JPH10291816A - Production method of iron carbide - Google Patents

Production method of iron carbide

Info

Publication number
JPH10291816A
JPH10291816A JP9111769A JP11176997A JPH10291816A JP H10291816 A JPH10291816 A JP H10291816A JP 9111769 A JP9111769 A JP 9111769A JP 11176997 A JP11176997 A JP 11176997A JP H10291816 A JPH10291816 A JP H10291816A
Authority
JP
Japan
Prior art keywords
sulfur
gas
iron
carbonization
iron carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9111769A
Other languages
Japanese (ja)
Other versions
JP3964959B2 (en
Inventor
Yoshiaki Iguchi
義章 井口
Shoji Hayashi
昭二 林
Kazuya Kunitomo
和也 国友
Satoshi Sawai
敏 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11176997A priority Critical patent/JP3964959B2/en
Publication of JPH10291816A publication Critical patent/JPH10291816A/en
Application granted granted Critical
Publication of JP3964959B2 publication Critical patent/JP3964959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the deposition of soot from a metallized ion oxide- containing material and to stably produce a low-sulfur iron carbide. SOLUTION: At the time of producing iron carbide by carbonizing after reducing an iron oxide-containing material, the iron oxide-containing material is reduced by a sulfur-containing reductive gas in which [S]/([H2 ]+[CO], a sulfur molarity ratio to the sum of a molarity ration of H2 and CO, is made to 0.05 times to less than 1 times of the sulfur molarity ratio at the time of Fe/FeS equilibrium to produce a preliminary reduced material having less than the 20 mass% iron carbide and a >=60% metallized ratio and the iron carbide is produced by carbonizing the preliminary reduced material with a carbonizing gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は還元鉄製造法の分野
に関連し、酸化鉄含有物質から炭化鉄(FexCy; x/y=1〜
6)を安定して製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of a method for producing reduced iron, in which iron oxide (Fe x C y ; x / y = 1 to
6) relates to a method for producing it stably.

【0002】[0002]

【従来の技術】従来より、固定層を使ったHyL 1(例え
ば、特開昭52-194号公報)や、シャフト炉を使ったHyL3
(例えば、特開昭54-99705号公報)及び、Midrex(例え
ば、特開昭62-263910号公報)等、鉄鉱石から金属鉄を製
造し、冷却工程で炭化性ガスにより成品中の炭素量を調
整する方法は広く知られている。しかし、炭化鉄製造時
の遊離炭素の析出のため、炭化鉄を100%近く生成させる
ことはできない。
2. Description of the Related Art Conventionally, HyL 1 using a fixed bed (for example, JP-A-52-194) and HyL3 using a shaft furnace have been used.
(E.g., JP 54-99705 A) and Midrex (e.g. JP 62-263910 A), etc., to produce metallic iron from iron ore, and in a cooling step, carbon content in the product by carbonizing gas in a cooling process. The method of adjusting is widely known. However, due to the precipitation of free carbon during the production of iron carbide, almost no iron carbide can be produced.

【0003】従来の炭化鉄の製造方法として、(1)CO含
有ガスで粉鉄鉱石を400〜900℃で還元炭化するStelling
法(米国特許第2780537号公報)、(2)流動層で鉄鉱石を59
5〜705℃でH2ガスで還元すると同時に炭素含有物質で浸
炭(炭化)するIronCarbide法(例えば、米国特許第405330
1号公報)、(3)CO-H2に硫黄化合物を添加したガスで還元
炭化を行う方法(特願平7-54687号、特開平8-198613号公
報)等がある。
[0003] As a conventional method for producing iron carbide, (1) Stelling in which fine iron ore is reduced and carbonized at 400 to 900 ° C with a CO-containing gas.
Method (US Patent No. 2780537), (2) iron ore in a fluidized bed 59
The IronCarbide method of reducing with H 2 gas at 5 to 705 ° C. and simultaneously carburizing (carbonizing) with a carbon-containing material (for example, US Pat.
No. 1) and (3) a method of performing reduction carbonization with a gas obtained by adding a sulfur compound to CO-H2 (Japanese Patent Application No. 7-54687, Japanese Patent Application Laid-Open No. 8-198613) and the like.

