JPH10302329A - Manufacture of optical recording medium - Google Patents

Manufacture of optical recording medium

Info

Publication number
JPH10302329A
JPH10302329A JP10958697A JP10958697A JPH10302329A JP H10302329 A JPH10302329 A JP H10302329A JP 10958697 A JP10958697 A JP 10958697A JP 10958697 A JP10958697 A JP 10958697A JP H10302329 A JPH10302329 A JP H10302329A
Authority
JP
Japan
Prior art keywords
substrate
recording medium
optical recording
force
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10958697A
Other languages
Japanese (ja)
Inventor
Toshifumi Kawano
敏史 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10958697A priority Critical patent/JPH10302329A/en
Publication of JPH10302329A publication Critical patent/JPH10302329A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a medium with stable and small warp irrespective of dispersion of stress in the process even when a thin plastic substrate is used and to relax restriction on the design of medium by adding such a force as to form flatness at a fixed time to settle the deflection irreversibly onto an optical recording medium. SOLUTION: A substrate 1, in a state that required layers such as a recording film, a protection coating, a coating on the optical incident plane and the like are formed on a polycarbonate base material, is held by flatening members 2 and then is pressed with a pressing force 3. The flatening members 2 are equipped with soft structure such as teflon and the like on the surface contacting the substrate 1 so that the force is uniformly added and the substrate 1 is not damaged not contaminated. The pressure is set on 1-6 kg for the substrate 1 with an outer diameter of 120 mm. In order to secure a sufficient enough flatening, pressure is applied for more than 30 minutes. In order to shorten the time of pressing, the substrate 1 is heated. Preferably, the heating temperature T is set in a range (Tg-80 deg.C)<=T<=(Tg-20 deg.C) as for the glass transmission temperature Tg of the base material plastics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は情報記録に用いられる光
記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical recording medium used for recording information.

【0002】[0002]

【従来の技術とその課題】光記録媒体は、高密度、低コ
ストの情報記録媒体として実用化されている。例えば音
楽用途のCD(コンパクトディスク)、映像用途のLD
(レーザーディスク)あるいはデータ記録用の光磁気デ
ィスク、相変化ディスク等が知られている。情報の記録
再生は、基板に設けられた凹凸ピットによる反射率変
化、あるいは記録膜の結晶化とアモルファス化による反
射率変化、あるいは磁性体の磁化方向による直線偏光の
回転により行われる。
2. Description of the Related Art Optical recording media have been put to practical use as high-density, low-cost information recording media. For example, CD (compact disk) for music, LD for video
(Laser disk), magneto-optical disks for data recording, phase change disks, and the like are known. Recording and reproduction of information are performed by a change in reflectivity due to uneven pits provided on the substrate, a change in reflectivity due to crystallization and amorphization of the recording film, or a rotation of linearly polarized light due to a magnetization direction of a magnetic material.

【0003】これらの媒体においては、表面の埃ないし
傷の影響を小さくするために、透明基板を用いて光を基
板側から入射するのが通常である。この基板の厚みは例
えばCD等では1.2mmのものが用いられている。基
板の材質には安価でかつ射出成形法により高速に作成で
きる透明樹脂基板が殆どの場合用いられる。特に安価で
特性バランスの優れたポリカーボネートが多く用いられ
ている。
[0003] In these media, light is normally incident from the substrate side using a transparent substrate in order to reduce the influence of dust or scratches on the surface. The thickness of this substrate is, for example, 1.2 mm for a CD or the like. As the material of the substrate, a transparent resin substrate which is inexpensive and can be formed at a high speed by an injection molding method is used in most cases. Particularly, polycarbonates which are inexpensive and have excellent property balance are often used.

【0004】ところで近年の光ディスクの大容量化に伴
い、記録再生光の対物レンズの開口数(NA)を上げて
光をより集光しようとする試みがなされている。集光ス
ポット径はレンズのNAに反比例するため、NAを大き
くすれば集光スポット径を小さくでき、より微小な記録
再生が可能となる。ところが、この高NA化に伴い基板
反りに対する許容値が著しく減少するという問題が発生
した。すなわち基板が反っていると、集光スポットに収
差を生じ、再生信号の分解能低下や、隣接トラックの信
号の影響(クロストーク)の増大といった問題が発生す
る。この収差はNAの3乗に比例して増加するため、N
Aの増加により反りの許容値は減少する。この問題を解
決するために基板の厚みを低下させことが提案されてい
る。例えば近年製品化されたDVD(デジタルビデオデ
ィスク)においては、基板厚みを0.6mmとして、反
りに対する許容範囲を上げている。
With the recent increase in the capacity of optical disks, attempts have been made to increase the numerical aperture (NA) of the objective lens for recording / reproducing light so as to condense light more. The diameter of the focused spot is inversely proportional to the NA of the lens. Therefore, if the NA is increased, the diameter of the focused spot can be reduced, and finer recording and reproduction can be performed. However, with the increase in NA, there has been a problem that the allowable value for substrate warpage is significantly reduced. That is, if the substrate is warped, aberration occurs in the condensed spot, causing problems such as a decrease in the resolution of the reproduction signal and an increase in the influence (crosstalk) of the signal of the adjacent track. Since this aberration increases in proportion to the cube of NA, N
As the value of A increases, the allowable value of the warpage decreases. To solve this problem, it has been proposed to reduce the thickness of the substrate. For example, in a DVD (digital video disc) that has recently been commercialized, the thickness of the substrate is set to 0.6 mm to increase the allowable range for warpage.

