JPH10296540A - Electrical discharge machining device - Google Patents

Electrical discharge machining device

Info

Publication number
JPH10296540A
JPH10296540A JP11098397A JP11098397A JPH10296540A JP H10296540 A JPH10296540 A JP H10296540A JP 11098397 A JP11098397 A JP 11098397A JP 11098397 A JP11098397 A JP 11098397A JP H10296540 A JPH10296540 A JP H10296540A
Authority
JP
Japan
Prior art keywords
electrode
consumption
pulse
discharge
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098397A
Other languages
Japanese (ja)
Inventor
Koji Kitagawa
浩二 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP11098397A priority Critical patent/JPH10296540A/en
Publication of JPH10296540A publication Critical patent/JPH10296540A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out electrode consumption correction with higher precision in the machining condition in which generation probability of a pose split is greatly changed by a slight change in a machining area by arranging an electrode consumption quantity correcting means correcting an electrode feeding quantity in the machining direction and in the oscillating direction on the basis of a determined electrode consumption quantity. SOLUTION: Continuing times are sorted into four types, and a pulse generation quantity integrating means 5 according to a continuing time classifies pulses detected by means of an electrical discharge pulse detecting means 6 so as to integrate them. A consumption correction quantity calculating means 3, which calculates an actual consumption correction quantity on the basis of consumption correction data 1 according to a continuing time and the integration data from the pulse generation quantity integration means 5 according to a continuing time, calculates a whole consumption quantity Wtotal by the present time according to an expression: Wtotal = ΣPi*Wi (i=1-n), when a generation rate according to a continuing time is represented by Pi while consumption correction data according to a continuing time is represented by Wi. An NC controller 4 adds the consumption quantity Wtotal to a feeding quantity in a machining condition so as to find an actual feeding quantity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電加工装置にお
いて電極消耗量をより正確に求めることにより、加工方
向および揺動方向への電極送り量の補正動作を行なう放
電加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric discharge machining apparatus for correcting an electrode feed amount in a machining direction and a swing direction by more accurately calculating an electrode consumption amount in the electric discharge machining apparatus.

【0002】[0002]

【従来の技術】放電加工装置は、電極とワークの間に間
欠的に放電を発生させてワークの加工を行なうものであ
るが、その加工には、電極とワークの間にギャップと呼
ばれる間隙が存在し、かつワークの表面は間隙で発生さ
せる放電パルスのピーク電流値などの電気条件により決
まる面粗さとなり、電極もまた電気条件により決まる消
耗が発生する、という特性がある。
2. Description of the Related Art An electric discharge machining apparatus performs machining of a work by intermittently generating an electric discharge between an electrode and a work. In the machining, a gap called a gap is formed between the electrode and the work. The surface of the workpiece exists and has a surface roughness determined by electrical conditions such as a peak current value of a discharge pulse generated in the gap, and the electrodes also have a characteristic of being consumed by electrical conditions.

【0003】一般的にいって、加工速度が早い電気条件
ではギャップ・面粗さとも大きく、また電極の消耗は少
ない。また、面粗さが精細である電気条件ではギャップ
は狭くかつ加工速度は遅くかつ電極消耗は多い、という
傾向がある。
Generally, under electrical conditions in which the processing speed is high, both the gap and the surface roughness are large, and the consumption of the electrodes is small. On the other hand, under electrical conditions where the surface roughness is fine, there is a tendency that the gap is narrow, the processing speed is slow, and the electrode consumption is large.