【0004】これらのプロセスは酸化鉄の還元と炭化を
同一反応装置内で行い炭化鉄を製造することで、中間生
成物である金属鉄の生成を極力抑え、流動層還元におけ
る操業中のスティッキングや成品の発火性を防いでい
る。しかし、一方で、炭化の際に不純物として遊離炭素
が生成することが知られている。(2)のIron Carbide法
ではFe/FeO/Fe3C平衡に近い組成の導入ガスを使って反
応の駆動力を小さくすることで遊離炭素の析出を防いで
いる。
In these processes, iron oxide is reduced and carbonized in the same reactor to produce iron carbide, thereby minimizing the formation of an intermediate product, metallic iron, to prevent sticking during operation in fluidized bed reduction. Prevents ignition of the product. However, on the other hand, it is known that free carbon is generated as an impurity during carbonization. In the (2) Iron Carbide method, the deposition of free carbon is prevented by reducing the driving force of the reaction using an introduced gas having a composition close to the Fe / FeO / Fe 3 C equilibrium.

【0005】しかし、還元炭化に10数時間かかり生産性
が悪い。そこで、(3)の方法では硫化鉄が生成しない程
度の硫黄化合物をガスに添加して遊離炭素の析出を抑
え、炭化性の強いガスを使って生産性を向上させてい
る。
[0005] However, the reduction carbonization takes about 10 hours and the productivity is poor. Therefore, in the method (3), a sulfur compound that does not generate iron sulfide is added to the gas to suppress the precipitation of free carbon, and the productivity is improved by using a gas having a strong carbonization property.

【0006】[0006]

【発明が解決しようとする課題】酸化鉄を金属化した
後、炭化するプロセスでは遊離炭素の生成が炭化反応を
妨げるので、炭化率(全鉄質量に対する炭化物に転換し
た鉄の質量の百分率)を90% 以上にすることはできなか
った。
Since the formation of free carbon prevents the carbonization reaction in the carbonization process after metallizing the iron oxide, the carbonization rate (percentage of iron converted to carbide relative to the total iron mass) is reduced. It could not be more than 90%.

【0007】また、硫化鉄(FeS)が生成する硫黄濃度は
還元性ガスの種類、濃度及び、反応温度に依存し、炭化
性ガス(CO又は炭化水素)を増加したり反応温度を下げる
と低下する。よって、硫黄化合物を添加して遊離炭素の
析出を防ぐ方法において、炭化性ガスが多い条件や低温
の条件では硫化鉄の生成を抑えて成品中の硫黄濃度を抑
えようとすれば、還元鉄への硫黄化合物ガスの供給を減
らす必要があり、その結果、遊離炭素が増加してしまう
問題がある。
[0007] Further, the sulfur concentration produced by iron sulfide (FeS) depends on the type and concentration of the reducing gas and the reaction temperature, and decreases as the amount of the carbonizing gas (CO or hydrocarbon) is increased or the reaction temperature is decreased. I do. Therefore, in the method of adding a sulfur compound to prevent the precipitation of free carbon, it is necessary to reduce the concentration of sulfur in the product by suppressing the formation of iron sulfide under conditions with a large amount of carbonizing gas or at low temperatures. It is necessary to reduce the supply of sulfur compound gas, and as a result, there is a problem that free carbon increases.

【0008】本発明の目的は、酸化鉄含有物質を還元炭
化し炭化鉄を製造する方法において、成品中の硫黄濃度
を上げることなく遊離炭素の生成を防いで短時間で効率
よく炭化鉄を製造すると共に、ガス利用率を上げ、生産
性を向上させる方法を提供することにある。
An object of the present invention is to provide a method for producing iron carbide by reducing and carbonizing an iron oxide-containing substance, thereby efficiently producing iron carbide in a short time by preventing the formation of free carbon without increasing the sulfur concentration in the product. Another object of the present invention is to provide a method for increasing gas utilization and improving productivity.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたもので、(1) 酸化鉄含有物
質を還元後、炭化して炭化鉄を製造する際に、H2とCO
のモル濃度の和に対する硫黄モル濃度比([S]/([H2]+[C
O]))を、Fe/FeS平衡時の該硫黄モル濃度比の0.05倍か
ら1倍未満としたSを含む還元ガスにより酸化鉄含有物
質を還元して、炭化鉄が20mass%未満で金属化率が60%以
上の予備還元物を製造し、該予備還元物を炭化性ガスに
より炭化して炭化鉄を製造することを特徴とする。
The present invention SUMMARY OF] has been made in order to solve the above problems, (1) after the reduction of iron oxide-containing material, in producing iron carbide by carbonizing, H 2 And CO
The molar ratio of sulfur to the sum of the molar concentrations of ([S] / ([H 2 ] + [C
O])) is reduced to 0.05 to less than 1 times the molar ratio of sulfur at the time of Fe / FeS equilibrium to reduce the iron oxide-containing substance with a reducing gas containing S, and metallization is performed when the iron carbide is less than 20 mass%. The method is characterized in that a pre-reduced product having a rate of 60% or more is produced, and the pre-reduced product is carbonized with a carbonizing gas to produce iron carbide.