【0005】ところがこの様に基板厚みを低減すると、
基板自体の剛性は著しく低下する。光記録媒体において
は、記録膜からの応力、記録膜上の紫外線硬化樹脂等に
よる保護コートによる応力、場合によっては光入射側に
設けるコート剤からの応力も基板に働く。その結果基板
の剛性の低下により、これらの応力による著しい反りが
発生し、基板の厚みを低減したことによる反りの許容値
の増加分以上に反りを大きくしてしまう。もちろん基板
成形時の反り、記録膜の膜応力、コート剤の応力等を全
て含めて最終的に基板が平坦となるように設計すること
は原理的に可能である。しかし、こういった設計は他の
特性をも考慮した媒体構成の許容範囲を著しく制限する
上、媒体製造過程におけるわずかな応力のばらつきが、
最終的に大きな反りのばらつきをもたらし、結果的に製
造上の歩留まりを著しく低下させることが懸念される。
こういった問題は2面の基板を貼合わせて用いる場合も
生じるが、単一の基板を用いる場合に特に顕著になる。
However, when the substrate thickness is reduced in this way,
The rigidity of the substrate itself is significantly reduced. In the optical recording medium, the stress from the recording film, the stress due to the protective coating of the ultraviolet ray curable resin or the like on the recording film, and in some cases, the stress from the coating agent provided on the light incident side also act on the substrate. As a result, due to a decrease in the rigidity of the substrate, remarkable warpage occurs due to these stresses, and the warpage becomes larger than the increase in the allowable value of the warpage due to the reduction in the thickness of the substrate. Of course, it is possible in principle to design the substrate to be finally flat, including all of the warpage in forming the substrate, the film stress of the recording film, the stress of the coating agent, and the like. However, such a design severely limits the allowable range of the media configuration in consideration of other characteristics, and the slight variation in stress during the media manufacturing process causes
There is a concern that ultimately a large warpage variation may be caused, resulting in a significant reduction in manufacturing yield.
Such a problem may occur when two substrates are bonded to each other, but is particularly remarkable when a single substrate is used.

【0006】[0006]

【課題を解決するための手段】本発明者等は上記問題点
を解決するため鋭意検討した結果、光記録媒体に平坦と
なるような力を一定時間加えることにより、それ以前の
工程での応力のばらつきにかかわりなく平坦な形状とな
すことができることを見出した。本発明の要旨は、樹脂
基板を用いた光記録媒体の製造方法において、基板成形
後、前記基板に情報記録領域の形状がより平坦となるよ
うな力を加える工程(加力工程)を含むことを特徴とす
る光記録媒体の製造方法に存する。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, by applying a force for flattening the optical recording medium for a certain period of time, the stress in the previous process is reduced. It has been found that a flat shape can be formed irrespective of the variation of. The gist of the present invention is that, in a method of manufacturing an optical recording medium using a resin substrate, the method includes a step of applying a force such that the shape of an information recording area becomes flatter on the substrate after the substrate is formed (force applying step). The method for manufacturing an optical recording medium is characterized by the following.

【0007】[0007]

【発明の構成】本発明に用いられる光記録媒体の基板は
透明な樹脂基板であれば特に材質は問わないが、好まし
くはポリカーボネート、ポリメチルメタクリルレート
(PMMA)等が用いられ、特にポリカーボネートが好
ましい。本発明ではこの様な樹脂基板を成形後、光記録
媒体の製造工程中に形状が平坦となるような力を一定時
間加える加力工程を設けることを特徴としている。こう
いった樹脂においてはガラス転移点以下の温度において
も、ある程度の時間力を加えれば変形が非可逆的に固定
されるので、この加力工程によって媒体の反りの値を大
きく低減することが可能である。すなわち樹脂基板では
本来分子鎖が乱雑に絡み合った構造をもっているため、
分子鎖の位置をわずかにずらして変形した状態でも容易
に安定化できるのである。こういった変形は従来光記録
媒体製造プロセスの中で基板歪みを発生させないように
抑制すべきものとされてきた。しかし、本発明ではこの
変形をむしろ積極的に利用し、歪んだ媒体を反りの小さ
な状態に矯正するものである。
The substrate of the optical recording medium used in the present invention is not particularly limited as long as it is a transparent resin substrate, but polycarbonate, polymethyl methacrylate (PMMA) and the like are preferably used, and polycarbonate is particularly preferable. . The present invention is characterized in that after forming such a resin substrate, a force applying step for applying a force for flattening the shape during a manufacturing process of the optical recording medium for a certain time is provided. In these resins, deformation is fixed irreversibly by applying a certain amount of force even at a temperature below the glass transition point, so that this warping process can greatly reduce the warpage value of the medium. It is. In other words, the resin substrate originally has a structure in which molecular chains are entangled randomly.
Even when the position of the molecular chain is slightly shifted and deformed, it can be easily stabilized. Conventionally, it has been considered that such deformation should be suppressed so as not to cause substrate distortion in the optical recording medium manufacturing process. However, in the present invention, this deformation is rather positively used to correct a distorted medium into a state of small warpage.

