JPH10292055A - Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticles - Google Patents
Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticlesInfo
- Publication number
- JPH10292055A JPH10292055A JP9100175A JP10017597A JPH10292055A JP H10292055 A JPH10292055 A JP H10292055A JP 9100175 A JP9100175 A JP 9100175A JP 10017597 A JP10017597 A JP 10017597A JP H10292055 A JPH10292055 A JP H10292055A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- section
- dispersibility
- cross
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は成形物全体にわた
り、微粒子が均一に分散された成形物であり、微粒子の
分散状態を評価する方法である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article in which fine particles are uniformly dispersed throughout the entire molded article, and a method for evaluating the dispersion state of the fine particles.
【0002】[0002]
【従来の技術】従来より、ポリマ−中に各種の微粒子を
含有させて、微粒子の有する機能性を成形物に付与する
技術が幾つも提案され、実現されている。たとえば、無
機微粒子含有ポリエステル繊維をアルカリ処理して繊維
表面に凹凸を付与することが提案され、実施されてい
る。中でもシリカ微粒子をポリエステル繊維中に添加す
る方法がポピュラ−化している。しかしながら、微粒子
のポリマ−中への分散技術は微粒子の凝集という問題を
避けて通ることはできず、かかる微粒子の凝集を改良す
る技術も各種提案されている。2. Description of the Related Art Conventionally, various techniques have been proposed and realized in which various fine particles are contained in a polymer to impart the functionality possessed by the fine particles to a molded product. For example, it has been proposed and practiced to give an unevenness to the fiber surface by treating an inorganic fine particle-containing polyester fiber with an alkali. Among them, a method of adding silica fine particles to polyester fibers has become popular. However, the technique of dispersing the fine particles in the polymer cannot avoid the problem of the aggregation of the fine particles, and various techniques for improving the aggregation of the fine particles have been proposed.
【0003】一方、近年の世界情勢のボ−ダ−レ−ス化
により、より高度な生産性、コスト削減が要求されてい
るのが現状である。これに対応するために製造設備の高
速化が必要になり、従来の微粒子分散レベルでは今まで
問題とならなかった微粒子の微小な凝集塊が、工程性の
阻害原因となってきており、微粒子の均一分散性の向上
が急務となっている。On the other hand, in recent years, with the recent trend toward a border situation in the world, higher productivity and cost reduction have been demanded. In order to cope with this, it is necessary to increase the speed of manufacturing equipment, and fine agglomerates of fine particles, which had not been a problem at the conventional fine particle dispersion level, have become a cause of impairment of processability. Improving uniform dispersibility is urgently needed.
【0004】このような状況下、本出願人は微粒子の分
散性が向上したポリエステルの製造方法を出願した。か
かる方法により、より微粒子の分散性が向上した成形物
を得ることができるようになった。微粒子の分散性を評
価測定する方法については、光学顕微鏡による断面観察
法や透過型電子顕微鏡による観察方法があるが、前者で
は観察倍率が低く、正確な情報が得られないといった問
題があり、後者は正確な情報は得られるが、観察に至る
までの準備に時間を非常に要する問題があり、必然的に
測定回数が少なくなり、より正確な微粒子の分散性を評
価するには問題がある。[0004] Under such circumstances, the present applicant has filed an application for a method for producing a polyester with improved dispersibility of fine particles. According to such a method, it has become possible to obtain a molded product with further improved dispersibility of fine particles. Methods for evaluating and measuring the dispersibility of fine particles include cross-sectional observation methods using an optical microscope and observation methods using a transmission electron microscope.The former, however, has a problem that the observation magnification is low and accurate information cannot be obtained. Although accurate information can be obtained, there is a problem that much time is required for preparation before observation, and the number of measurements is inevitably reduced, and there is a problem in more accurate evaluation of fine particle dispersibility.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、成形
物中の微粒子の分散性を基礎的なデ−タでもって簡便に
評価しようとするものである。SUMMARY OF THE INVENTION An object of the present invention is to easily evaluate the dispersibility of fine particles in a molded product by using basic data.