【0004】このため、放電加工により加工速度が早く
かつ面粗さも精細である加工を行う場合、面粗さが大き
な電気条件から小さな電気条件に切替えながら、加工全
体の平均として、加工速度が早く、面粗さの精細である
ワークを得られるように加工を行なうようにしている。
電気条件を切替える方法としては、送り量と呼ばれる値
が電気条件に対応した値として、あらかじめ実験的に求
め設定されており、現電気条件は対応する送り量分電極
を加工送り方向と揺動方向に移動させ得た時に終了であ
ると判定し、より面粗さの精細な次の電気条件に切替え
る方法が用いられている。
For this reason, when performing machining with a high machining speed and fine surface roughness by electric discharge machining, the machining speed is increased as an average of the entire machining while switching from an electrical condition having a large surface roughness to an electrical condition having a small surface roughness. Processing is performed so that a work having a fine surface roughness can be obtained.
As a method of switching the electric conditions, a value called a feed amount is experimentally obtained and set in advance as a value corresponding to the electric condition, and the current electric condition is to set the electrode by the corresponding feed amount in the machining feed direction and the swing direction. A method is used in which it is determined that the process has been completed when it can be moved to the next condition, and the condition is switched to the next electrical condition with a finer surface roughness.

【0005】なお、電極とワーク間の相対位置の制御に
は、間隙制御といわれる、放電が集中状態の時には電極
を放電が発生しない方向に逃し、放電発生が少ない時に
は電極を進行方向に進める制御が行なわれているため、
電極が目標位置に到達した時点、すなわち送り量分加工
送り方向および揺動方向に移動させ得た時点で現電気条
件での加工が終了したと見なすことができる。
The relative position between the electrode and the workpiece is controlled by a gap control, which is a control in which the electrode escapes in a direction in which no discharge is generated when the discharge is concentrated, and is advanced in a traveling direction when the discharge is small. Is being done,
When the electrode reaches the target position, that is, when the electrode can be moved in the machining feed direction and the swing direction by the feed amount, it can be considered that the machining under the current electric condition has been completed.

【0006】上記送り量は現電気条件と前段階の電気条
件から実験的に決定することができ、現電気条件でのギ
ャップ、面粗さと前電気条件での面粗さとが考慮されて
いるが、さらに電極が消耗することによりワークが目標
寸法に対し小さく仕上がることを防ぐため、加工方向お
よび揺動方向への電極送り量には、電極の消耗寸法が加
算されている。一般的に放電加工において加工条件とい
う場合は電気条件と送り量を含んだものを指すため、以
降の説明では加工条件という用語を使用する。
The above-mentioned feed amount can be experimentally determined from the current electric conditions and the previous electric conditions, and the gap and the surface roughness under the current electric conditions and the surface roughness under the previous electric conditions are considered. Further, in order to prevent the work from being finished smaller than the target size due to further consumption of the electrodes, the consumption amount of the electrodes is added to the electrode feed amount in the machining direction and the swing direction. Generally, the term “machining condition” in electric discharge machining refers to a condition including an electrical condition and a feed amount, and hence the term “machining condition” will be used in the following description.

【0007】放電加工には以上のような特性があるた
め、加工速度と面粗さに応じた複数の加工条件を予め設
定しておき、加工を行なう場合は加工速度および面粗さ
を満たす条件を開始条件として選択し、加工条件を順次
切替えながら加工すれば、最大の加工速度で所定の面粗
さが得られる。
Since electric discharge machining has the above characteristics, a plurality of machining conditions are set in advance in accordance with the machining speed and the surface roughness. Is selected as a start condition, and processing is performed while sequentially switching the processing conditions, a predetermined surface roughness can be obtained at the maximum processing speed.