【0008】媒体の反りは上述した様に基板厚みが薄い
場合に特に問題となるが、本発明はこういった薄い基板
に対して用いたときにより効果的である。すなわち、薄
い基板においては基板自体の剛性が低いだけに、基板が
厚い場合に比べて遥かに小さな圧力、及び時間により基
板を平坦化させることができる。具体的には本発明は基
板厚みが0.8mm以下の基板を用いる場合に適用する
ことが好ましい。さらに好ましくは0.7mm以下であ
る。
Although the warpage of the medium is particularly problematic when the substrate is thin as described above, the present invention is more effective when used for such a thin substrate. That is, in a thin substrate, the rigidity of the substrate itself is low, and the substrate can be flattened with much smaller pressure and time than in a case where the substrate is thick. Specifically, the present invention is preferably applied when a substrate having a substrate thickness of 0.8 mm or less is used. More preferably, it is 0.7 mm or less.

【0009】加力工程を実施するのは、光記録媒体製造
工程のどの部分においても効果があるが、最終的な反り
を低減するという意味において、基板上に記録膜、保護
コート、光入射面側のコート等の必要な全ての膜を形成
した後に最終的な工程として行うのが好ましい。尚、以
下の説明は、基板のみの場合も、基板に何らかの層を積
層した状態のものも、まとめて基板という。
Although the application of the pressing step is effective in any part of the optical recording medium manufacturing process, in order to reduce the final warpage, the recording film, the protective coating, and the light incident surface are formed on the substrate. It is preferable to perform it as a final step after forming all necessary films such as a side coat. In the following description, the case where only the substrate is used and the case where some layers are stacked on the substrate are collectively referred to as a substrate.

【0010】本発明における加力工程での力の加え方と
しては、真空吸着する方法、高速で回転させる方法等種
々の方法が使用できるが、最も簡易で効果的な加力工程
としては、図1に示す様に、基板1を両側から平坦化部
材2で挟んで圧力3を加える方法が挙げられる。以下こ
の方法を用いた場合を例にとって説明するが、温度、時
間等の条件は前述のような他の方法でもほぼ同様に適用
できる。こういった平坦化部材2は基板1との接触点に
おいて、ゴム、プラスチック等の比較的柔軟な構造のも
のを用い、基板の微小な領域に力が加わり不均一に変形
して基板が歪む、あるいは基板に傷が発生するのを防ぐ
ことが好ましい。特に基板の汚染を防止するためにテフ
ロン等のフッ素系樹脂を用いることが好ましい。また、
平坦化部材の基板との接触部の端部において基板にかか
る圧力の変化をなだらかにするために形状が丸くなって
いることが好ましい。もちろん上記の点に留意した上で
ガラス、金属等を用いることも可能である。
Various methods such as a vacuum suction method and a high-speed rotation method can be used as a method of applying a force in the force applying step in the present invention. As shown in FIG. 1, there is a method in which the substrate 1 is sandwiched between both sides by the flattening members 2 and a pressure 3 is applied. Hereinafter, the case of using this method will be described as an example, but conditions such as temperature and time can be applied to other methods as described above. Such a flattening member 2 has a relatively flexible structure such as rubber or plastic at a contact point with the substrate 1, and a force is applied to a minute area of the substrate to deform the substrate unevenly, thereby distorting the substrate. Alternatively, it is preferable to prevent the substrate from being damaged. In particular, it is preferable to use a fluorine-based resin such as Teflon in order to prevent contamination of the substrate. Also,
It is preferable that the shape of the flattening member be round at the end of the contact portion with the substrate in order to make the change in pressure applied to the substrate gentle. Of course, it is also possible to use glass, metal, or the like with the above points in mind.

【0011】さらに、基板の記録面への傷、ないし汚染
を防ぐため、図2の様に記録領域以外の部分、円盤状の
基板においては記録領域より内周部及び外周部において
力を加えることが好ましい。加力時間は、温度、加える
力の大きさにより違いがある。一般には温度が低い程、
また力が弱い程長時間の加力が必要となる。十分な平坦
化を行うには、5分以上の加力時間であることが好まし
い。さらに好ましくは10分以上、特に好ましくは30
分以上の加力時間である。ただし、あまり長いと生産性
が低下する上、基板にひび割れ等が発生する恐れがある
ので10時間以下であることが好ましい。
Further, in order to prevent the recording surface of the substrate from being scratched or contaminated, a force is applied to a portion other than the recording region as shown in FIG. Is preferred. The application time differs depending on the temperature and the magnitude of the applied force. Generally, the lower the temperature,
In addition, the weaker the force, the longer the force is required. In order to perform sufficient flattening, it is preferable that the application time is 5 minutes or more. More preferably 10 minutes or more, particularly preferably 30 minutes
It is a force time of more than a minute. However, if the length is too long, the productivity is reduced and the substrate may be cracked. Therefore, the time is preferably 10 hours or less.