【0006】[0006]
【課題を解決しようとする手段】上記の目的は、微粒子
が含有された成形物であって、成形物断面の300μm
×400μmの面積内に存在する微粒子の数(D1)
と、30μm×40μmの面積内に存在する微粒子の数
(D2)との差が30%以内であることを特徴とする微
粒子分散性に優れた成形物および成形物中の微粒子の分
散状態を評価する方法を提供することによって達成され
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a molded article containing fine particles and having a cross section of 300 μm
× Number of fine particles present in an area of 400 μm (D1)
And the number of fine particles present in an area of 30 μm × 40 μm (D2) is within 30%, and the molded article excellent in fine particle dispersibility and the dispersion state of the fine particles in the molded article are evaluated. This is achieved by providing a way to:
【0007】[0007]
【発明の実施形態】本発明について詳述する。本発明に
おいて『成形物』とは繊維、フィルム、シ−ト等を示
し、これらの成形物を製造するための出発原料であるポ
リマ−チップ(ペレット)をも包含するものである。ま
た、『成形物の断面』とは、繊維の場合には繊維軸に平
行または直交した断面のいずれでもよいが、作業性の点
で繊維軸に直交した断面が好ましい。フィルム、シ−
ト、チップ(ペレット)等の場合にはタテ、ヨコ等いず
れの方向でもよい。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail. In the present invention, the term "molded article" refers to fibers, films, sheets and the like, and also includes polymer chips (pellets) which are starting materials for producing these molded articles. In the case of a fiber, the “cross-section of the molded article” may be a cross-section parallel or perpendicular to the fiber axis, but a cross-section perpendicular to the fiber axis is preferable in terms of workability. Film, see
In the case of (g) or chips (pellets), any direction such as vertical or horizontal may be used.
【0008】次に成形物の断面の切り出し方法について
述べる。チップの場合にはチップをそのままミクロト−
ムに固定し、その先端部から切断し厚さ2〜30μmの
薄片を作成する。繊維の場合には、ヤ−ンまたは単繊維
を任意の本数でエポキシ等の樹脂により包埋し、ミクロ
ト−ムで厚さ2〜20μmに切断し薄片を作成する。薄
片の厚さは、含有している微粒子の想定される粒径によ
って適宜設定することができる。フィルムやシ−トの場
合にはその厚さによって上述のエポキシ樹脂等の樹脂に
包埋するかしないかを決定するが、厚さが200μm以
下の場合には包埋することが好ましい。Next, a method for cutting out a cross section of a molded product will be described. In the case of a chip, insert the chip
And cut from the tip to form a thin slice having a thickness of 2 to 30 μm. In the case of a fiber, a yarn or a single fiber is embedded in an arbitrary number with a resin such as epoxy and cut into a thickness of 2 to 20 μm with a microtome to form a thin piece. The thickness of the flake can be appropriately set depending on the assumed particle size of the contained fine particles. In the case of a film or a sheet, whether or not it is embedded in a resin such as the above-mentioned epoxy resin is determined depending on its thickness. When the thickness is 200 μm or less, it is preferable to embed the film or sheet.
【0009】本発明において、微粒子とは無機微粒子、
有機微粒子の種類に限定されることはなく、シリカ、酸
化チタン、カ−ボン、硫酸バリウム、炭酸カルシウム、
カ−ボン等の無機微粒子、アクリル、ポリスチレン、セ
ルロ−スパウダ−等の有機微粒子などいずれの微粒子を
も使用することができる。In the present invention, the fine particles are inorganic fine particles,
It is not limited to the type of organic fine particles, silica, titanium oxide, carbon, barium sulfate, calcium carbonate,
Any fine particles such as inorganic fine particles such as carbon and organic fine particles such as acryl, polystyrene and cellulose powder can be used.
【0010】微粒子の平均粒径は10mμm〜10μm
の範囲が好適であり、該粒径は遠心沈降法または光散乱
法により測定することができる。さらに成形物中の粒子
の含有量はとくに限定されることはなく、目的に応じて
適宜設定することができる。通常、0.01〜30重量
%、とくに0.1〜20重量%の範囲である。The average particle size of the fine particles is 10 μm to 10 μm
The particle size can be measured by a centrifugal sedimentation method or a light scattering method. Furthermore, the content of the particles in the molded product is not particularly limited, and can be appropriately set according to the purpose. Usually, it is in the range of 0.01 to 30% by weight, especially 0.1 to 20% by weight.