【0008】従来の方法を図5及び図6を用いて説明す
る。図5は加工条件中の加工送り量に従って加工する放
電加工装置の制御ブロック図である。8は放電電源であ
り、電極9とワーク10の間隙に電圧を印加して放電を
発生させることによりワークの加工を行なうものであ
る。2は加工条件であり、電気条件と電極消耗を考慮し
た電極送り量からなる。4はNC制御装置であり、加工
条件2に従って軸駆動手段7に対して電極9の移動指令
を出すことにより、ワーク10を指定面粗さおよび指定
精度にて加工を行なうものである。
The conventional method will be described with reference to FIGS. FIG. 5 is a control block diagram of the electric discharge machining apparatus for machining according to the machining feed amount in the machining conditions. Reference numeral 8 denotes a discharge power supply, which processes a work by applying a voltage to a gap between the electrode 9 and the work 10 to generate a discharge. Reference numeral 2 denotes a processing condition, which comprises an electrode feed amount in consideration of electric conditions and electrode consumption. Reference numeral 4 denotes an NC control device for processing the workpiece 10 with a specified surface roughness and a specified accuracy by issuing a command to move the electrode 9 to the shaft driving means 7 in accordance with the processing condition 2.

【0009】図6に加工条件表の一例を示す。図6にお
いて電気条件の部分は一般的であるので省略している。
この加工条件表によれば、R9の加工条件により加工方
向に17ミクロン,揺動方向に14ミクロン加工し、R
8の加工条件に切り替える。R8およびR7の加工条件
でも同様に指定寸法加工すれば、加工が完了する。な
お、図6の加工条件では電極消耗率から求めた電極消耗
分が送り量にすでに加算されている。
FIG. 6 shows an example of a processing condition table. In FIG. 6, the portion of the electric condition is common and is omitted.
According to this processing condition table, according to the processing condition of R9, the processing was performed 17 microns in the processing direction and 14 microns in the swing direction.
8 is changed to the processing condition. If the specified dimensions are similarly processed under the processing conditions of R8 and R7, the processing is completed. In the processing conditions of FIG. 6, the electrode consumption amount obtained from the electrode consumption rate has already been added to the feed amount.

【0010】[0010]

【発明が解決しようとする課題】従来の加工条件には電
極消耗が送り量に加算されていたが、十分な電極消耗の
補正ができない場合があった。即ち電極が消耗したこと
により、電極が目標位置に到達しない場合でも現加工条
件での加工を終了させてしまい、結果として所定の加工
面粗さが得られず、また電極消耗分の加工不足により所
定の形状精度が得られない、といった問題が発生してい
た。
In the conventional processing conditions, the electrode consumption is added to the feed amount, but in some cases, the electrode consumption cannot be sufficiently corrected. In other words, even if the electrode does not reach the target position, the machining under the current machining conditions is terminated due to the exhaustion of the electrode, and as a result, a predetermined machining surface roughness cannot be obtained, and insufficient machining due to the electrode exhaustion. There has been a problem that predetermined shape accuracy cannot be obtained.

【0011】この原因は、電極消耗の特性が電気条件の
みにより決まるのではなく電極とワークの対向面積によ
り大きく影響され、特に、対向面積が大きくかつ仕上げ
条件の場合にはパルス割れが発生することにより電極消
耗が大きく増加するためである。このパルス割れとは、
図4(A)に示す放電電圧Vと放電電流Iの波形例の様
に、放電継続時間内に放電が維持できず複数のパルスに
分割される現象を指す。放電継続時間と電極消耗には放
電継続時間が長いほど電極消耗が少なく、また放電継続
時間が短いほど電極消耗が多いという傾向があるため、
この図4(A)の様にパルス割れが発生している状態で
は電極消耗が増加する。また、前記加工条件表は実験に
よりギャップ・面粗さおよび電極消耗を測定し、電極消
耗を考慮した送り量が設定されるようになっているが、
この実験に使用する電極面積が実際の加工に使用する電
極面積と異なることも問題であった。
The cause of this is that the characteristics of electrode wear are not determined solely by the electrical conditions, but are greatly affected by the facing area between the electrode and the workpiece. In particular, pulse cracking occurs when the facing area is large and the finishing conditions are satisfied. This is because electrode consumption is greatly increased. This pulse cracking
As in the waveform examples of the discharge voltage V and the discharge current I shown in FIG. 4A, the phenomenon is that the discharge cannot be maintained within the discharge duration and is divided into a plurality of pulses. The discharge duration and electrode consumption tend to be such that the longer the discharge duration, the less the electrode consumption, and the shorter the discharge duration, the more the electrode consumption,
As shown in FIG. 4A, in a state where the pulse crack occurs, the electrode consumption increases. In addition, the machining condition table measures gap / surface roughness and electrode consumption by experiments, and the feed amount is set in consideration of electrode consumption.
There was also a problem that the electrode area used for this experiment was different from the electrode area used for actual processing.