【0012】基板に力を加える方法としては、前述の様
に内周及び外周のどちらかあるいは両方を真空吸着によ
り固着する方法もある。真空吸着と、平坦化部材による
加力とを併用しても良い。本発明においては平坦化のた
めの加力時間を短縮させるため、基板を加熱することが
好ましい。基板加熱は加力工程中、あるいは加力工程前
に行われる。ガラス転移点以上まで温度を上昇させれば
形状は容易に平坦になるが、この場合基板表面上に形成
された微小な溝あるいは穴(ピット)が変形してしまう
恐れがある。従って、加力工程中の加熱温度はガラス転
移点より低いものであることが好ましい。ただし、加熱
温度が低すぎると基板が平坦化しないか、あるいは平坦
化に著しい時間ないし力が必要となりやすく好ましくな
い。従って加力工程中の好ましい最高温度Tは、樹脂基
板のガラス転移点Tgに対し
As a method of applying a force to the substrate, there is a method of fixing one or both of the inner periphery and the outer periphery by vacuum suction as described above. You may use together vacuum suction and the force by a flattening member. In the present invention, it is preferable to heat the substrate in order to reduce the time required for flattening. The substrate is heated during or before the pressurizing step. If the temperature is raised to a temperature equal to or higher than the glass transition point, the shape can be easily flattened. In this case, however, minute grooves or holes (pits) formed on the substrate surface may be deformed. Therefore, the heating temperature during the pressing step is preferably lower than the glass transition point. However, if the heating temperature is too low, the substrate is not flattened, or a significant time or force is required for flattening, which is not preferable. Therefore, the preferable maximum temperature T during the pressing step is determined with respect to the glass transition point Tg of the resin substrate.

【0013】[0013]

【数2】Tg−90℃≦T≦Tg−10℃ の範囲である。さらに好ましくは、## EQU2 ## The range is Tg-90 ° C. ≦ T ≦ Tg−10 ° C. More preferably,

【0014】[0014]

【数3】Tg−90℃≦T≦Tg−20℃ であり、特に好ましくは、Tg−90 ° C. ≦ T ≦ Tg−20 ° C., particularly preferably

【0015】[0015]

【数4】Tg−80℃≦T≦Tg−20℃## EQU4 ## Tg−80 ° C. ≦ T ≦ Tg−20 ° C.

【0016】である。基板を加熱する場合には、基板を
加熱炉の中に投入するのが簡便であるが、基板との接触
部が加熱された平坦化部材を用いる方法もある。この場
合、平坦化部材は熱伝導率の高い金属等が好ましい。基
板温度がまだ高い内に圧力を取り除けば、その後の温度
変化により基板が再び反ってしまう恐れがある。このた
め、基板温度が十分下がった後加圧を止めることが好ま
しい。具体的にはTg−80℃以下に下がった後加圧を
止めることが好ましく、より好ましくはTg−90℃以
下に下がった後に加圧を止めることである。
## EQU1 ## When heating the substrate, it is easy to put the substrate into a heating furnace, but there is also a method using a flattening member whose contact portion with the substrate is heated. In this case, the flattening member is preferably made of a metal having a high thermal conductivity. If the pressure is removed while the substrate temperature is still high, the substrate may warp again due to a subsequent temperature change. For this reason, it is preferable to stop the pressurization after the substrate temperature is sufficiently lowered. Specifically, it is preferable to stop pressurizing after the temperature has dropped to Tg-80 ° C or lower, and more preferably to stop pressurizing after the temperature has dropped to Tg-90 ° C or lower.

【0017】基板は加熱に際して膨張するため、中心穴
のある円盤状基板の場合その外周端が外側に向かい、内
周端が内側に向かう。この端部の移動が平坦化部材等に
よって妨げられると、基板に強い歪みが不可逆的に発生
する可能性があり、この場合複屈折の発生等により記録
再生特性に悪影響を及ぼす。従って、いずれの加力方法
においても、この端部の移動を妨げないようにしておく
ことが好ましい。この目的のため、平坦化部材表面は平
滑であり、基板端部の引っかかりが生じないことが好ま
しい。この意味でも表面の潤滑性の優れたフッ素系樹脂
は好ましい。
Since the substrate expands upon heating, in the case of a disk-shaped substrate having a center hole, the outer peripheral end faces outward and the inner peripheral end faces inward. If the movement of the end portion is hindered by a flattening member or the like, strong distortion may be irreversibly generated in the substrate. In this case, the occurrence of birefringence adversely affects the recording / reproducing characteristics. Therefore, it is preferable that the movement of the end is not hindered in any of the force methods. For this purpose, it is preferable that the surface of the flattening member is smooth and the edge of the substrate is not caught. In this sense, a fluororesin having excellent surface lubricity is preferable.