【0011】本発明において、成形物中の微粒子の分散
性を評価する方法を説明する。まずプラズマ法について
説明する。プラズマ処理とは一対の電極を配した容器内
を真空状態にし、ガスまたはモノマ−を導入した後、あ
る一定の真空度の下、電極間に高周波電源にてある一定
の電圧をかけ、グロ−放電を発生させるものである。本
発明で用いるガスは処理目的がポリマ−のエッチングで
あるため酸素ガスが好ましい。ただし、ポリマ−がとく
にエッチングによりダメ−ジを受けやすい種類である場
合には酸素濃度を低く押さえることが好ましい。たとえ
ば、ガス量を低くする、または空気を導入する等の方法
がある。処理電圧、処理時間についても、ポリマ−の種
類に応じて設定することができる。本発明において、プ
ラズマを使用するのは、ポリマ−と添加微粒子とのエッ
チング速度差を利用し、ポリマ−と微粒子のエッチング
の段差を設けるためである。In the present invention, a method for evaluating the dispersibility of fine particles in a molded product will be described. First, the plasma method will be described. Plasma treatment is a process in which a vessel in which a pair of electrodes is arranged is evacuated, a gas or a monomer is introduced, and a certain voltage is applied between the electrodes under a certain degree of vacuum by a high-frequency power source, and a glow is applied. This is to generate electric discharge. The gas used in the present invention is preferably an oxygen gas since the purpose of processing is to etch a polymer. However, if the polymer is of a type that is easily damaged by etching, it is preferable to keep the oxygen concentration low. For example, there are methods such as reducing the amount of gas or introducing air. The processing voltage and processing time can also be set according to the type of polymer. In the present invention, the reason why plasma is used is to provide a step for etching the polymer and the fine particles by utilizing the difference in the etching rate between the polymer and the added fine particles.
【0012】プラズマ処理法に供される成形物を構成す
るポリマ−としては、ポリエステル、ポリアミド、レ−
ヨン等のセルロ−ス、ポリビニルアルコ−ルなどを挙げ
ることができるが、これらのポリマ−に限定されるもの
ではない。The polymer constituting the molded product subjected to the plasma treatment method includes polyester, polyamide, and resin.
Cellulose such as Yeon, polyvinyl alcohol, and the like can be given, but are not limited to these polymers.
【0013】上述のように微粒子の種類は無機微粒子、
有機微粒子いずれも使用できるが、該微粒子の種類によ
ってプラズマ処理条件が異なってくる。一般的に無機微
粒子を含有する成形物の場合、無機微粒子はプラズマに
よりエッチングをほとんど受けにくいものが多く、プラ
ズマ処理時間とともにポリマ−部分の分解が促進される
ので、処理時間が長い程、微粒子の分散性、大きさは確
認しやすくなる。ただし、処理時間があまり長くなる
と、成形物断面の微粒子の分散性のみでなく、成形物内
部にまでエッチングが進み、成形物内部の微粒子の分散
性の情報も得られ、これらの情報が混在するので目的に
応じて処理時間を設定することが好ましい。たとえば、
成形物断面の最表面における微粒子の分散性を評価する
場合にはプラズマ処理時間を短くするなどである。As described above, the type of fine particles is inorganic fine particles,
Although any of organic fine particles can be used, plasma processing conditions vary depending on the type of the fine particles. Generally, in the case of a molded product containing inorganic fine particles, many of the inorganic fine particles are hardly susceptible to etching by plasma, and the decomposition of the polymer portion is promoted with the plasma processing time. Dispersibility and size are easy to confirm. However, if the processing time is too long, not only the dispersibility of the fine particles in the cross section of the molded product, but also the etching proceeds to the inside of the molded product, and information on the dispersibility of the fine particles inside the molded product is obtained, and these information are mixed. Therefore, it is preferable to set the processing time according to the purpose. For example,
In order to evaluate the dispersibility of the fine particles on the outermost surface of the cross section of the molded product, the plasma treatment time is shortened.
【0014】有機微粒子を含有する成形物の場合、有機
微粒子と、成形物を構成するポリマ−とのプラズマ処理
によるエッチング速度差が小さく、そのため処理時間を
短く設定することが好ましい。成形物を構成するポリマ
−より微粒子のプラズマエッチング速度が速い場合に
は、微粒子の大きさ、分散性を該微粒子の痕跡で評価す
ることになる。In the case of a molded article containing organic fine particles, the difference in etching rate between the organic fine particles and the polymer constituting the molded article due to the plasma treatment is small, and therefore it is preferable to set the processing time short. When the plasma etching rate of the fine particles is higher than that of the polymer constituting the molded product, the size and the dispersibility of the fine particles are evaluated based on the traces of the fine particles.