【0010】(2) (1)において、還元温度及び還
元ガス中の各成分のモル濃度により(1)式で得られる
{[S]/([H2]+[CO])}eを、Fe/FeS平衡におけるH2とCOのモ
ル濃度の和に対する硫黄モル濃度の比とすることを特徴
とする。
(2) In (1), the temperature is obtained by the equation (1) depending on the reduction temperature and the molar concentration of each component in the reduction gas.
{[S] / ([H 2 ] + [CO])} e is the ratio of the sulfur molarity to the sum of the molar concentrations of H 2 and CO in the Fe / FeS equilibrium.

【0011】[0011]

【数3】 (Equation 3)

【0012】ここで、t:還元温度(℃)、[i]:i成
分のモル濃度。
Here, t: reduction temperature (° C.), [i]: molar concentration of the i component.

【0013】(3) (1)、(2)において、COモル
濃度をH2モル濃度以下とした還元ガスを用い400〜7
50℃で還元することを特徴とする。 (4) (1)、(2)において、H2、H2O、CO2の各
分圧との関係式(2)を満足させるCO分圧未満のCOを含有
する還元ガスを用い750℃超1000℃以下で還元す
ることを特徴とする請求項1または請求項2記載の炭化鉄
の製造方法。
(3) In (1) and (2), a reducing gas having a CO molar concentration of not more than H2 molar concentration is used,
It is characterized in that it is reduced at 50 ° C. (4) In (1) and (2), using a reducing gas containing CO less than the CO partial pressure that satisfies the relational expression (2) with the partial pressures of H 2 , H 2 O, and CO 2 at 750 ° C. 3. The method for producing iron carbide according to claim 1, wherein the reduction is performed at a temperature exceeding 1000 ° C. or lower.

【0014】[0014]

【数4】 (Equation 4)

【0015】ここで、p(i):i成分の分圧(atm)、t:還
元温度(℃)。
Here, p (i): partial pressure (atm) of the i component, t: reduction temperature (° C.).

【0016】(5) (1)〜(4)において、CH4とC
Oとの和がモル濃度で50%以上の炭化性ガスを用いて炭化
することを特徴とする。 (6) (1)〜(5)において、H2とCOの和がモル濃
度で10%以上で、Fe/FeS平衡におけるH2とCOのモル濃
度の和に対する硫黄モル濃度比未満のSを含む炭化性ガ
スで炭化することを特徴とする。
(5) In (1) to (4), CH 4 and C
It is characterized in that carbonization is performed using a carbonizable gas having a sum of O and a molar concentration of 50% or more. (6) In (1) to (5), when the sum of H 2 and CO is 10% or more in molar concentration and S is less than the molar ratio of sulfur to the sum of the molar concentrations of H 2 and CO in Fe / FeS equilibrium, It is characterized by carbonizing with a carbonizing gas containing.

【0017】ここで、酸化鉄含有物質とは、赤鉄鉱、磁
鉄鉱、褐鉄鉱等の鉄鉱石や、酸化鉄を含むダスト等を示
す。なお、通常の炭化工程ではセメンタイトFe3C、過炭
化鉄(χ-Fe5C2、η-Fe23C 、ε-Fe2C)等、一般式FexC
y(x/y=1〜6)で表される鉄炭化物が得られ、本発明では
これらを総称して炭化鉄とする。
Here, the iron oxide-containing substance refers to iron ore such as hematite, magnetite, limonite, dust containing iron oxide, and the like. Incidentally, cementite Fe 3 C in normal carbonization step, excessive iron carbide (χ-Fe 5 C 2, η-Fe 23 C, ε-Fe 2 C) or the like, the general formula Fe x C
Iron carbides represented by y (x / y = 1 to 6) are obtained, and in the present invention, these are collectively referred to as iron carbide.