【0012】この問題に対し、従来では電極の面積別に
ギャップ・面粗さおよび電極消耗を測定する実験を行な
って加工条件を作成していたが、前記パルス割れ現象は
加工条件によってまた、面積のわずかな変化によって、
その発生状況が大きく変わり、面積別に電極消耗を補正
したとしても不十分である場合がほとんどであった。た
とえば、表面粗さ”6S”が得られる加工条件では、電
極の加工面の直径30mmの場合には電極消耗率は7%である
が、加工面の直径が60mmの場合にはでは電極消耗率は20
0%となる。
In order to solve this problem, conventionally, processing conditions were created by performing an experiment for measuring the gap / surface roughness and electrode wear for each electrode area. However, the pulse cracking phenomenon also depends on the processing conditions. With slight changes,
The occurrence situation has changed greatly, and in most cases, even if the electrode consumption is corrected for each area, it is insufficient. For example, under the processing conditions where a surface roughness of “6S” is obtained, the electrode consumption rate is 7% when the diameter of the electrode processing surface is 30 mm, but the electrode consumption rate when the processing surface diameter is 60 mm. Is 20
It becomes 0%.

【0013】また、実際の電極は形状が複雑で面積も正
確には得られず、正確な消耗補正はほとんど不可能に近
かった。このためパルス割れの発生する加工条件では、
加工送り量の補正が十分行なわれず、加工条件通りの面
粗さが得られない、あるいは指定加工精度が得られな
い、という問題が発生していた。
Further, the actual electrode has a complicated shape and an accurate area cannot be obtained, so that accurate wear correction is almost impossible. Therefore, under the processing conditions where pulse cracking occurs,
There has been a problem that the correction of the processing feed amount is not sufficiently performed, and the surface roughness according to the processing conditions cannot be obtained, or the specified processing accuracy cannot be obtained.

【0014】従来、電極消耗は、面積の僅かな変化、加
工電流、加工電圧等の条件により影響されると考えられ
てきたが、実際には電極消耗は放電パルスのオン時間と
ピーク電流により決定され、パルス割れが発生する場合
は、一発の放電パルスが更に複数のパルスに分割されて
おり、分割されたパルスのオン時間は一定でなく、かつ
分割されるためパルス数も一定でないという現象が、電
極消耗が面積により変化する主要因であった。本発明
は、加工面積のわずかの変化によりパルス割れの発生確
率が大きく変化する加工条件において、より高精度に電
極消耗補正を行う放電加工装置の提供を目的とする。
Conventionally, it has been considered that electrode wear is affected by conditions such as a small change in area, machining current, machining voltage, and the like. In practice, however, electrode wear is determined by the on-time of the discharge pulse and the peak current. When a pulse crack occurs, one discharge pulse is further divided into a plurality of pulses, and the on-time of the divided pulse is not constant, and the number of pulses is not constant because the pulse is divided. However, electrode wear was the main factor that changed depending on the area. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electric discharge machining apparatus that performs electrode wear correction with higher accuracy under machining conditions in which the probability of occurrence of pulse cracks greatly changes due to a slight change in the machining area.