【0015】本発明においては、プラズマ処理時間は微
粒子の含有量に左右されるものではない。また、成形物
中の微粒子の平均粒径は、想定される添加前の微粒子の
平均粒径程度にプラズマエッチングを行うことにより確
認することができる。たとえば平均粒径1μmの微粒子
が成形物中に存在すると想定される場合、プラズマ処理
により1μm前後のエッチング処理を行えば該微粒子の
平均粒径を確認することができる。より正確な平均粒径
を知りたい場合にはエッチング処理を強くし、無機微粒
子の場合にはその周辺のポリマ−を除去し、有機微粒子
の場合には、その周辺のポリマ−を除去するか、あるい
は該有機微粒子そのものを除去することにより微粒子の
平均粒径を確認することができる。In the present invention, the plasma processing time does not depend on the content of the fine particles. The average particle diameter of the fine particles in the molded product can be confirmed by performing plasma etching to about the average particle diameter of the fine particles before the addition. For example, when it is assumed that fine particles having an average particle size of 1 μm are present in the molded product, the average particle size of the fine particles can be confirmed by performing an etching process of about 1 μm by plasma treatment. If it is desired to know a more accurate average particle size, the etching process should be strengthened, the polymer around the inorganic fine particles should be removed, and the polymer around the organic fine particles should be removed. Alternatively, the average particle diameter of the fine particles can be confirmed by removing the organic fine particles themselves.
【0016】次にアルカリ処理について説明する。アル
カリ処理とは、たとえば成形物を構成するポリマ−がポ
リエステルの場合、ある濃度の加温されたアルカリ溶液
中に浸漬する方法(バッチ方式)、アルカリを被処理物
に染み込ませた後熱処理する方法(連続方式)などによ
りポリエステルの加水分解を生じせしめるような処理を
示す。本発明においてアルカリ処理は上述のバッチ方式
で行うことが好ましい。すなわち成形物を水酸化ナトリ
ウム、水酸化カリウム等のアルカリ溶液中に浸漬する方
法である。処理温度は成形物を構成するポリマ−、微粒
子の種類により適宜設定することができ、高温高圧処理
を施すことも可能である。ただし、かかる高温高圧処理
の場合には常圧に戻す作業、あるいは冷却を施す作業を
伴うので予定していたアルカリ処理を行うことができに
くい。処理時間も成形物を構成するポリマ−、微粒子の
種類により適宜設定することができる。ただし微粒子の
含有量が5重量%以上であってその平均粒径が5μm以
下の場合には処理時間を通常より短くすることが好まし
い。粒径の小さい微粒子の含有量が多いと、アルカリ処
理により、微粒子が溶解した後の痕跡が繋がり、正確な
粒子の痕跡を確認することができないからである。また
アルカリ処理により溶解しない微粒子の場合にも成形物
断面に露出する微粒子の数が多すぎて正確な微粒子の数
が評価できにくくなる。Next, the alkali treatment will be described. The alkali treatment is, for example, a method of immersing in a heated alkali solution of a certain concentration (batch method) when the polymer constituting the molded product is a polyester, or a method of infiltrating an alkali into a workpiece and then performing a heat treatment. (Continuous mode) indicates a treatment that causes hydrolysis of the polyester. In the present invention, the alkali treatment is preferably performed by the above-mentioned batch method. That is, it is a method of immersing the molded article in an alkaline solution such as sodium hydroxide and potassium hydroxide. The processing temperature can be appropriately set according to the type of polymer and fine particles constituting the molded product, and high-temperature and high-pressure processing can be performed. However, in the case of such a high-temperature and high-pressure treatment, an operation of returning to normal pressure or an operation of performing cooling is involved, so that it is difficult to perform a scheduled alkali treatment. The processing time can also be appropriately set depending on the types of the polymer and fine particles constituting the molded product. However, when the content of the fine particles is 5% by weight or more and the average particle size is 5 μm or less, it is preferable that the processing time is shorter than usual. If the content of the fine particles having a small particle diameter is large, traces after the fine particles are dissolved by the alkali treatment are connected, and accurate traces of the particles cannot be confirmed. Further, even in the case of fine particles which are not dissolved by the alkali treatment, the number of fine particles exposed on the cross section of the molded product is too large, and it is difficult to accurately evaluate the number of fine particles.