【0018】基板に加える力としては、例えば外径12
0φ、内径15φの基板全体で、0.8kg以上、7k
g以下であることが好ましい。さらに好ましくは1kg
以上6kg以下である。これ以外の基板の場合には、こ
の値に対しその面積に比例した範囲の力を加えれば良
い。力が低すぎる場合は、平坦化の効果が小さくなる。
力が大きすぎる場合は、基板に傷、歪み等が発生し易く
なり、記録再生に悪影響を及ぼす。さらに基板の複屈折
が増大し記録再生光に歪みを与えてしまう恐れがある。
基板に局所的に歪みを発生させないためには面積当たり
の圧力としては70g/cm2 以下であることが好ましい。
さらに好ましくは60g/cm2 以下である。圧力は一定で
はなく、時間と共に変化するようになすこともできる。
基板は温度の高い状態で歪みを生じ易いので、温度の低
下と共に加圧を強くするのは好ましい形態である。
The force applied to the substrate is, for example, an outer diameter of 12
0.8kg or more, 7k for the whole substrate of 0φ and inner diameter 15φ
g or less. More preferably 1 kg
Not less than 6 kg. In the case of other substrates, a force in a range proportional to the area may be applied to this value. If the force is too low, the flattening effect will be reduced.
If the force is too large, the substrate is likely to be scratched or distorted, which adversely affects recording and reproduction. Further, there is a possibility that the birefringence of the substrate is increased and the recording / reproducing light is distorted.
The pressure per area is preferably 70 g / cm 2 or less in order not to locally generate distortion in the substrate.
More preferably, it is 60 g / cm 2 or less. The pressure may not be constant, but may change over time.
Since the substrate tends to be distorted in a high temperature state, it is preferable to increase the pressure as the temperature decreases.

【0019】本発明による製造方法を用いる記録媒体と
しては、基板にピットが入った再生専用の媒体、色素等
の記録層の変形を用いたライトワンス型媒体、相変化記
録層を有する記録媒体、光磁気記録層を有する記録媒体
等が挙げられる。この中で最終形態として単独の基板を
用いる場合に特に効果がある。特に単独の基板を用いる
必要がある光磁気記録媒体に用いて好ましい。もちろん
2面の基板を貼合わせて用いる媒体の製造に用いても十
分効果がある。この場合の加力工程は貼合わせる前であ
っても後であっても良い。
Examples of the recording medium using the manufacturing method according to the present invention include a read-only medium having pits in a substrate, a write-once medium using deformation of a recording layer such as a dye, a recording medium having a phase change recording layer, Examples include a recording medium having a magneto-optical recording layer. Among them, it is particularly effective when a single substrate is used as the final form. It is particularly preferable to use it for a magneto-optical recording medium that requires the use of a single substrate. Of course, even if it is used for the production of a medium using two substrates bonded together, there is a sufficient effect. The applying step in this case may be before or after laminating.

【0020】本発明により、基板の反りはかなり低減可
能であるが、完全に無くすことはできない。従って、加
力工程が無い状態であっても基板成形時の反り、記録膜
や樹脂コート等による応力を全て合わせて基板反りのば
らつきの平均値が零近くなる様に調整しておくことが好
ましい。特に基板の光入射面側には、記録膜側の応力を
打ち消す様に、紫外線硬化樹脂コートないし酸化Si等
の無機コートを行うことが好ましい。本発明により従来
の方法に比べて基板反りは大きく低減できるため媒体の
設計に対する制限は大きく緩和される。
According to the present invention, the warpage of the substrate can be considerably reduced, but cannot be completely eliminated. Therefore, it is preferable to adjust the average value of the variation of the substrate warpage to be close to zero by combining all the warpage during the molding of the substrate and the stress caused by the recording film, the resin coating, and the like even in the state without the force applying step. . In particular, it is preferable to apply an ultraviolet curable resin coat or an inorganic coat such as silicon oxide on the light incident surface side of the substrate so as to cancel the stress on the recording film side. According to the present invention, since the substrate warpage can be greatly reduced as compared with the conventional method, the restriction on the design of the medium is greatly relaxed.

【0021】[0021]

【実施例】以下に実施例をもって本発明をさらに詳細に
説明するが、本発明はその要旨を越えない限り以下の実
施例に限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the scope of the invention.

【0022】[0022]

【実施例1】基板として直径120mmφ、中心穴径1
5mmφ、基板厚み0.6mm、溝深さ70nmで1.2
μmトラックピッチでランド部とグルーブ部が同一幅を
有するポリカーボネート基板を用いた。このポリカーボ
ネート樹脂のガラス転移温度Tgは135℃であった。
[Example 1] A substrate having a diameter of 120 mmφ and a center hole diameter of 1 was used.
5mmφ, substrate thickness 0.6mm, groove depth 70nm, 1.2
A polycarbonate substrate having a land portion and a groove portion having the same width at a μm track pitch was used. The glass transition temperature Tg of this polycarbonate resin was 135 ° C.

