JPH10291861A - Production of ceramic composite material - Google Patents

Production of ceramic composite material

Info

Publication number
JPH10291861A
JPH10291861A JP9100526A JP10052697A JPH10291861A JP H10291861 A JPH10291861 A JP H10291861A JP 9100526 A JP9100526 A JP 9100526A JP 10052697 A JP10052697 A JP 10052697A JP H10291861 A JPH10291861 A JP H10291861A
Authority
JP
Japan
Prior art keywords
neutron
average particle
composite material
boron carbide
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9100526A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshino
信行 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP9100526A priority Critical patent/JPH10291861A/en
Publication of JPH10291861A publication Critical patent/JPH10291861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To profitably produce a high density ceramic composite material capable of producing an especially superior neutron controlling material by mixing boron carbide powder having a specified average particle diameter with hexagonal boron nitride powder having a specified average particle diameter in a specified ratio and hot-pressing the resultant mixture at a specified temp. SOLUTION: A mixture of 40-95 vol.% boron carbide powder having <=3 μm average particle diameter with 60-5 vol.% hexagonal baron nitride powder having >=15 μm average particle diameter is filled into dies of graphite, etc., and hot-pressed at <=2,100 deg.C. The hexagonal boron nitride particles during sintering have high orienting property in the pressing direction and produce anisotropy in mechanical characteristics and heat conductivity. When the resultant composite material having >=90% relative density is used as a neutron controlling material, high neutron absorbing ability is ensured, breaking due to swelling and thermal shock is suppressed, the damage of a cladding tube is considerably reduced and the useful life of a neutron controlling rod is prolonged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度の炭化硼素
/窒化硼素系セラミックス複合材料の製造方法に関す
る。本発明で製造されたセラミックス複合材料は、例え
ば中性子照射環境下で使用される中性子制御材料などに
用いられる。
The present invention relates to a method for producing a high-density boron carbide / boron nitride ceramic composite material. The ceramic composite material produced by the present invention is used, for example, as a neutron control material used in a neutron irradiation environment.

【0002】[0002]

【従来の技術】中性子制御材料としては、従来、中性子
吸収断面積の大きな硼素化合物が用いられており、特に
単位体積当りの硼素含有量の高い炭化硼素が使用されて
いる。硼素には質量数10と11の同位体があり、質量
数10の硼素が高い中性子吸収断面積を有するため、天
然に存在する質量数10の硼素濃度を19.8%から9
0%程度まで濃縮した炭化硼素が広く使用されている。
特に、高速の中性子を利用する原子炉においては、中性
子の吸収能力を高めるため、中性子制御材として質量数
10の硼素を濃縮した、相対密度90〜95%の炭化硼
素焼結体が使用されている。
2. Description of the Related Art As a neutron controlling material, a boron compound having a large neutron absorption cross-sectional area has been conventionally used, and in particular, boron carbide having a high boron content per unit volume has been used. Boron has 10 and 11 mass isotopes, and boron having a mass of 10 has a high neutron absorption cross-section. Therefore, the concentration of naturally occurring boron having a mass of 10 is 19.8% to 9%.
Boron carbide concentrated to about 0% is widely used.
In particular, in a nuclear reactor utilizing high-speed neutrons, a boron carbide sintered body having a relative density of 90 to 95%, in which boron having a mass number of 10 is concentrated, is used as a neutron control material in order to enhance neutron absorption capacity. I have.

【0003】炭化硼素焼結体を中性子制御材として使用
する場合、円柱形状の炭化硼素焼結体を、ステンレス製
の被覆管内に充填した構造を有する、中性子制御棒とし
て一般に用いられる。硼素の中性子吸収反応は(n,
α)反応であり、中性子の吸収に伴うヘリウムの生成に
よって炭化硼素焼結体にスエリング(膨れ)が発生し、
被覆管と機械的相互作用を生じて制御棒の寿命が短くな
るという問題がある。
When a boron carbide sintered body is used as a neutron controlling material, it is generally used as a neutron control rod having a structure in which a cylindrical boron carbide sintered body is filled in a stainless steel cladding tube. The neutron absorption reaction of boron is (n,
α) reaction, swelling (swelling) occurs in the boron carbide sintered body due to the formation of helium accompanying the absorption of neutrons,
There is a problem that the mechanical interaction with the cladding tube is caused to shorten the life of the control rod.