【0017】成形物を構成するポリマ−および成形物中
に含有される微粒子の少なくともどちらか一方がアルカ
リによって分解すれば上述のアルカリ処理が可能である
が、どちらもアルカリにより分解しない場合には上述の
プラズマ処理を施すことが好適である。無論、瞬時にア
ルカリに溶解するポリマ−を使用した成形物にはプラズ
マ処理を施すことが好適であることはいうまでもない。The above alkali treatment is possible if at least one of the polymer constituting the molded article and the fine particles contained in the molded article is decomposed by alkali. Is preferably performed. Needless to say, it is preferable to apply a plasma treatment to a molded product using a polymer that dissolves in an alkali instantaneously.
【0018】成形物の断面を上述のプラズマ処理あるい
はアルカリ処理に供することによって、成形物中に含有
される微粒子の分散性を評価することが可能となったの
である。たとえば、シリカを含有するポリエステル成形
物を一例として挙げる。シリカはポリエステルの数十倍
の速さのアルカリ溶解速度を有しているので、アルカリ
処理法によりシリカを溶解除去してその痕跡によりシリ
カの分散性を評価することができる。シリカの含有量が
10重量%を越える場合にはアルカリ処理法でもよい
が、アルカリ処理条件によってはシリカの痕跡が繋がる
恐れが生じるので、プラズマ処理を施し、成形物断面の
シリカそのものを観察評価することが好ましい。By subjecting the cross section of the molded article to the above-described plasma treatment or alkali treatment, it became possible to evaluate the dispersibility of the fine particles contained in the molded article. For example, a polyester molded product containing silica is exemplified. Since silica has an alkali dissolution rate several tens of times faster than polyester, silica can be dissolved and removed by an alkali treatment method, and the trace of the silica can be used to evaluate the dispersibility of silica. When the content of silica exceeds 10% by weight, an alkali treatment may be used. However, depending on the alkali treatment conditions, traces of silica may be connected. Therefore, plasma treatment is performed, and the silica itself in the cross section of the molded product is observed and evaluated. Is preferred.
【0019】本発明においては、上述のプラズマ処理ま
たはアルカリ処理により成形物中の微粒子の分散性を評
価するが、単に成形物断面の微粒子の分散性を測定する
だけではない。すなわち、成形物断面の300μm×4
00μmの面積内に存在する該断面に表出した微粒子ま
たはその痕跡の数と、30μm×40μmの面積内に存
在する該断面に表出した微粒子またはその痕跡の数を走
査型電子顕微鏡により測定し、その差が30%以内、好
ましくは20%以内であれば微粒子の分散性に優れてい
ると評価するものである。この2つの異なる面積で測定
された微粒子の数(痕跡)の値が近いことは、微粒子が
均一に成形物中に分散していることを意味するものであ
る。In the present invention, the dispersibility of the fine particles in the molded product is evaluated by the above-described plasma treatment or alkali treatment. However, the dispersibility of the fine particles in the cross section of the molded product is not merely measured. That is, 300 μm × 4
The number of fine particles or their traces present on the cross section present in an area of 00 μm and the number of fine particles or their traces present on the cross section present in an area of 30 μm × 40 μm were measured by a scanning electron microscope. If the difference is within 30%, preferably within 20%, it is evaluated that the dispersibility of the fine particles is excellent. The close value of the number (trace) of the fine particles measured in the two different areas means that the fine particles are uniformly dispersed in the molded product.
【0020】成形物断面の300μm×400μmの面
積内と、30μm×40μmの面積内に存在する該断面
に表出した微粒子またはその痕跡の数との差が30%以
内とは次の計算式による。The difference between the area of 300 μm × 400 μm of the cross section of the molded article and the number of fine particles or traces thereof present in the area of 30 μm × 40 μm within the area of 30 μm × 40 μm is within 30% by the following formula. .
【0021】 {(|D1−D2×100|)}/D1×100≦30 ここで、D1とは、300μm×400μmの面積内に
存在する該断面に表出した微粒子またはその痕跡の数、
D2とは、30μm×40μmの面積内に存在する該断
面に表出した微粒子またはその痕跡の数を示す。{(| D1−D2 × 100 |)} / D1 × 100 ≦ 30 Here, D1 is the number of fine particles or traces thereof present on the cross section existing within an area of 300 μm × 400 μm,
D2 indicates the number of fine particles or traces thereof present on the cross section existing within an area of 30 μm × 40 μm.
【0022】本発明の評価方法は、上述のプラズマ処理
またはアルカリ処理が施された成形物断面を観察するこ
とによりなされるので、従来の評価に比較して観察まで
の試料の作成が簡便にでき、また結果も正確さを有する
のである。Since the evaluation method of the present invention is carried out by observing the cross section of the molded article which has been subjected to the above-mentioned plasma treatment or alkali treatment, the preparation of the sample up to the observation can be simplified as compared with the conventional evaluation. And the results are also accurate.
