装置か
ら半導体素子の測定対象領域に電子を供給すると共に、
前記ステージ側で電流または電圧を測定する。
A film quality evaluation device for a semiconductor device according to the present invention is a device for evaluating the film quality of a semiconductor device in a non-contact manner, comprising an electron application device for irradiating a semiconductor device mounted on a stage with electrons. , Comprising a measuring ammeter and a voltmeter connected to the stage, and supplying electrons from the electron applying device to a measurement target region of a semiconductor element,
Current or voltage is measured on the stage side.

【0008】また、本発明の半導体素子の膜質評価装置
において、前記電子印加装置は、電子発生手段、電界お
よび焦点レンズ手段、電子計測手段、測定位置確認手段
および真空排気手段を含んでいることを特徴とする。ま
た、本発明の半導体素子の膜質評価装置において、評価
すべき半導体素子は前記ステ−ジ上に吸着されて、常圧
の環境で測定されることを特徴とする。また、本発明の
半導体素子の膜質評価装置において、電子計測手段とし
て光電子増倍管を備え、この光電子増倍管により、照射
する電子量の単位時間あたりの量を測定することを特徴
とする。また、本発明の半導体素子の膜質評価装置にお
いて、評価すべき半導体素子は、半導体基板上にある酸
化膜の上に導電型の電極を有することを特徴とすること
を特徴とする。
Further, in the apparatus for evaluating the film quality of a semiconductor device according to the present invention, the electron applying device includes an electron generating means, an electric field and focusing lens means, an electronic measuring means, a measuring position confirming means and a vacuum exhaust means. Features. Further, in the film quality evaluation apparatus for a semiconductor device according to the present invention, the semiconductor device to be evaluated is adsorbed on the stage and measured in a normal pressure environment. Further, the apparatus for evaluating the film quality of a semiconductor device according to the present invention is characterized in that a photomultiplier tube is provided as an electron measuring means, and the amount of irradiated electrons per unit time is measured by the photomultiplier tube. In the film quality evaluation apparatus for a semiconductor device according to the present invention, the semiconductor device to be evaluated is characterized by having a conductive electrode on an oxide film on a semiconductor substrate.

【0009】本発明によれば、半導体素子に対して非接
触による電子印加方法を用いて酸化膜の膜質評価方法を
実現する。すなわち、前述の課題を解決するために、測
定対象領域であるゲ−ト電極に電子を供給することによ
り、そのゲ−ト酸化膜の膜質評価をするというものであ
る。
According to the present invention, a method for evaluating the quality of an oxide film is realized by using a method for applying electrons in a non-contact manner to a semiconductor element. That is, in order to solve the above-mentioned problem, by supplying electrons to a gate electrode which is a measurement target region, the film quality of the gate oxide film is evaluated.

【0010】本発明において、電子をゲ−ト電極に供給
する電子銃を持つ。この電子銃内で光電子増倍管を用
い、単位時間あたりの電子供給量を電流ならびに電圧に
置き換える。かつウェハ裏面からステ−ジを経由して電
流ならびに電圧を測定することで常圧での評価を可能に
した。
In the present invention, an electron gun for supplying electrons to the gate electrode is provided. A photomultiplier tube is used in this electron gun, and the amount of electrons supplied per unit time is replaced with current and voltage. In addition, by measuring the current and the voltage from the back surface of the wafer via the stage, evaluation at normal pressure is made possible.

【0011】[0011]

【発明の実施の形態】以下、図面に基づき、本発明によ
る半導体素子の評価装置の好適な実施の形態を説明す
る。図1は、本発明の実施形態における装置全体の構成
例を示している。図1において、測定対象となるウェハ
4を装着するステ−ジ1には電流計2と電圧計3が接続
されている。測定対象であるウェハ4はステ−ジ1上に
載置され、真空引きによって吸着固定されている。ウェ
ハ4と電子印加銃7の間隔は、数μm程度に設定され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a semiconductor device evaluation apparatus according to the present invention will be described below with reference to the drawings. FIG. 1 shows a configuration example of an entire apparatus according to an embodiment of the present invention. In FIG. 1, an ammeter 2 and a voltmeter 3 are connected to a stage 1 on which a wafer 4 to be measured is mounted. The wafer 4 to be measured is placed on the stage 1 and is suction-fixed by evacuation. The distance between the wafer 4 and the electron application gun 7 is set to about several μm.