【0018】[0018]

【発明の実施の形態】以下、本発明について詳しく述べ
る。炭化鉄は、鉄鉱石等の酸化鉄を石炭ガス(H2-CO-CO2
系)や天然ガス(H2-CH4系) 等の還元性炭化ガスで還元炭
化して得られる。ここで、還元反応は(3)式で、炭化反
応は(4)〜(6)式で表せることが知られている。 (a)還元反応:
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. Iron carbide, iron oxide such as iron ore coal gas (H 2 -CO-CO 2
) Or natural gas (H 2 -CH 4 ), etc., and is obtained by reduction carbonization. Here, it is known that the reduction reaction can be expressed by equation (3) and the carbonization reaction can be expressed by equations (4) to (6). (a) Reduction reaction:

【0019】[0019]

【数5】 (Equation 5)

【0020】(b)炭化反応:(B) Carbonization reaction:

【0021】[0021]

【数6】 (Equation 6)

【0022】[0022]

【数7】 (Equation 7)

【0023】[0023]

【数8】 (Equation 8)

【0024】(4)〜(6)式におけるCは金属鉄に固溶する
炭素で、(4)式で発生した炭素は固溶・拡散し炭化反応
に供される。(4)式の反応のCOガスの関与する反応は低
温、高圧ほど反応が進行する。(5)式のメタンの分解反
応は高温、低圧ほど反応が進行する。これらの反応にお
いては、金属鉄が触媒となる。H2、COを主体とする
還元ガスでは、炭化性ガスであるCO、CH4の濃度が
大きい場合で炭化が起こる。
C in the formulas (4) to (6) is carbon dissolved in metallic iron, and the carbon generated in the formula (4) is dissolved and diffused to be subjected to a carbonization reaction. In the reaction involving the CO gas in the reaction of the formula (4), the reaction proceeds at lower temperatures and higher pressures. In the decomposition reaction of methane of the formula (5), the reaction proceeds at higher temperature and lower pressure. In these reactions, metallic iron serves as a catalyst. In the reducing gas mainly composed of H2 and CO, carbonization occurs when the concentrations of the carbonizable gases CO and CH4 are high.

【0025】(6)式の反応からは条件により過炭化鉄(χ
-Fe5C2、η-Fe23C 、ε-Fe23C)等、一般式FexCy(x/y=1
〜6)で表される鉄炭化物も得られる。最も安定であるセ
メンタイトFe3Cも含めて炭化鉄FexCyはすべて準安定物
質で、次のいわゆる黒鉛化反応により分解して黒鉛、す
なわち、遊離炭素を析出する。
From the reaction of formula (6), iron percarbide (χ
-Fe 5 C 2 , η-Fe 23 C, ε-Fe 23 C), and other general formulas Fe x C y (x / y = 1
Iron carbides represented by ~ 6) are also obtained. Iron carbide Fe x C y including cementite Fe 3 C, which is the most stable, is a metastable substance, and is decomposed by the next so-called graphitization reaction to deposit graphite, that is, free carbon.

【0026】(c)逆反応(黒鉛化反応):(C) Reverse reaction (graphitization reaction):

【0027】[0027]

【数9】 (Equation 9)

【0028】従来の炭化鉄の製造法では還元炭化反応を
促進させるためにガス中の炭素濃度を高くすると、
(4)、(5)式で炭素が固溶せずに煤(遊離炭素)として析出
する問題があった。還元性炭化ガス中に硫黄が存在する
と、還元鉄や炭化鉄の表面に吸着し、炭化鉄を安定化す
る。よって、(6)式の反応が促進されると同時に(8)式の
黒鉛化反応を抑制して遊離炭素の析出が減少するため炭
化鉄の収率が向上する。
In the conventional method for producing iron carbide, if the carbon concentration in the gas is increased in order to promote the reduction carbonization reaction,
In the formulas (4) and (5), there is a problem that carbon does not form a solid solution but precipitates as soot (free carbon). When sulfur is present in the reducing carbonized gas, it is adsorbed on the surface of reduced iron or iron carbide and stabilizes the iron carbide. Therefore, the reaction of the formula (6) is promoted, and at the same time, the graphitization reaction of the formula (8) is suppressed, and the precipitation of free carbon is reduced, so that the yield of iron carbide is improved.