【0015】[0015]

【課題を解決するための手段】本発明は、放電加工用装
置に関するものであり、本発明の上記目的は、放電パル
スの発生を検出する放電パルス検出手段と、検出された
放電パルスの放電継続時間を計測し、当該放電継続時間
のパルスの全体に対するパルス発生割合を放電継続時間
別に積算するパルス発生量積算手段と、放電継続時間に
対応した電極消耗量を電極消耗補正データとして記憶す
る記憶部と、前記継続時間別に積算されたパルス発生割
合と前記電極消耗補正データから現時点までの電極消耗
量を決定する電極消耗量決定手段と、決定された電極消
耗量から加工方向及び揺動方向への電極送り量を補正す
る電極消耗量補正手段と、を備えることにより達成され
る。
SUMMARY OF THE INVENTION The present invention relates to an electric discharge machining apparatus, and an object of the present invention is to provide a discharge pulse detecting means for detecting the generation of a discharge pulse, and a discharge continuation of the detected discharge pulse. A pulse generation amount integrating means for measuring a time and integrating a pulse generation ratio with respect to the entire pulse of the discharge duration for each discharge duration; and a storage unit for storing an electrode consumption corresponding to the discharge duration as electrode consumption correction data. And an electrode consumption amount determining means for determining an electrode consumption amount up to the present time from the pulse generation ratio integrated by the duration and the electrode consumption correction data, and determining the electrode consumption amount in the machining direction and the swing direction from the determined electrode consumption amount. This is achieved by providing an electrode consumption amount correction unit that corrects the electrode feed amount.

【0016】[0016]

【発明の実施の形態】以下、本発明の放電加工装置の実
施例について図1、2、3、4を用いて説明する。図1
は放電加工装置の制御ブロック図である。1は継続時間
別消耗補正データであり、2は加工条件、3は消耗補正
量計算手段、5は継続時間別パルス発生量積算手段、6
はパルス割れを検出する放電パルス検出手段である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electric discharge machine according to the present invention will be described below with reference to FIGS. FIG.
FIG. 3 is a control block diagram of the electric discharge machine. 1 is consumption correction data by duration, 2 is processing condition, 3 is consumption correction amount calculating means, 5 is pulse generation amount integrating means by duration, 6
Is a discharge pulse detecting means for detecting a pulse crack.

【0017】放電パルス検出手段6は、図4(A)に示
すようなパルス割れ波形を放電電圧Vもしくは放電電流
Iに基づいて検出し 、分割された各パルスの実際の放
電継続時間を計測する。この例の場合、継続時間T1、
継続時間T2および継続時間T3のパルスが各「1」と
いう検出が可能なものである。なお、図4(A)に示す
パルスはパルス割れが発生しない場合、図4(B)に示
す継続時間T0のパルスである。
The discharge pulse detecting means 6 detects a pulse breaking waveform as shown in FIG. 4A based on the discharge voltage V or the discharge current I, and measures the actual discharge duration of each divided pulse. . In this example, the duration T1,
The pulse having the duration T2 and the duration T3 can be detected as "1". Note that the pulse shown in FIG. 4A is a pulse having a duration T0 shown in FIG. 4B when no pulse crack occurs.

【0018】継続時間別パルス発生量積算手段5は図3
に示す様に、パルスの継続時間別Tiにパルスを積算カ
ウントするものであり、本実施例では継続時間を0〜1
μsec,1〜5μsec,5〜10μsec,10μsec以上の4種類に分
類し、放電パルス検出手段6にて検出したパルスを分類
して積算している。また、結果としてパルス数の積算値
をそのまま出力する事も可能であるが、後段の消耗補正
量計算手段3にて容易に使用できるように当該継続時間
Tiの積算値と全体のパルス数との比を求め、図3に示
す様に発生割合Piとして求めている。
The pulse generation amount integrating means 5 for each duration is shown in FIG.
As shown in the figure, the pulse is integrated and counted for each pulse duration time Ti.
The pulses are classified into four types of μsec, 1 to 5 μsec, 5 to 10 μsec, and 10 μsec or more, and the pulses detected by the discharge pulse detection means 6 are classified and integrated. As a result, the integrated value of the pulse number can be output as it is. However, the integrated value of the duration time Ti and the total number of pulses are used so that the consumption correction amount calculating means 3 can easily use the integrated value. The ratio is determined, and as shown in FIG. 3, the occurrence ratio Pi is determined.