【0012】電子印加銃7には、外部から後述の電子発
生管(E−GUN)をコントロ−ルするための電源5と
単位時間あたりの電子量の測定結果を出力するための配
線6とが接続されている。また、電子印加銃7を例えば
1×10-6Pa以上の真空を維持するために真空排気用
の配管8を備える。なお、この配管8は、図示しない真
空バキューム源に接続されている。
The electron application gun 7 has a power supply 5 for externally controlling an electron generating tube (E-GUN), which will be described later, and a wiring 6 for outputting a measurement result of the amount of electrons per unit time. It is connected. Further, in order to maintain the electron application gun 7 at a vacuum of, for example, 1 × 10 −6 Pa or more, a pipe 8 for evacuation is provided. The pipe 8 is connected to a vacuum vacuum source (not shown).

【0013】電子印加銃7から照射された電子9は、ウ
ェハ4に照射され、ウェハ4のゲ−ト電極(図7参照)
に蓄積されていく。蓄積された電子は、ゲ−ト酸化膜の
膜質により徐々に該ゲ−ト酸化膜を通じてウェハ4内に
流れ込み、ステ−ジ1を通じて外部電流計2および電圧
計3によって測定される。
The electrons 9 radiated from the electron gun 7 irradiate the wafer 4 and the gate electrode of the wafer 4 (see FIG. 7).
Will be accumulated. The accumulated electrons gradually flow into the wafer 4 through the gate oxide film due to the film quality of the gate oxide film, and are measured by the external ammeter 2 and the voltmeter 3 through the stage 1.

【0014】ここで図2は、電子印加銃7の構成例を示
している。電子印加銃7はその内部に、電子発生管1
0、電界レンズ11、焦点レンズ12、光電子増倍管
(電子計測手段)13およびCCDカメラ(測定位置確
認手段)14を含んでいる。電子発生管10にて例えば
120keVの電源で発生した電子9は、電界レンズ1
1内を通過することで、エネルギー的に等価な電子のみ
が通過する。この電子9はつぎに、焦点レンズ12を経
由して電子印加銃7から照射される。
FIG. 2 shows an example of the configuration of the electron application gun 7. The electron applying gun 7 has an electron generating tube 1 therein.
0, an electric field lens 11, a focus lens 12, a photomultiplier tube (electronic measurement means) 13, and a CCD camera (measurement position confirmation means) 14. Electrons 9 generated by a power supply of, for example, 120 keV in the electron generating tube 10
By passing through 1, only energetically equivalent electrons pass. Next, the electrons 9 are emitted from the electron application gun 7 via the focusing lens 12.

【0015】このとき照射される電子量は、測定前に光
電子増倍管13を用いて単位時間あたりの電子数をカウ
ントすることで、単位時間あたりの電流値として用られ
る。また、電子印加銃7には、CCDカメラ14が設置
されており、測定位置を特定することができるようにな
っている。従って、半導体素子における測定対象領域を
正確に把握することができる。
The amount of electrons irradiated at this time is used as a current value per unit time by counting the number of electrons per unit time using a photomultiplier tube 13 before measurement. Further, a CCD camera 14 is provided on the electron application gun 7 so that a measurement position can be specified. Therefore, the measurement target region in the semiconductor element can be accurately grasped.