【0004】更には、炭化硼素焼結体は、中性子吸収時
に大きな発熱を生じるため、大きな熱衝撃が発生して炭
化硼素焼結体が破壊され、それが被覆管に損傷を与え、
被覆管の寿命がさらに短くなる問題がある。
[0004] Further, since the boron carbide sintered body generates a large amount of heat when absorbing neutrons, a large thermal shock is generated and the boron carbide sintered body is broken, which damages the cladding tube.
There is a problem that the life of the cladding tube is further shortened.

【0005】そこで、これらの問題を解決する方法とし
て、例えば以下の提案がある。 (1)B/C原子比及び1次粒子の大きさを特定した炭
化硼素原料を用い、焼結過程における結晶粒成長を抑制
する方法(特公平4-78159 号公報)。 (2)被覆管内に窒化硼素固体からなる緩衝部を設ける
方法(特開昭59-150369号公報)。 (3)炭化硼素に30体積%以下の窒化硼素を添加して
炭化硼素焼結体の耐熱衝撃性を向上させる方法(Proc.
11th Int. Symp. Boron, Borides and RelatedCompound
s, Tsukuba, 1993 JJap Series 10(1994) pp216-21
9)。
To solve these problems, for example, there are the following proposals. (1) A method of suppressing crystal grain growth in the sintering process using a boron carbide raw material having a specified B / C atomic ratio and primary particle size (Japanese Patent Publication No. 4-78159). (2) A method of providing a buffer portion made of solid boron nitride in a cladding tube (Japanese Patent Laid-Open No. 59-150369). (3) A method of adding 30% by volume or less of boron nitride to boron carbide to improve the thermal shock resistance of the boron carbide sintered body (Proc.
11th Int. Symp. Boron, Borides and RelatedCompound
s, Tsukuba, 1993 JJap Series 10 (1994) pp216-21
9).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、(1)
の技術では、スエリング性は低減されるが、熱衝撃によ
り炭化硼素焼結体が破壊して被覆管に損傷を与える危険
性は変らない。(2)の技術では、スエリングや、熱衝
撃による炭化硼素焼結体の破壊が生じても、被覆管を損
傷し難い中性子制御棒が得られるが、中性子制御棒の構
造が複雑になる問題がある。(3)の技術では、中性子
制御材(炭化硼素/窒化硼素複合材)の耐熱衝撃性が向
上し、熱衝撃による制御材の破壊と、それによって生じ
る被覆管の損傷を抑制することができるが、炭化硼素/
窒化硼素複合材のホットプレス温度2100℃程度で
は、相対密度が80%程度しかなく、中性子吸収能力が
低く実用的でない。また、ホットプレス温度が2100
℃を越えると、一般にダイスとして使用される黒鉛材と
炭化硼素、窒化硼素の反応が生じるなど、黒鉛製ダイス
の負荷が大きくなり破損しやすく、経済性に問題があ
る。
However, (1)
Although the swelling property is reduced by the technique of the above, the danger that the boron carbide sintered body breaks due to thermal shock and damages the cladding tube remains unchanged. According to the technique (2), even if swelling or breakage of the boron carbide sintered body due to thermal shock occurs, a neutron control rod that does not easily damage the cladding tube can be obtained, but the structure of the neutron control rod becomes complicated. is there. According to the technique (3), the thermal shock resistance of the neutron control material (boron carbide / boron nitride composite material) is improved, and the control material can be prevented from being broken by the thermal shock and resulting damage to the cladding tube. , Boron carbide /
When the hot pressing temperature of the boron nitride composite material is about 2100 ° C., the relative density is only about 80%, and the neutron absorption capacity is low, which is not practical. In addition, the hot press temperature is 2100
When the temperature exceeds ℃, the graphite die generally used as a die reacts with boron carbide and boron nitride, and the load on the graphite die becomes large, and the die is liable to be broken.