【0023】[0023]
【実施例】以下、実施例により本発明を詳述するが、本
発明はこれら実施例により何等限定されるものではな
い。 実施例1 平均粒径0.6μmの酸化チタンを0.5重量%含有し
たポリエステル繊維(75デニ−ル/36フィラメン
ト)を1本、エポキシ樹脂に包埋し、硬化後ミクロト−
ム(PR−50、ヤマト製)を用いて厚さ6μmの切片
を作成し、銅製のプレ−ト上に固定させた。これをガラ
スベルジャ−型プラズマ処理装置内に設置し、真空排気
後酸素ガスを30リットル/分導入し、真空度を0.1
torrに合わせた。ついで13.56MHzの高周波
電源を用いて1W/cm2 の出力でプラズマ処理を20
秒行った。処理済の試料をSEM(日本電子製、JSM
−5300)にて2000倍に撮影し、300μm×4
00μmの面積内、および30μm×40μmの面積内
の微粒子の個数を画像処理により求めた。試料の数は1
8本であり、その差の平均値は25%であった。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 One polyester fiber (75 denier / 36 filaments) containing 0.5% by weight of titanium oxide having an average particle diameter of 0.6 μm was embedded in an epoxy resin, and after hardening, a micropowder was used.
A 6 μm-thick section was prepared using a rubber (PR-50, manufactured by Yamato), and fixed on a copper plate. This was set in a glass bell jar type plasma processing apparatus, and after evacuation, oxygen gas was introduced at a rate of 30 liter / min, and the degree of vacuum was set to 0.1.
It was adjusted to torr. Next, the plasma treatment was performed at a power of 1 W / cm 2 using a high frequency power supply of 13.56 MHz for 20 times.
Seconds went. The processed sample was subjected to SEM (JEOL, JSM
-5300) at 2000x magnification, 300 μm × 4
The number of fine particles within the area of 00 μm and within the area of 30 μm × 40 μm was determined by image processing. Number of samples is 1
There were eight, and the average of the difference was 25%.
【0024】実施例2 平均粒径0.1μmのシリカを3重量%含有するポリエ
ステルチップをミクロト−ムを用いて厚さ10μmの切
片を作成し、銅製のプレ−ト上に固定した。これを浴温
度80℃、1Nの水酸化ナトリウム水溶液1リットル中
に60分間浸漬し、アルカリ処理を行い、水洗、乾燥を
施した。ついで実施例1と同様にして、処理済の試料を
SEM(日本電子製、JSM−5300)にて2000
倍に撮影し、300μm×400μmの面積内、および
30μm×40μmの面積内の微粒子の個数を画像処理
により求めた。試料の数は10個であり、その差の平均
値は18%であった。Example 2 A 10 μm thick section of a polyester chip containing 3% by weight of silica having an average particle diameter of 0.1 μm was prepared using a microtome and fixed on a copper plate. This was immersed in 1 liter of a 1N aqueous sodium hydroxide solution at a bath temperature of 80 ° C. for 60 minutes, subjected to an alkali treatment, washed with water, and dried. Then, in the same manner as in Example 1, the processed sample was subjected to SEM (JSM-5300, manufactured by JEOL Ltd.) for 2000 times.
The photograph was taken at a magnification of × 2, and the number of fine particles within the area of 300 μm × 400 μm and within the area of 30 μm × 40 μm was determined by image processing. The number of samples was 10, and the average of the difference was 18%.
【0025】実施例3 平均粒径0.5μmのスチレン/アクリル共重合体微粒
子を10重量%含有したレ−ヨン(75デニ−ル/30
フィラメント)をエポキシ樹脂に包埋し、硬化後ミクロ
ト−ムを用いて厚さ10μmの切片を作成し、銅製のプ
レ−ト上に固定した。これに実施例1と同様にしてプラ
ズマ処理を施した。ただし、処理時間を5秒とした。つ
いで実施例1と同様にして、処理済の試料をSEM(日
本電子製、JSM−5300)にて2000倍に撮影
し、300μm×400μmの面積内、および30μm
×40μmの面積内の微粒子の個数を画像処理により求
めた。試料の数は30本であり、その差の平均値は12
%であった。Example 3 A rayon (75 denier / 30) containing 10% by weight of styrene / acrylic copolymer fine particles having an average particle size of 0.5 μm.