【0016】例えば図3は、光電子増倍管13で得られ
た電子印加時間に対する電子量の変化の例を示してい
る。ある一定時間、例えば10秒間程度測定した場合に
は、5〜10秒間における電子量変化の傾きから単位時
間あたりの電子数を用いるものとする。また、電子電流
は単位時間あたりの電子量として求めることができるの
で、図3で説明した電子量の測定結果から電流へ変換す
ることができる(図4参照)。
For example, FIG. 3 shows an example of a change in the amount of electrons with respect to the electron application time obtained by the photomultiplier 13. When the measurement is performed for a certain period of time, for example, about 10 seconds, the number of electrons per unit time is used from the slope of the change in the amount of electrons in 5 to 10 seconds. Further, since the electron current can be obtained as the amount of electrons per unit time, the measurement result of the amount of electrons described with reference to FIG. 3 can be converted into a current (see FIG. 4).

【0017】さらに図5は、電子印加銃7が電子を印加
する電子印加時間とステ−ジ1から電流計2によって得
られた電流との関係を示している。ゲ−ト酸化膜のリ−
ク電流は、初期の電子供給量では大きな変動が見られな
い。ゲ−ト酸化膜に一定量の電子が蓄積されると電位差
が次第に大きくなり、電流が流れ始める。電子印加銃7
による印加電子量を越えたところで電流計2の電流値が
一定量となる。この測定デ−タから一定の電流、例えば
1nA程度流れたときの時間を印加電子の電流値から電
圧値に変換することで、ゲ−ト酸化膜のI−V特性を評
価することができる。
FIG. 5 shows the relationship between the electron application time during which the electron application gun 7 applies electrons and the current obtained from the stage 1 by the ammeter 2. Gate oxide film lead
In the initial current, a large fluctuation is not observed in the initial electron supply amount. When a certain amount of electrons are accumulated in the gate oxide film, the potential difference gradually increases, and a current starts to flow. Electron application gun 7
The current value of the ammeter 2 becomes a fixed amount when the applied electron amount exceeds. The IV characteristic of the gate oxide film can be evaluated by converting the time when a constant current, for example, about 1 nA, flows from the measurement data from the current value of the applied electrons to a voltage value.

【0018】なお、上記実施形態においては、特に半導
体素子のゲート酸化膜の測定、評価の例で説明したが、
本発明はゲート酸化膜に限らずその他の膜質に対しても
有効に適用可能であり、上述した実施形態の場合と同様
な作用効果を得ることができる。
In the above embodiment, the example of measurement and evaluation of a gate oxide film of a semiconductor device has been described.
The present invention can be effectively applied not only to the gate oxide film but also to other film qualities, and the same operational effects as those of the above-described embodiment can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、非
接触によるゲ−ト酸化膜の評価方法として電子量を用い
ることにより、測定値変動がなく正確な測定を行うこと
ができる。このように正確な測定を安定して行えること
で、この種の半導体素子を適正に評価することができる
等の利点を有している。
As described above, according to the present invention, accurate measurement can be performed without fluctuation of measured values by using the amount of electrons as a method for evaluating a gate oxide film in a non-contact manner. Since such accurate measurement can be stably performed, there is an advantage that such a semiconductor element can be appropriately evaluated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による半導体素子の膜質評価装置の実施
形態における全体構成例を示す図である。
FIG. 1 is a diagram showing an example of the overall configuration of a semiconductor element film quality evaluation apparatus according to an embodiment of the present invention.

【図2】本発明による半導体素子の膜質評価装置に係る
電子印加銃の構成例を示す図である。
FIG. 2 is a diagram showing a configuration example of an electron application gun according to the semiconductor element film quality evaluation apparatus according to the present invention.

【図3】本発明における電子量と時間の関係の1例を示
す図である。
FIG. 3 is a diagram showing an example of the relationship between the amount of electrons and time in the present invention.

【図4】本発明における電子数と電子電流の関係の1例
を示す図である。
FIG. 4 is a diagram showing an example of the relationship between the number of electrons and the electron current in the present invention.

【図5】本発明における電子電流と電流測定値の関係の
1例を示す図である。
FIG. 5 is a diagram illustrating an example of a relationship between an electron current and a measured current value in the present invention.