【0023】基板上に、反応性スパッタリングを用い8
0nmの酸化タンタルを形成した。次に酸化タンタル上
に、Gd28(Fe50Co5072よりなる80nmの再生
層、Tb23(Fe80Co2077よりなる40nmの記録
層を設けた。最後にSiNよりなる80nmの保護層を
設けた。スパッタ膜上、及び基板の光入射面に5μmの
膜厚の紫外線硬化樹脂による保護コートを設けた。こう
やって作成したディスク20枚につき、反り角の最大値
を測定した。さらに、ディスク全面を平坦なテフロン板
で両側から挟み水平に置き、上から2kgの加重をかけ
た。70℃の加熱オーブン内に所定時間保持した後、1
時間かけて室温まで冷却した後、加重を取り除いた。こ
の作業を繰り返しながら、累積の加熱保持時間に対する
ディスクの最大反り角の平均値と標準偏差の変化を調べ
た。結果を図3に示す。
On the substrate, 8
A 0 nm tantalum oxide was formed. Next, on the tantalum oxide, an 80 nm reproducing layer made of Gd 28 (Fe 50 Co 50 ) 72 and a 40 nm recording layer made of Tb 23 (Fe 80 Co 20 ) 77 were provided. Finally, an 80 nm protective layer made of SiN was provided. On the sputtered film and on the light incident surface of the substrate, a protective coating of a 5 μm-thick ultraviolet-curable resin was provided. The maximum value of the warp angle was measured for the 20 disks thus prepared. Further, the entire surface of the disk was sandwiched between both sides by a flat Teflon plate, placed horizontally, and a weight of 2 kg was applied from above. After holding in a heating oven at 70 ° C for a predetermined time,
After cooling to room temperature over time, the weight was removed. By repeating this operation, the change in the average value and the standard deviation of the maximum warp angle of the disk with respect to the accumulated heat holding time was examined. The results are shown in FIG.

【0024】[0024]

【実施例2】成形時の調整により反り角の最大値が1度
となるようにしたこと以外は、実施例1と同様にディス
クを作成した。さらに、ディスク全面を平坦なテフロン
板で両側から挟み水平に置き、上から加重をかけた。7
0℃の加熱オーブン内に1時間保持した後、1時間かけ
て室温まで冷却した後、加重を取り除いた。このときの
加重に対するディスクの最大反り角の変化を調べた。結
果を図4に示す。8kgの加重(面積あたりの圧力7
1.9g/cm2 )をかけたディスクでは複屈折の最大値が
加熱前の43nmから79nmに増加した。7kg(面
積あたりの圧力62.9g/cm2 )の加重をかけたディス
クでは複屈折の最大値が42nmから53nmへ増加し
た。それ以外のディスクでは複屈折の変化は見られなか
った。
Example 2 A disk was prepared in the same manner as in Example 1 except that the maximum value of the warp angle was set to 1 degree by adjustment during molding. Further, the entire surface of the disk was sandwiched between flat Teflon plates from both sides and placed horizontally, and a load was applied from above. 7
After being kept in a heating oven at 0 ° C. for 1 hour, and cooled to room temperature over 1 hour, the weight was removed. The change in the maximum warp angle of the disk with respect to the load at this time was examined. FIG. 4 shows the results. 8kg weight (pressure per area 7
The maximum value of birefringence was increased from 43 nm before heating to 79 nm in the disk applied with 1.9 g / cm 2 ). The maximum value of birefringence increased from 42 nm to 53 nm for a disk loaded with 7 kg (pressure 62.9 g / cm 2 per area). No change in birefringence was observed in the other disks.

【0025】[0025]

【実施例3】成形時の調整により反り角の最大値が1度
となるようにしたこと以外は、実施例1と同様にディス
クを作成した。さらに、ディスク全面を平坦なテフロン
板で両側から挟み水平に置き、上から2kgの加重をか
けた。温度の異なる加熱オーブン内に1時間保持した
後、1時間かけて室温まで冷却した後、加重を取り除い
た。このときの温度に対するディスクの最大反り角の変
化を調べた。結果を図5に示す。室温以上のいずれの温
度においても反り角の減少が見られた。130℃で加熱
したディスクは溝深さが約20%低下し、信号の記録再
生が不能になった。120℃で加熱したディスクは溝形
状の変化は生じなかったが、複屈折の最大値が加熱前の
45nmから78nmに増加した。それ以下の温度では
溝形状、複屈折共に変化は見られなかった。
Example 3 A disk was prepared in the same manner as in Example 1, except that the maximum value of the warp angle was set to 1 degree by adjustment during molding. Further, the entire surface of the disk was sandwiched between both sides by a flat Teflon plate, placed horizontally, and a weight of 2 kg was applied from above. After being kept in a heating oven at a different temperature for 1 hour, and cooled to room temperature over 1 hour, the weight was removed. The change in the maximum warp angle of the disk with respect to the temperature at this time was examined. FIG. 5 shows the results. At any temperature above room temperature, a decrease in the warp angle was observed. The disk heated at 130 ° C. had a groove depth of about 20%, making signal recording and reproduction impossible. The disk heated at 120 ° C. did not change the groove shape, but the maximum value of birefringence increased from 45 nm before heating to 78 nm. At a temperature lower than that, no change was observed in both the groove shape and the birefringence.