The filament was embedded in an epoxy resin, and after curing, a section having a thickness of 10 μm was prepared using a microtome, and fixed on a copper plate. This was subjected to a plasma treatment in the same manner as in Example 1. However, the processing time was 5 seconds. Then, in the same manner as in Example 1, the processed sample was photographed at a magnification of 2000 times with a SEM (manufactured by JEOL Ltd., JSM-5300), and within an area of 300 μm × 400 μm and 30 μm
The number of fine particles within an area of × 40 μm was determined by image processing. The number of samples is 30, and the average of the difference is 12
%Met.
【0026】比較例1 実施例1で使用した厚さ6μmの切片を光学顕微鏡で6
00の倍率で観察した。この場合、透過光による写真撮
影となり、切片の厚さ方向すべての情報が写真として撮
影されている、すなわち酸化チタン粒子が重なって見
え、このため粒子の正確な個数を数えることができなか
った。Comparative Example 1 A 6 μm thick section used in Example 1 was examined with an optical microscope.
Observed at a magnification of 00. In this case, the photograph was taken by the transmitted light, and all the information in the thickness direction of the section was photographed, that is, the titanium oxide particles appeared to overlap, so that the exact number of particles could not be counted.
【0027】[0027]
【発明の効果】本発明により、成形物中に含有された微
粒子の分散性を簡便に効率よく評価することができる。According to the present invention, the dispersibility of fine particles contained in a molded product can be easily and efficiently evaluated.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 7/16 C08K 7/16 C08L 25/08 C08L 25/08 101/00 101/00 H01J 37/28 H01J 37/28 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 7/16 C08K 7/16 C08L 25/08 C08L 25/08 101/00 101/00 H01J 37/28 H01J 37/28
Claims (2)
物断面の300μm×400μmの面積内に存在する微
粒子またはその痕跡の数(D1)と、30μm×40μ
mの面積内に存在する微粒子またはその痕跡の数(D
2)との差が30%以内であることを特徴とする微粒子
分散性に優れた成形物。1. A molded article containing fine particles, wherein the number (D1) of fine particles or their traces present in an area of 300 μm × 400 μm of the cross section of the molded article is 30 μm × 40 μm.
m or the number of traces (D
A molded article excellent in fine particle dispersibility, wherein the difference from 2) is within 30%.
法であって、成形物の断面をプラズマ処理することによ
り、該成形物を構成するポリマ−をエッチングするか、
あるいはアルカリ処理により該ポリマ−または微粒子を
溶解除去させることにより、該断面の300μm×40
0μmの面積内に存在する該断面に表出した微粒子また
はその痕跡の数(D1)と、30μm×40μmの面積
内に存在する該断面に表出した微粒子またはその痕跡の
数(D2)を走査型電子顕微鏡により測定し、その差が
30%以内であることを特徴とする微粒子分散性の評価
方法。2. A method for evaluating the dispersion state of fine particles in a molded article, comprising subjecting a cross section of the molded article to plasma treatment to etch a polymer constituting the molded article,
Alternatively, by dissolving and removing the polymer or fine particles by an alkali treatment, the cross section of 300 μm × 40
Scan the number of fine particles or their traces present on the cross section present in the area of 0 μm (D1) and the number of fine particles or their traces present on the cross section present in the area of 30 μm × 40 μm (D2). A method for evaluating fine particle dispersibility, wherein the difference is within 30%, as measured by a scanning electron microscope.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9100175A JPH10292055A (en) | 1997-04-17 | 1997-04-17 | Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9100175A JPH10292055A (en) | 1997-04-17 | 1997-04-17 | Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10292055A true JPH10292055A (en) | 1998-11-04 |
Family
ID=14266987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9100175A Pending JPH10292055A (en) | 1997-04-17 | 1997-04-17 | Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10292055A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008080480A (en) * | 2006-09-28 | 2008-04-10 | Mitsubishi Materials Corp | Measuring method of number of active abrasive grain on conditioning disc |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157148A (en) * | 1983-02-25 | 1984-09-06 | Toyobo Co Ltd | Resin composition |
JPS6147721A (en) * | 1984-08-15 | 1986-03-08 | Toyobo Co Ltd | Preparation of polyurethane resin |
JPH072913A (en) * | 1993-04-20 | 1995-01-06 | Sekisui Finechem Co Ltd | Colored fine polymer particle, its production, spacer for liquid crystal display element, and liquid crystal display element |
JPH0753689A (en) * | 1993-08-17 | 1995-02-28 | Mitsubishi Rayon Co Ltd | Production of polyester |