【図6】従来の膜質評価方法の1例を説明するための図
である。
FIG. 6 is a diagram for explaining an example of a conventional film quality evaluation method.

【図7】従来の膜質評価方法の1例におけるゲ−ト酸化
膜の構造を説明するための図である。
FIG. 7 is a view for explaining the structure of a gate oxide film in one example of a conventional film quality evaluation method.

【図8】従来方法による針圧の変化とI−V特性の関係
を示す図である。
FIG. 8 is a diagram showing a relationship between a change in stylus pressure and an IV characteristic according to a conventional method.

【符号の説明】[Explanation of symbols]

1 ウェハステ−ジ 2 電流計 3 電圧計 4 ウェハ 5 コントロ−ル系電源 6 電子カウンティング出力用の配線 7 電子印加銃 8 真空排気用配管 9 照射電子 10 電子発生管 11 電界レンズ 12 焦点レンズ 13 光電子増倍管 14 CCDカメラ 23 ゲ−ト酸化膜 24 ゲ−ト電極 DESCRIPTION OF SYMBOLS 1 Wafer stage 2 Ammeter 3 Voltmeter 4 Wafer 5 Control system power supply 6 Wiring for electronic counting output 7 Electron application gun 8 Vacuum exhaust piping 9 Irradiation electron 10 Electron generation tube 11 Electric field lens 12 Focus lens 13 Photoelectron increase Doubler 14 CCD camera 23 Gate oxide film 24 Gate electrode

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子の膜質を非接触で評価する方
法であって、 測定対象領域に電子を供給し、単位時間あたりの電子供
給量を測定して電子電流を求め、さらに測定対象領域か
らのリーク電流を前記電子電流から電圧に変換し、半導
体素子からの電流および電圧を測定することを特徴とす
る半導体素子の膜質評価方法。
1. A method for evaluating the film quality of a semiconductor device in a non-contact manner, comprising supplying electrons to a measurement target area, measuring an electron supply amount per unit time to obtain an electron current, and further calculating an electron current from the measurement target area. Converting the leak current from the electron current to a voltage and measuring the current and voltage from the semiconductor element.
【請求項2】 請求項1に記載の半導体素子の膜質評価
方法において、 前記半導体素子をステージ上に載置し、このステージ側
で前記リーク電流を測定することを特徴とする半導体素
子の膜質評価方法。
2. The method for evaluating film quality of a semiconductor device according to claim 1, wherein the semiconductor device is mounted on a stage, and the leakage current is measured on the stage side. Method.
【請求項3】 半導体素子の膜質を非接触で評価する装
置であって、 ステージ上に載置した半導体素子に対して電子を照射す
る電子印加装置と、 前記ステージに接続された測定用電流計および電圧計
と、を備え、 前記電子印加装置から半導体素子の測定対象領域に電子
を供給すると共に、前記ステージ側で電流または電圧を
測定することを特徴とする半導体素子の膜質評価装置。
3. An apparatus for non-contactly evaluating the film quality of a semiconductor device, comprising: an electron application device for irradiating a semiconductor device mounted on a stage with electrons; and a measuring ammeter connected to the stage. And a voltmeter, wherein an electron is supplied from the electron applying device to a measurement target region of the semiconductor element, and a current or a voltage is measured on the stage side.
【請求項4】 前記電子印加装置は、電子発生手段、電
界および焦点レンズ手段、電子計測手段、測定位置確認
手段および真空排気手段を含んでいることを特徴とする
請求項3に記載の半導体素子の膜質評価装置。
4. The semiconductor device according to claim 3, wherein said electron applying device includes an electron generating unit, an electric field and focusing lens unit, an electronic measuring unit, a measuring position confirming unit, and a vacuum exhausting unit. Film quality evaluation device.
【請求項5】 請求項3に記載の半導体素子の膜質評価
装置において、 評価すべき半導体素子は前記ステ−ジ上に吸着されて、
常圧の環境で測定されることを特徴とする半導体素子の
膜質評価装置。
5. The apparatus for evaluating film quality of a semiconductor device according to claim 3, wherein the semiconductor device to be evaluated is adsorbed on the stage,
An apparatus for evaluating film quality of a semiconductor device, wherein the film quality is measured in a normal pressure environment.
【請求項6】 電子計測手段として光電子増倍管を備
え、この光電子増倍管により、照射する電子量の単位時
間あたりの量を測定することを特徴とする請求項4に記
載の半導体素子の膜質評価装置。
6. The semiconductor device according to claim 4, wherein a photomultiplier tube is provided as the electron measuring means, and the amount of irradiated electrons per unit time is measured by the photomultiplier tube. Film quality evaluation device.
【請求項7】 評価すべき半導体素子は、半導体基板上
にある酸化膜の上に導電型の電極を有することを特徴と
することを特徴とする請求項3に記載の半導体素子の膜
質評価装置。
7. The apparatus for evaluating film quality of a semiconductor device according to claim 3, wherein the semiconductor device to be evaluated has a conductive electrode on an oxide film on a semiconductor substrate. .
JP12494597A 1997-04-28 1997-04-28 Method and device for evaluating film quality of semiconductor component Pending JPH10303264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12494597A JPH10303264A (en) 1997-04-28 1997-04-28 Method and device for evaluating film quality of semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12494597A JPH10303264A (en) 1997-04-28 1997-04-28 Method and device for evaluating film quality of semiconductor component