【0007】従って、中性子吸収時に、中性子制御材の
スエリングや熱衝撃による破壊に伴う被覆管の損傷が生
じ難く、かつ中性子吸収効率に優れた経済的な中性子制
御材が望まれている。
Therefore, there is a demand for an economical neutron control material which is less likely to cause damage to the cladding tube due to swelling and thermal shock of the neutron control material during neutron absorption and which has excellent neutron absorption efficiency.

【0008】本発明の目的は、中性子吸収能力が高く、
中性子吸収時のスエリングや熱衝撃による破壊の生じ難
い中性子制御材の製造が可能な、高密度の炭化硼素/窒
化硼素系セラミックス複合材料を経済的に製造する方法
を提供することである。
[0008] An object of the present invention is to have a high neutron absorption capacity,
An object of the present invention is to provide a method for economically producing a high-density boron carbide / boron nitride-based ceramic composite material capable of producing a neutron control material that is less likely to be broken by swelling or thermal shock during neutron absorption.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は、平
均粒径が3μm以下である炭化硼素粉末40〜95体積
%と、平均粒径が15μm以上である六方晶窒化硼素粉
末60〜5体積%とを含む混合原料粉末を、2100℃
以下の温度でホットプレスすることを特徴とする相対密
度90%以上のセラミックス複合材料の製造方法であ
る。
That is, the present invention relates to a method for producing a powder of boron carbide having an average particle size of 3 μm or less at 40 to 95% by volume and a hexagonal boron nitride powder having an average particle size of 15 μm or more at 60 to 5% by volume. % At 2100 ° C.
A method for producing a ceramic composite material having a relative density of 90% or more, characterized by hot pressing at the following temperature.

【0010】[0010]

【発明の実施の形態】以下、更に詳しく本発明を説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0011】本発明に用いる炭化硼素粉末は、マイクロ
トラック法で測定した平均粒径が3μm以下のものであ
り、特に平均粒径2.5μm以下のものが好ましい。平
均粒径が3μmを越えると、六方晶窒化硼素粒子の粒界
に炭化硼素粒子が均一に分散し難くなり、密度が低下す
る。また、平均粒径は小さいほど好ましいが、0.1μ
m未満になると炭化硼素粉末中の酸素含有量が3重量%
を越えやすくなるため、焼結体中の酸素含有量が増加
し、中性子制御材料としての用途にふさわしくなくな
る。
The boron carbide powder used in the present invention has an average particle size of 3 μm or less as measured by the microtrack method, and particularly preferably has an average particle size of 2.5 μm or less. If the average particle size exceeds 3 μm, it becomes difficult to uniformly disperse the boron carbide particles at the grain boundaries of the hexagonal boron nitride particles, and the density decreases. The smaller the average particle size is, the more preferable.
m, the oxygen content in the boron carbide powder is 3% by weight.
Therefore, the oxygen content in the sintered body increases, and the sintered body becomes unsuitable for use as a neutron control material.

【0012】本発明に用いる六方晶窒化硼素粉末は、マ
イクロトラック法で測定した平均粒径が15μm以上の
ものであり、平均粒径20μm以上のものが特に好まし
い。平均粒径が15μm未満の場合は、焼結体密度が低
下したり、六方晶窒化硼素粉末中の酸素含有量が1重量
%を越えやすく、中性子制御材用途としてはふさわしく
なくなる。また、平均粒径は大きいほど好ましいが、一
般的に入手できるものは、平均粒径40μm程度までで
ある。
The hexagonal boron nitride powder used in the present invention has an average particle size of 15 μm or more, as measured by the microtrack method, and particularly preferably has an average particle size of 20 μm or more. When the average particle size is less than 15 μm, the density of the sintered body is reduced, or the oxygen content in the hexagonal boron nitride powder easily exceeds 1% by weight, which is not suitable for use as a neutron controlling material. The larger the average particle diameter is, the more preferable. However, generally available particles have an average particle diameter of about 40 μm.

【0013】また、本発明における相対密度とは、炭化
硼素と六方晶窒化硼素の理論密度を用いて、それぞれの
配合量から算出した複合材料の理論密度に対する実測密
度値の百分率である。例えば、天然に存在する硼素から
成る炭化硼素の理論密度は2.52g/cm3 、六方晶
窒化硼素は2.26g/cm3 として計算する。
Further, the relative density in the present invention is a percentage of an actually measured density value with respect to the theoretical density of a composite material calculated from the respective blending amounts using the theoretical densities of boron carbide and hexagonal boron nitride. For example, the theoretical density of boron carbide consisting of boron Naturally occurring 2.52 g / cm 3, hexagonal boron nitride is calculated as 2.26 g / cm 3.