JPH07166423A (en) * | 1993-12-15 | 1995-06-27 | Mitsubishi Rayon Co Ltd | Deeply dyeable polyester fiber |
JPH07300547A (en) * | 1994-05-06 | 1995-11-14 | Kuraray Co Ltd | Production of impact resistant methacrylic resin composition |
JPH08199428A (en) * | 1995-01-17 | 1996-08-06 | Teijin Ltd | Production of titanium dioxide-containing polyester fiber |
-
1997
- 1997-04-17 JP JP9100175A patent/JPH10292055A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59157148A (en) * | 1983-02-25 | 1984-09-06 | Toyobo Co Ltd | Resin composition |
JPS6147721A (en) * | 1984-08-15 | 1986-03-08 | Toyobo Co Ltd | Preparation of polyurethane resin |
JPH072913A (en) * | 1993-04-20 | 1995-01-06 | Sekisui Finechem Co Ltd | Colored fine polymer particle, its production, spacer for liquid crystal display element, and liquid crystal display element |
JPH0753689A (en) * | 1993-08-17 | 1995-02-28 | Mitsubishi Rayon Co Ltd | Production of polyester |
JPH07166423A (en) * | 1993-12-15 | 1995-06-27 | Mitsubishi Rayon Co Ltd | Deeply dyeable polyester fiber |
JPH07300547A (en) * | 1994-05-06 | 1995-11-14 | Kuraray Co Ltd | Production of impact resistant methacrylic resin composition |
JPH08199428A (en) * | 1995-01-17 | 1996-08-06 | Teijin Ltd | Production of titanium dioxide-containing polyester fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008080480A (en) * | 2006-09-28 | 2008-04-10 | Mitsubishi Materials Corp | Measuring method of number of active abrasive grain on conditioning disc |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10270082B2 (en) | Porous carbon material and method for manufacturing porous carbon material | |
US20060057378A1 (en) | Solution containing cellulose dissolved in N-methylmorpholine-N-oxide and high tenacity lyocell multifilament using the same | |
JP2011056955A (en) | Diaphragm made of cast polyarylate film | |
CN1241224A (en) | Dispersion spinning process for poly(tetrafluoroethylene) and related polymers | |
CN116082689B (en) | High-strength antistatic release film and preparation method thereof | |
EP2924151A1 (en) | Method for production of carbon fiber bundle | |
CN111653253B (en) | Liquid metal block amorphous wind instrument and preparation process thereof | |
CN114566753B (en) | Hydrogen production diaphragm material capable of improving ion migration performance and preparation method thereof | |
WO2007043839A1 (en) | Method for preparing electroconductive particles with improved dispersion and adherence | |
JPH10292055A (en) | Molding excellent in dispersibility of microparticles and method for evaluating dispersibility of microparticles | |
JP2008308547A (en) | Fiber-reinforced composite material having its inherent birefringence controlled | |
KR20000062248A (en) | Dispersion Spinning Process for Poly(tetrafluoroethylene) and Related Polymers | |
CN112457649A (en) | PC/PBAT transparent composite material and preparation method thereof | |
CN111378057A (en) | Graft modified polyethylene material, preparation method thereof, polyethylene porous membrane and lithium battery | |
CN110655330B (en) | Preparation method of phenolic resin ordered mesoporous film based on rapid thermal treatment | |
CN114300643B (en) | Method for removing bubbles of negative electrode of lithium battery and improving coating dark spots and exposed foil of negative electrode | |
JPS63219615A (en) | Polytetrafluoroethylene fiber | |
CN114805936B (en) | Flame retardant suitable for ABS resin, preparation method thereof and flame-retardant ABS resin | |
JPH09249747A (en) | Silicone rubber, silicone rubber particle, precursor for carbon fiber, and carbon fiber | |
CN117144508A (en) | Method for producing flame-retardant regenerated cellulose fiber | |
CN109705547B (en) | Heat-resistant modified polylactic acid material and preparation method thereof | |
KR20210020607A (en) | Method for analyzing solidification of acrylonitrile based polymer | |
CN1241223A (en) | Dispersion spinning process for poly(tetrafluoroethylene) and related polymers | |
KR20210045222A (en) | Acrylonitrile based spinning solution and method for preparing acrylonitrile based spinning fiber using the same | |
JPH08199421A (en) | Polytetrafluoroethylene-base fiber and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041124 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050322 |