【0029】従来のように酸化鉄を同時に還元炭化する
場合、特に反応温度が750℃以下では炭化反応にはC
O、CH4 を50mol%以上含む還元性炭化ガスが必要で、
硫黄の必要量も増加する。しかし、低温で硫黄量を増加
させると還元後の金属鉄の一部が硫化する可能性があ
り、硫黄の必要量が添加できず、遊離炭素の析出が避け
られなかった。
When iron oxide is simultaneously reduced and carbonized as in the prior art, particularly at a reaction temperature of 750 ° C. or less, carbonization is
O, requires a reducing carbon gas containing 50 mol% or more of CH 4 ,
Sulfur requirements also increase. However, when the amount of sulfur is increased at a low temperature, there is a possibility that a part of the metallic iron after reduction may be sulfided, so that the required amount of sulfur cannot be added, and precipitation of free carbon cannot be avoided.

【0030】本発明者らは、反応温度によって還元反応
(a)、炭化反応(b)のそれぞれに適したガス組成が異なる
ため、炭化鉄製造工程を予備還元工程と炭化工程とに分
け、予備還元工程で硫化鉄が生成しないFe/FeS平衡時の
硫黄濃度未満の硫黄を含有する還元ガスで酸化鉄含有物
質を還元して、金属鉄表面へ十分に硫黄を吸着させた後
に炭化することにより、750℃以下で炭化性ガスの濃
度を高くしても遊離炭素析出を十分に抑制でき、炭化鉄
の生産性を向上できることを見い出し本発明に至った。
The present inventors have proposed that the reduction reaction depends on the reaction temperature.
(a), since the gas composition suitable for each of the carbonization reaction (b) is different, the iron carbide production process is divided into a pre-reduction process and a carbonization process, and iron sulfide is not generated in the pre-reduction process. By reducing the iron oxide-containing substance with a reducing gas containing sulfur having a sulfur concentration lower than the sulfur concentration, and by sufficiently adsorbing sulfur on the metallic iron surface and carbonizing, the concentration of the carbonizable gas is increased at 750 ° C. or lower. In addition, the present inventors have found that the precipitation of free carbon can be sufficiently suppressed, and the productivity of iron carbide can be improved.

【0031】以下に本発明の数値限定理由について詳し
く述べる。固定層を用い、実験2〜5は酸化鉄含有物質
である赤鉄鉱石(S: 0.003mass%)を700℃で予備還元後、
700℃で炭化した。予備還元はH2ガスを、炭化は30%H2-7
0%COガスを使い、これらのガスにそれぞれ、所定量の硫
黄濃度になるようにH2Sを添加した。Fe/FeS平衡におけ
るH2とCOモル濃度の和に対する硫黄モル濃度の比[S]/
([H2]+[CO])は、還元ガスの100%H2の時には940ppm、炭
化ガスの30%H2-70%COの時には304ppmとなる。
Hereinafter, the reasons for limiting the numerical values of the present invention will be described in detail. Using a fixed bed, Experiments 2 to 5 were performed by pre-reducing hematite ore (S: 0.003 mass%), which is an iron oxide-containing substance, at 700 ° C.
Carbonized at 700 ° C. Pre-reduction uses H 2 gas, carbonization 30% H 2 -7
Using 0% CO gas, H 2 S was added to each of these gases so as to have a predetermined sulfur concentration. The ratio of sulfur molar concentration to the sum of H 2 and CO molar concentration of Fe / FeS equilibrium [S] /
([H 2 ] + [CO]) is 940 ppm when the reducing gas is 100% H 2 and 304 ppm when the carbonizing gas is 30% H 2 -70% CO.

【0032】図1に予備還元の違いによる炭化後の生成
物の変化について、最も炭化率(%)の高くなった時の炭
化率(%)、遊離炭素濃度(mass%)及び硫黄濃度(mass%)を
示す。表1に各実験の予備還元、炭化工程でのH2 S添
加量を示す。
FIG. 1 shows the change in the product after carbonization due to the difference in the pre-reduction. The carbonization rate (%), the free carbon concentration (mass%), and the sulfur concentration (mass %). Table 1 shows the amount of H 2 S added in the preliminary reduction and carbonization steps in each experiment.