Publications (1)

Publication Number Publication Date
JPH10303264A true JPH10303264A (en) 1998-11-13

Family

ID=14898094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12494597A Pending JPH10303264A (en) 1997-04-28 1997-04-28 Method and device for evaluating film quality of semiconductor component

Country Status (1)

Country Link
JP (1) JPH10303264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032652A (en) * 2013-08-01 2015-02-16 信越半導体株式会社 Method and device for evaluating semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032652A (en) * 2013-08-01 2015-02-16 信越半導体株式会社 Method and device for evaluating semiconductor substrate

Similar Documents

Publication Publication Date Title
JP4637684B2 (en) Charged particle beam application equipment
TWI373791B (en) Proximity deposition
US4967152A (en) Apparatus including a focused UV light source for non-contact measurement and alteration of electrical properties of conductors
JP4828162B2 (en) Electron microscope application apparatus and sample inspection method
CA1220559A (en) Noncontact dynamic tester for integrated circuits
US4837506A (en) Apparatus including a focused UV light source for non-contact measuremenht and alteration of electrical properties of conductors
JP2014521932A (en) Electrical inspection of electronic equipment using electron beam induction plasma probe
JP2006019301A (en) Electron beam adjusting method, charged particle optical system control device and scanning electron microscope
JP2001319608A (en) Micro-focusing x-ray generator
US20090242800A1 (en) Electron-beam dimension measuring apparatus and electron-beam dimension measuring method
JP3075468B2 (en) Electron beam drawing method and electron beam drawing apparatus
JPS607049A (en) Electric potential measuring device
JPS63231858A (en) Electron beam device
JPH0330258B2 (en)
JPH10303264A (en) Method and device for evaluating film quality of semiconductor component
JP6539779B2 (en) Charged particle microscope and sample imaging method
US6369590B1 (en) Apparatus and method using photoelectric effect for testing electrical traces
JP3343421B2 (en) Charged particle beam equipment
US7205539B1 (en) Sample charging control in charged-particle systems
JPH0689850A (en) Electron beam aligner
JP2007078537A (en) Electron beam dimension measuring device and electron beam dimension measuring method
JP4954470B2 (en) Current measuring device
JP2655513B2 (en) Electron beam exposure equipment
JP3577593B2 (en) General-purpose secondary electron emission rate measuring instrument
JPH1074737A (en) Ion beam processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050519

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A02 Decision of refusal

Effective date: 20051004

Free format text: JAPANESE INTERMEDIATE CODE: A02