【0019】継続時間別消耗補正データ1の例を図2に
示す。このデータはパルス継続時間Ti別にあらかじめ
実験的に求めた電極消耗値Wiが記憶されているが、こ
の実験値は加工面積毎に測定する必要はなく、小面積に
より測定された数値でよい。なおパルス継続時間Tiの
範囲の取り方は、パルス数積算手段で積算するデータと
消耗補正データの両方に同一としておくと以下の計算が
より容易となる。
FIG. 2 shows an example of the consumption correction data 1 for each duration. Although the electrode wear value Wi experimentally obtained in advance for each pulse duration Ti is stored in this data, the experimental value does not need to be measured for each processing area, and may be a numerical value measured for a small area. The following calculation is easier if the method of setting the range of the pulse duration time Ti is the same for both the data integrated by the pulse number integrating means and the consumption correction data.

【0020】消耗補正量計算手段3は、継続時間別消耗
補正データ1と継続時間別パルス数積算手段5の積算デ
ータから実際の消耗補正量を計算する部分であり、継続
時間別発生割合をPi、継続時間別消耗補正データをWi
とすると、現時点までの全体の消耗量Wtotalは次の数
1により計算できる。
The consumption correction amount calculating means 3 is a part for calculating the actual consumption correction amount from the consumption correction data 1 for each continuous time and the integrated data of the pulse number integrating means 5 for each continuous time. , Wiring consumption data by duration
Then, the total consumption Wtotal up to the present time can be calculated by the following equation (1).

【数1】Wtotal=ΣPi*Wi (i=1〜n)[Equation 1] Wtotal = ΣPi * Wi (i = 1 to n)

【0021】NC制御装置4は加工条件中の送り量に上
記数1で求めた消耗量Wtotalを加算することにより実
際の送り量を求めることができる。なおこの場合の加工
条件中の送り量は実際の送り量であり、電極消耗が予め
考慮されている必要はない。また、電極消耗量の補正デ
ータを設定する際、従来は、加工条件中の電気条件毎に
電極消耗量を実験的に測定する必要があり、さらに電極
面積毎に測定する必要があったが、本発明では、放電継
続時間Ti毎に測定するだけで良い。面積毎に実験測定
する必要もない。実際の送り量が得られれば、以降は従
来技術と同様に加工を行なうことにより電極消耗を補正
した加工を行なうことができる。
The NC controller 4 can obtain the actual feed amount by adding the consumption amount Wtotal obtained by the above equation 1 to the feed amount in the processing conditions. In this case, the feed amount in the processing conditions is an actual feed amount, and it is not necessary to consider electrode consumption in advance. In addition, when setting the correction data of the electrode wear amount, conventionally, it was necessary to experimentally measure the electrode wear amount for each electrical condition in the processing conditions, and further, it was necessary to measure for each electrode area, In the present invention, it is only necessary to measure for each discharge duration time Ti. There is no need to measure experimentally for each area. If the actual feed amount can be obtained, thereafter, processing can be performed in the same manner as in the related art to correct the electrode consumption.

【0022】なお、継続時間別消耗補正データ1は放電
電流ピーク値により影響されるため、ピーク値別に持つ
必要があるが、実際の加工においてパルス割れが問題と
なるのは仕上加工のみであるため、仕上加工にて使用す
る放電電流ピーク値に関してのみ継続時間別消耗補正デ
ータを持つことで十分な効果が得られる。
Since the consumption correction data 1 for each duration is affected by the peak value of the discharge current, it must be provided for each peak value. However, pulse cracking is a problem in actual machining only in finish machining. A sufficient effect can be obtained by having the consumption correction data classified by duration only for the discharge current peak value used in the finishing process.