【0014】本発明で用いられる炭化硼素粉末と窒化硼
素粉末の混合割合は、炭化硼素粉末40〜95体積%、
窒化硼素粉末60〜5体積%である。炭化硼素粉末が4
0体積%未満であったり、窒化硼素粉末が60体積%を
越えると、相対密度が低下する。また、炭化硼素粉末が
95体積%を越えたり、窒化硼素粉末が5体積%未満で
あると、焼結体の耐熱衝撃性が低下し、中性子制御材と
しての用途には適さなくなる。
The mixing ratio of the boron carbide powder and the boron nitride powder used in the present invention is 40 to 95% by volume of the boron carbide powder,
Boron nitride powder is 60 to 5% by volume. 4 boron carbide powder
If the content is less than 0% by volume or the content of boron nitride powder exceeds 60% by volume, the relative density decreases. On the other hand, if the content of boron carbide powder exceeds 95% by volume or the content of boron nitride powder is less than 5% by volume, the thermal shock resistance of the sintered body decreases, and the sintered body becomes unsuitable for use as a neutron control material.

【0015】本発明のセラミックス複合材料を中性子制
御材として用いる場合は、一般にステンレス製の被覆管
内に充填して使用されかつ高温となるため、ステンレス
被覆管と化学反応を起すことがないように、本発明のセ
ラミックス複合材料の酸素含有量はできるだけ少ないこ
とが好ましい。
When the ceramic composite material of the present invention is used as a neutron controlling material, it is generally used after being filled in a stainless steel cladding tube and at a high temperature, so that it does not cause a chemical reaction with the stainless cladding tube. It is preferable that the oxygen content of the ceramic composite material of the present invention is as small as possible.

【0016】炭化硼素粉末と窒化硼素粉末の混合は、一
般的なボールミル、振動ミル、リボンブレンダー、ヘン
シェルミキサーなどを用いて行えば良く、均一に混合で
きるものであれば特に制約はない。
The mixing of the boron carbide powder and the boron nitride powder may be performed using a general ball mill, vibration mill, ribbon blender, Henschel mixer, or the like, and there is no particular limitation as long as they can be uniformly mixed.

【0017】本発明においては、上記混合原料粉末を黒
鉛材などのダイスに充填し、2100℃以下の温度でホ
ットプレスされる。ホットプレス温度が2100℃を越
えると、ダイスの黒鉛材と炭化硼素や窒化硼素が反応し
焼結体に悪影響を与えたり、ダイスへの負荷が大きくな
りその寿命が短くなってしまう。また、ホットプレス温
度が1900℃未満では、焼結体密度が低くなりやすく
好ましくない。
In the present invention, the mixed raw material powder is filled in a die such as a graphite material and hot-pressed at a temperature of 2100 ° C. or less. If the hot pressing temperature exceeds 2100 ° C., the graphite material of the die reacts with boron carbide or boron nitride to adversely affect the sintered body or increase the load on the die and shorten its life. On the other hand, if the hot pressing temperature is lower than 1900 ° C., the sintered body density tends to be low, which is not preferable.

【0018】本発明のセラミックス複合材料は、平均粒
径の大きな六方晶窒化硼素粉末を一成分とする混合原料
粉末をホットプレス法で製造されるため、その焼結体中
の六方晶窒化硼素粒子は、従来以上にプレス方向に対し
強い配向性を示し、機械特性や熱伝導性に異方性が生じ
る。その結果、中性子制御材として期待される耐スエリ
ング性や、耐熱衝撃性を有するものとなる。
Since the ceramic composite material of the present invention is produced by hot pressing a mixed raw material powder containing a hexagonal boron nitride powder having a large average particle diameter as one component, the hexagonal boron nitride particles in the sintered body are produced. Has a stronger orientation in the pressing direction than before, and anisotropy occurs in mechanical properties and thermal conductivity. As a result, it has swelling resistance and thermal shock resistance expected as a neutron control material.