【0026】[0026]

【実施例4】保護コートまでを実施例1と同様に作成し
たディスク20枚の反り角の最大値を測定した。さら
に、ディスクの最内周部直径15〜20mmφの位置及
び最外周部直径59〜60mmφの位置をテフロン板で
両側から挟み水平に置き、上から加重をかけた。70℃
の加熱オーブン内に1時間保持した後、1時間かけて室
温まで冷却した後、加重を取り除いた。このときの加重
に対するディスクの反り角の平均値と標準偏差の変化を
調べた。結果を図6に示す。
Example 4 The maximum value of the warp angle of 20 disks prepared up to the protective coat in the same manner as in Example 1 was measured. Further, the position of the innermost peripheral part diameter of 15 to 20 mmφ and the outermost peripheral part diameter of 59 to 60 mmφ were sandwiched from both sides by a Teflon plate, placed horizontally, and weighted from above. 70 ° C
, And then cooled to room temperature over 1 hour, and then the weight was removed. The change in the average value and the standard deviation of the warp angle of the disk with respect to the weight at this time was examined. FIG. 6 shows the results.

【0027】[0027]

【実施例5】基板厚が1.2mm〜0.6mmまでの基
板に、保護コートまでの膜を実施例1と同様に作成し
た。各ディスクは成形時の調整により最終的に反り角の
最大値が1度となるようにした。さらに、ディスクの最
内周部直径15〜20mmφの位置及び最外周部直径5
9〜60mmφの位置をテフロン板で両側から挟み水平
に置き、上から加重をかけた。70℃の加熱オーブン内
に1時間保持した後、1時間かけて室温まで冷却した
後、加重を取り除いた。このときの基板厚みに対するデ
ィスクの反り角の違いを調べた。結果を図7に示す。
Example 5 A film up to a protective coat was formed on a substrate having a thickness of 1.2 mm to 0.6 mm in the same manner as in Example 1. The maximum value of the warp angle of each disk was finally adjusted to 1 degree by adjustment during molding. Further, the position of the innermost peripheral part diameter of 15 to 20 mmφ and the outermost peripheral part diameter 5
A position of 9 to 60 mmφ was sandwiched between both sides by a Teflon plate, placed horizontally, and weighted from above. After being kept in a heating oven at 70 ° C. for 1 hour, and cooled to room temperature over 1 hour, the weight was removed. At this time, the difference in the warp angle of the disc with respect to the substrate thickness was examined. FIG. 7 shows the results.

【0028】[0028]

【発明の効果】本発明による光記録媒体の製造方法を用
いることにより、薄い樹脂基板を用いた場合でも安定し
て小さい反りを持った媒体を製造することが可能であ
る。さらに媒体の膜構成で応力を完全に打ち消す必要が
無いので、媒体の設計に対する制限が大きく緩和され
る。
By using the method for manufacturing an optical recording medium according to the present invention, a medium having a small warpage can be stably manufactured even when a thin resin substrate is used. Further, since it is not necessary to completely cancel the stress by the film configuration of the medium, restrictions on the design of the medium are greatly relaxed.

【図面の詳細な説明】[Detailed description of drawings]

【図1】図1は本発明の光記録媒体の製造方法の一形態
を示す説明図である。
FIG. 1 is an explanatory view showing one embodiment of a method for manufacturing an optical recording medium of the present invention.

【図2】図2は本発明の光記録媒体の製造方法の別形態
を示す説明図である。
FIG. 2 is an explanatory view showing another embodiment of the method for manufacturing an optical recording medium of the present invention.

【図3】図3は実施例1において基板全面を加圧した場
合の加圧時間に対する反り角の平均値及び標準偏差の変
化を示す図である。
FIG. 3 is a diagram illustrating changes in the average value and the standard deviation of the warp angle with respect to the pressing time when the entire surface of the substrate is pressed in Example 1.

【図4】図4は実施例における圧力に対する反り角の変
化を示す図である。
FIG. 4 is a diagram showing a change in a warp angle with respect to a pressure in the embodiment.

【図5】図5は実施例における加熱温度に対する反り角
の変化を示す図である。
FIG. 5 is a diagram showing a change in a warp angle with respect to a heating temperature in the example.

【図6】図6は実施例における内外周のみを加圧した場
合の加圧時間に対する反り角の変化及び標準偏差の変化
を示す図である。
FIG. 6 is a diagram showing a change in a warp angle and a change in a standard deviation with respect to a pressurizing time when only the inner and outer peripheries are pressurized in the embodiment.

【図7】図7は実施例における基板厚みに対する反り角
の変化を示す図である。
FIG. 7 is a diagram illustrating a change in a warp angle with respect to a substrate thickness in the example.