【0023】また、本実施例では継続時間を4分類して
いるが、この分類は固定である必要はなく、分類数およ
び継続時間の範囲の取り方はどのようにも実施しても同
様の効果が得られる。また、放電パルス検出部では全て
のパルスを検出し、実時間内で消耗補正量を逐次計算す
ることも可能であるが、適当なタイミングで放電パルス
のデータをサンプリングおよび記憶し、オフラインの状
態にて継続時間別のパルス数の積算および消耗補正量の
演算を行ない、現加工条件を切り替える以前に送り量に
対して補正をかければよい。
In this embodiment, the duration is classified into four. However, this classification does not need to be fixed, and the number of classifications and the range of the duration can be set in any manner. The effect is obtained. In addition, the discharge pulse detection unit can detect all the pulses and sequentially calculate the consumption correction amount in real time.However, the discharge pulse data is sampled and stored at an appropriate timing, and the state is changed to an offline state. It is only necessary to perform the integration of the number of pulses for each duration and the calculation of the consumption correction amount to correct the feed amount before switching the current processing conditions.

【0024】本実施例では各構成要素をNC制御装置と
別の装置として実現した場合を記述したが、NC制御装
置内に本構成要素が実現されていても同様の効果が得ら
れる。
In this embodiment, the case where each component is realized as a device different from the NC control device has been described. However, the same effect can be obtained even if this component is realized in the NC control device.

【0025】[0025]

【発明の効果】以上のように本発明によれば、加工面積
のわずかの変化によりパルス割れの発生確率が大きく変
化する加工条件において、より高精度に電極消耗補正を
行うことができるため、より指定面粗さに近くかつ指定
加工精度を得る事のできる放電加工装置が得られる。
As described above, according to the present invention, the electrode wear correction can be performed with higher accuracy under the processing condition in which the occurrence probability of the pulse crack changes greatly due to a slight change in the processing area. An electric discharge machining apparatus that is close to the specified surface roughness and can obtain the specified machining accuracy can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の放電加工装置の一実施例を示す概略ブ
ロック図である。
FIG. 1 is a schematic block diagram showing one embodiment of an electric discharge machine according to the present invention.

【図2】本発明の放電加工装置の継続時間別消耗補正デ
ータの一例を示す図である。
FIG. 2 is a diagram showing an example of consumption correction data for each duration of the electric discharge machine of the present invention.

【図3】本発明の放電加工装置の継続時間別パルス数積
算結果の一例を示す図である。
FIG. 3 is a diagram showing an example of a pulse number integration result for each duration of the electric discharge machining apparatus of the present invention.

【図4】パルス割れが発生している場合と発生していな
い場合の放電電圧電流波形の一例を示す図である。
FIG. 4 is a diagram showing an example of a discharge voltage / current waveform when a pulse crack has occurred and when it has not occurred.

【図5】従来の放電加工装置の一例を示す概略ブロック
図である。
FIG. 5 is a schematic block diagram showing an example of a conventional electric discharge machine.

【図6】従来の加工条件の一実施例を示す図である。FIG. 6 is a view showing one embodiment of conventional processing conditions.

【符号の説明】[Explanation of symbols]

1 継続時間別消耗補正データ 3 消耗補正量計算手段 5 継続時間別パルス発生量積算手段 6 放電パルス検出手段 9 電極 10 ワーク V 電圧 I 電流 T0、T1、T2、T3 放電継続時間 1 Consumption correction data by duration 3 Consumption correction amount calculation means 5 Pulse generation amount integration means by duration 6 Discharge pulse detection means 9 Electrode 10 Work V Voltage I Current T0, T1, T2, T3 Discharge duration