【0019】上記方法で製造された複合材料のうち、相
対密度90%以上特に95%以上を有する本発明のセラ
ミックス複合材料を中性子制御材として用いた場合、中
性子吸収能力が高く、スエリングや熱衝撃による破壊が
抑制され、被覆管の損傷を大幅に低減でき、従来に比べ
て中性子制御棒の寿命が延長され、安全性、経済性の向
上が達成できる。
When the ceramic composite material of the present invention having a relative density of 90% or more, particularly 95% or more, is used as a neutron control material among the composite materials produced by the above method, the neutron absorption capacity is high, and swelling and thermal shock And the damage to the cladding tube can be greatly reduced, the life of the neutron control rod can be prolonged, and the safety and economy can be improved.

【0020】[0020]

【実施例】以下、本発明を実施例、比較例により更に具
体的に説明する。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

【0021】実施例1〜3 比較例1〜4 表1に示す天然に存在する硼素からなる炭化硼素及び六
方晶窒化硼素粉末を表2に示す配合比で振動ミルにより
混合した。この混合原料粉末を黒鉛製ダイスに充填し、
表2に示す温度でホットプレス成形し、直径50mm、
高さ50mmのセラミックス複合材料を製造した。な
お、プレス圧力は25MPaとした。
Examples 1-3 Comparative Examples 1-4 Boron carbide and hexagonal boron nitride powder consisting of naturally occurring boron shown in Table 1 were mixed in a vibration mill at the compounding ratio shown in Table 2. This mixed raw material powder is filled in a graphite die,
Hot press molding at the temperature shown in Table 2, diameter 50mm,
A ceramic composite material having a height of 50 mm was manufactured. The press pressure was 25 MPa.

【0022】得られたセラミックス複合材料について、
寸法と重量を測定し密度を算出し、相対密度を求め、表
2に示した。比較例4では、ホットプレス後に黒鉛材の
ダイスと一部反応し、ダイスから取り出すことができな
かった。
With respect to the obtained ceramic composite material,
The dimensions and weight were measured, the density was calculated, and the relative density was determined. In Comparative Example 4, after hot pressing, it partially reacted with the graphite die, and could not be taken out of the die.

【0023】実施例2で製造されたセラミックス複合材
料から、ホットプレス方向に対し平行方向及び垂直方向
から3×4×40mmの試験片をそれぞれ加工採取し、
JISR1601に準拠した方法で室温における4点曲
げ強度を測定したところ、平行方向と垂直方向の曲げ強
度はそれぞれ102MPa、33MPaであった。ま
た、同様な試験片を800℃の炉内で10分間加熱処理
し、常温の水中に投下急冷した後、同様に4点曲げ強度
の測定を行ったが、特に曲げ強度の低下は見られなかっ
た。
From the ceramic composite material manufactured in Example 2, test specimens of 3 × 4 × 40 mm were processed and sampled from the direction parallel and perpendicular to the hot pressing direction, respectively.
When the four-point bending strength at room temperature was measured by a method based on JISR1601, the bending strength in the parallel direction and the vertical direction was 102 MPa and 33 MPa, respectively. A similar test piece was heat-treated in a furnace at 800 ° C. for 10 minutes, dropped into water at room temperature and quenched, and then similarly measured for four-point bending strength, but no decrease in bending strength was observed. Was.