【符号の説明】[Explanation of symbols]

1 基板 2 平坦化部材 3 平坦化のための力 DESCRIPTION OF SYMBOLS 1 Substrate 2 Flattening member 3 Force for flattening

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】樹脂基板を用いた光記録媒体の製造方法に
おいて、基板成形後、該基板に情報記録領域の形状がよ
り平坦となるような力を加える工程(加力工程)を含む
ことを特徴とする光記録媒体の製造方法。
1. A method for manufacturing an optical recording medium using a resin substrate, comprising a step of applying a force to the substrate so that the shape of an information recording area becomes flatter after the formation of the substrate (force applying step). Characteristic method for producing an optical recording medium.
【請求項2】該加力工程中に該基板を室温以上、樹脂の
ガラス転移点以下に加熱する請求項1に記載の光記録媒
体の製造方法。
2. The method for manufacturing an optical recording medium according to claim 1, wherein the substrate is heated to between room temperature and the glass transition point of the resin during the applying step.
【請求項3】該加力工程中の基板の最高温度Tが樹脂の
ガラス転移点Tgに対し 【数1】Tg−90℃≦T≦Tg−10℃ という範囲である請求項2に記載の光記録媒体の製造方
法。
3. The method according to claim 2, wherein the maximum temperature T of the substrate during the applying step is in the range of Tg−90 ° C. ≦ T ≦ Tg−10 ° C. with respect to the glass transition point Tg of the resin. A method for manufacturing an optical recording medium.
【請求項4】該基板の厚みが0.8mm以下である請求
項1乃至3に記載の光記録媒体の製造方法。
4. The method for manufacturing an optical recording medium according to claim 1, wherein said substrate has a thickness of 0.8 mm or less.
【請求項5】該基板の少なくとも一部を、基板の両側か
ら挟んで加圧する請求項1乃至4に記載の光記録媒体の
製造方法。
5. The method for manufacturing an optical recording medium according to claim 1, wherein at least a part of said substrate is pressed from both sides of said substrate.
【請求項6】該基板の少なくとも記録領域より内周部及
び外周部を基板の両側から挟んで加圧する請求項1乃至
5に記載の光記録媒体の製造方法。
6. The method of manufacturing an optical recording medium according to claim 1, wherein the inner and outer peripheral portions of at least the recording area of the substrate are pressed from both sides of the substrate.
【請求項7】前記力を加える時間を5分以上とする請求
項1乃至6に記載の光記録媒体の製造方法。
7. The method for manufacturing an optical recording medium according to claim 1, wherein the time for applying the force is 5 minutes or more.
【請求項8】該工程が該基板上に必要な全ての膜を形成
した後に行われる請求項1乃至7に記載の光記録媒体の
製造方法。
8. The method for manufacturing an optical recording medium according to claim 1, wherein said step is performed after forming all necessary films on said substrate.
JP10958697A 1997-04-25 1997-04-25 Manufacture of optical recording medium Pending JPH10302329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10958697A JPH10302329A (en) 1997-04-25 1997-04-25 Manufacture of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10958697A JPH10302329A (en) 1997-04-25 1997-04-25 Manufacture of optical recording medium

Publications (1)

Publication Number Publication Date
JPH10302329A true JPH10302329A (en) 1998-11-13

Family

ID=14514029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10958697A Pending JPH10302329A (en) 1997-04-25 1997-04-25 Manufacture of optical recording medium

Country Status (1)

Country Link
JP (1) JPH10302329A (en)

Similar Documents

Publication Publication Date Title
US6246656B1 (en) Reduced thickness of a light transmissive layer for a high density optical disc
US6023451A (en) Optical recording medium and optical disk apparatus
US6077349A (en) Method and apparatus for manufacturing disc-shaped recording medium
JP3241560B2 (en) Optical recording medium and method for manufacturing the same
JPH10269621A (en) Optical disk substrate and optical disk using the substrate
JPH1131337A (en) Optical recording medium and optical disk device
JP2000011454A (en) Optical recording medium, optical recording and reproducing device using in, and manufacture thereof
JP3137657B2 (en) Optical information recording medium and method of manufacturing the same
JP3742583B2 (en) Optical information recording medium and method for manufacturing optical information recording medium
EP1542218A2 (en) Optical information recording medium
JPH10302329A (en) Manufacture of optical recording medium
JP2001357571A (en) Method for manufacturing optical recording medium
JP2002092969A (en) Manufacture of optical disk and optical disk
JPH05258349A (en) Substrate of optical disc
JPH06131696A (en) Optical disk substrate and optical disk using the same
JP4344307B2 (en) Optical disk substrate, optical disk, and optical disk drive device
JP3741375B2 (en) Optical information recording medium
JPS63220439A (en) Production of magneto-optical disk
JP2683520B2 (en) Manufacturing method of optical disk substrate
JP2003233930A (en) Optical recording medium
JPH08321079A (en) Optical disk
JPH07282470A (en) Optical disk
JPS60197957A (en) Optical disk memory
JP2001216685A (en) Recording medium
JPH07272320A (en) Information recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A02 Decision of refusal

Effective date: 20040914

Free format text: JAPANESE INTERMEDIATE CODE: A02