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 放電パルスの発生を検出する放電パルス
検出手段と、検出された放電パルスの放電継続時間を計
測し、当該放電継続時間のパルスの全体に対するパルス
発生割合を放電継続時間別に積算するパルス発生量積算
手段と、放電継続時間に対応した電極消耗量を電極消耗
補正データとして記憶する記憶部と、前記継続時間別に
積算されたパルス発生割合と前記電極消耗補正データか
ら現時点までの電極消耗量を決定する電極消耗量決定手
段と、決定された電極消耗量から加工方向及び揺動方向
への電極送り量を補正する電極消耗量補正手段と、を備
えたことを特徴とする放電加工装置。
A discharge pulse detecting means for detecting generation of a discharge pulse, a discharge duration of the detected discharge pulse is measured, and a pulse generation ratio of the discharge duration to the entire pulse is integrated for each discharge duration. A pulse generation amount integrating means, a storage unit for storing an electrode consumption amount corresponding to the discharge duration as electrode consumption correction data, and a pulse generation ratio integrated for each duration and the electrode consumption from the electrode consumption correction data to the current time. An electric discharge machining apparatus comprising: an electrode wear amount determining means for determining an amount; and an electrode wear amount correcting means for correcting an electrode feed amount in a machining direction and a swing direction from the determined electrode wear amount. .
JP11098397A 1997-04-28 1997-04-28 Electrical discharge machining device Pending JPH10296540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11098397A JPH10296540A (en) 1997-04-28 1997-04-28 Electrical discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11098397A JPH10296540A (en) 1997-04-28 1997-04-28 Electrical discharge machining device

Publications (1)

Publication Number Publication Date
JPH10296540A true JPH10296540A (en) 1998-11-10

Family

ID=14549437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098397A Pending JPH10296540A (en) 1997-04-28 1997-04-28 Electrical discharge machining device

Country Status (1)

Country Link
JP (1) JPH10296540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045889A1 (en) * 1999-12-20 2001-06-28 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
US7202438B2 (en) * 2004-03-01 2007-04-10 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045889A1 (en) * 1999-12-20 2001-06-28 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for electrodischarge machining
US6667453B1 (en) 1999-12-20 2003-12-23 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining method and apparatus with control of rocking function parameters
US7202438B2 (en) * 2004-03-01 2007-04-10 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machining apparatus
CN100417485C (en) * 2004-03-01 2008-09-10 三菱电机株式会社 Electrical discharge machining apparatus

Similar Documents

Publication Publication Date Title
CN1765555B (en) Controller for wire electric discharge machine
JP3808444B2 (en) Control device for wire electric discharge machine
TWI422450B (en) Wire-cut electric discharge machine with function to suppress local production of streaks during finish machining
KR960031041A (en) Discharge machining method and apparatus thereof
US6924453B2 (en) Machining control method for wire-cut electric discharge machine
US8921729B2 (en) Wire electrical discharge machine carrying out electrical discharge machining by inclining wire electrode
JP3382756B2 (en) Electric discharge machining apparatus and electric discharge machining method
KR0158285B1 (en) Electrical discharge machining method and apparatus with non-load time calculation
CN104439568A (en) Method and apparatus for spark-erosion machining of a workpiece
JPH10296540A (en) Electrical discharge machining device
US7113884B1 (en) Positioning apparatus for an electrical discharge machine and a method therefor
JP3818257B2 (en) Wire electrical discharge machine
JPH059209B2 (en)
JPH11221718A (en) Wire electric discharge machine
JP2587956B2 (en) Control device for wire electric discharge machine
JPH05345229A (en) Three dimensional discharge machining apparatus
JP2686094B2 (en) Electric discharge machine
SU1301594A1 (en) Method of extremum control of electro-erosion process
JP3006817B2 (en) Electric discharge machining method and apparatus
JP2667183B2 (en) Machining error correction control method in Die-sinker EDM
JP2000015524A (en) Control method and device of electrical discharge machine
JPH0760551A (en) Wire cut electric discharge machine
JPH0276624A (en) Electric discharge machine
JPH0773812B2 (en) Electric discharge machine
JP2000079514A (en) Electric discharge machining device