【0024】更に、実施例2で製造されたセラミックス
複合材料から、ホットプレス方向に対し平行方向及び垂
直方向から直径10mm、厚み1.5mmの試験片をそ
れぞれ加工採取し、JISR1611に準拠した方法
で、室温の熱伝導率を測定したところ、平行方向と垂直
方向の熱伝導率はそれぞれ49W/mK、20W/mK
であった。
Further, test pieces each having a diameter of 10 mm and a thickness of 1.5 mm were processed and sampled from the ceramic composite material produced in Example 2 in a direction parallel to and perpendicular to the hot pressing direction, and were processed in accordance with JISR1611. When the thermal conductivity at room temperature was measured, the thermal conductivity in the parallel direction and the thermal conductivity in the vertical direction were 49 W / mK and 20 W / mK, respectively.
Met.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明によって製造されセラミックス複
合材料は、高密度かつ強い異方性を有するものであり、
それを用いて製造された中性子制御材料、スエリング及
び熱衝撃による被覆管との機械的相互作用を大幅に低減
することができ、従来材料に比べて中性子制御棒の安全
性、経済性の向上を達成することができる。
The ceramic composite material produced according to the present invention has high density and strong anisotropy.
The neutron control material manufactured by using it, the mechanical interaction with the cladding tube due to swelling and thermal shock can be greatly reduced, and the safety and economy of the neutron control rod can be improved compared to the conventional material. Can be achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が3μm以下である炭化硼素粉
末40〜95体積%と、平均粒径が15μm以上である
六方晶窒化硼素粉末60〜5体積%とを含む混合原料粉
末を、2100℃以下の温度でホットプレスすることを
特徴とする相対密度90%以上のセラミックス複合材料
の製造方法。
1. A mixed raw material powder containing 40 to 95% by volume of boron carbide powder having an average particle size of 3 μm or less and 60 to 5% by volume of hexagonal boron nitride powder having an average particle size of 15 μm or more, A method for producing a ceramic composite material having a relative density of 90% or more, characterized by hot pressing at a temperature of not more than ℃.
JP9100526A 1997-04-17 1997-04-17 Production of ceramic composite material Pending JPH10291861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9100526A JPH10291861A (en) 1997-04-17 1997-04-17 Production of ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9100526A JPH10291861A (en) 1997-04-17 1997-04-17 Production of ceramic composite material

Publications (1)

Publication Number Publication Date
JPH10291861A true JPH10291861A (en) 1998-11-04

Family

ID=14276415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9100526A Pending JPH10291861A (en) 1997-04-17 1997-04-17 Production of ceramic composite material

Country Status (1)

Country Link
JP (1) JPH10291861A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655384A (en) * 2023-06-07 2023-08-29 徐州工程学院 High Wen Gaoshang-resistant wave-absorbing ceramic and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116655384A (en) * 2023-06-07 2023-08-29 徐州工程学院 High Wen Gaoshang-resistant wave-absorbing ceramic and preparation method and application thereof
CN116655384B (en) * 2023-06-07 2023-12-12 徐州工程学院 High Wen Gaoshang-resistant wave-absorbing ceramic and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4690909A (en) Silicon carbide-graphite composite material and process for producing same
JP2010503605A (en) Low CTE isotropic graphite
CN113943159B (en) Preparation method of boron carbide composite ceramic
CN109898005A (en) A kind of WVTaZrHf infusibility high-entropy alloy of high intensity and preparation method thereof
CN110818414A (en) Europium hafnate neutron absorbing material and application thereof
EP0502395B1 (en) Nuclear fuel pellets and method of manufacturing the same
JP3188685B2 (en) Method for producing sintered uranium dioxide having large crystal grains
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
US2814857A (en) Ceramic fuel element material for a neutronic reactor and method of fabricating same
JPH0774833B2 (en) Method for producing uranium dioxide sintered body and nuclear fuel body
JP3069519B2 (en) High performance neutron absorbing material
JPH10291861A (en) Production of ceramic composite material
KR101574224B1 (en) oxide nuclear fuel pellet and the method for manufacturing thereof
CN116230259A (en) Composite neutron absorption material and preparation method thereof
JP2978169B1 (en) Neutron absorbing material
CN108298996A (en) A kind of method of boron nitride nano-tube flexible silicon nitride ceramic and its product of preparation
CN114044672A (en) Control rod absorber material and preparation method thereof
US5772922A (en) Neutron- absorbing composite material and its production process
JP3012671B2 (en) Method for producing nuclear fuel pellets
JPH10332861A (en) Method for preparing uranium mononitride
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
CN117326869A (en) Low-value loss control rod ceramic material and preparation method and application thereof
JP4597451B2 (en) Boron-based confinement substrates for storage or incineration of long-lived radioactive elements and methods for making such substrates
JP3942280B2 (en) Method for producing hexagonal boron nitride sintered body
JPH055150A (en) Boron carbide-reactive metal cermet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219