【0033】[0033]

【表1】 [Table 1]

【0034】まず、従来法と同じ予備還元なしで酸化鉄
含有物質である赤鉄鉱石(S: 0.003mass%)を還元と炭化
を同時に行った(実験1)。図1より、COを70mol%含
む炭化性ガスで700℃、1時間程度の反応で炭化率は90%
を超えた。しかし、還元炭化ガスに硫黄を添加していな
いので、40%以上の遊離炭素が析出して炭化鉄製造効率
が悪かった。
First, hematite ore (S: 0.003 mass%), which is an iron oxide-containing substance, was simultaneously reduced and carbonized without preliminary reduction as in the conventional method (Experiment 1). From Fig. 1, the carbonization rate is 90% with a carbonizing gas containing 70 mol% of CO at 700 ° C for about 1 hour.
Exceeded. However, since no sulfur was added to the reduced carbonized gas, more than 40% of free carbon was precipitated, resulting in poor iron carbide production efficiency.

【0035】実験2は予備還元と炭化工程に分割して実
験3,4と同じ反応温度で炭化鉄を製造した場合の例で
あるが、還元ガスおよび炭化性ガスに硫黄を添加してい
ないため、炭化率は60%を超えず、遊離炭素は50mass%近
く析出する。この条件は冷却工程で炭化性ガスにより成
品中の遊離炭素量を調整する方法に近いと考えられる
が、詳しく調べたところ、ガスの上流部で遊離炭素が多
量に析出して層の内部やガスの下流側で炭化が著しく阻
害されていることが分かった。
Experiment 2 is an example in which iron carbide was produced at the same reaction temperature as in Experiments 3 and 4 by dividing into pre-reduction and carbonization steps, but sulfur was not added to the reducing gas and the carbonizing gas. In addition, the carbonization rate does not exceed 60%, and free carbon is deposited near 50% by mass. This condition is considered to be close to the method of adjusting the amount of free carbon in the product using the carbonizing gas in the cooling process.However, a detailed examination revealed that a large amount of free carbon was deposited upstream of the gas and the inside of the layer and the gas It was found that carbonization was significantly inhibited on the downstream side of.

【0036】また、粒径の大きいペレットや緻密な塊鉄
鉱石を炭化すると、実験1,2のような条件では気孔内
に煤が詰まり炭化が50%程度で止まることもわかった。
以上により硫黄を添加しない場合には煤が多量に発生す
る問題があるため、COを多量に含むガスを使うことは
できないことがわかる。
It was also found that when carbonized large-diameter pellets or dense iron ore, under the conditions as in Experiments 1 and 2, soot was clogged in the pores and carbonization stopped at about 50%.
From the above, it can be seen that when sulfur is not added, a large amount of soot is generated, so that a gas containing a large amount of CO cannot be used.

【0037】実験5は、予備還元した後に炭化する方法
の例である。しかし、本発明と異なり、還元時の硫黄濃
度を硫化鉄が安定な1034ppmとした。よって、遊離炭素
の析出は抑制されたものの硫黄濃度が高い。炭化中も脱
硫されずに製鋼の脱硫限界を超えて0.1mass% 以上とな
っている。よって、還元ガス中の硫黄濃度は硫化鉄が安
定な領域よりも低くなくてはならない。
Experiment 5 is an example of a method of carbonizing after preliminary reduction. However, unlike the present invention, the sulfur concentration at the time of reduction was set to 1034 ppm at which iron sulfide was stable. Therefore, although the precipitation of free carbon is suppressed, the sulfur concentration is high. It is not desulfurized even during carbonization and exceeds the desulfurization limit of steelmaking, and is 0.1 mass% or more. Therefore, the sulfur concentration in the reducing gas must be lower than the region where iron sulfide is stable.

【0038】実験6は還元と炭化を同時に行う場合に還
元性炭化ガス中に硫黄を添加し、700℃で酸化鉄含有
物質を還元炭化した例であるが、遊離炭素の析出を10ma
ss%程度にしか抑制できなかった。
Experiment 6 is an example in which sulfur was added to the reducing carbonization gas and the iron oxide-containing substance was reduced and carbonized at 700 ° C. when reduction and carbonization were performed simultaneously.
It could only be suppressed to about ss%.

【0039】実験3,4は、本発明法である予備還元し
た後に炭化する方法の例である。予備還元の際に還元ガ
スに硫黄を94モルppm添加した結果、遊離炭素の析出
を不純物の許容範囲である5mass%未満に抑えることがで
きた。遊離炭素の析出を抑制した結果、酸化鉄含有物質
の内部やガスの下流に炭化性ガスが十分に供給されて炭
化率は90%以上に達した。大きなペレットや緻密鉱石で
も同様であった。実験4のように炭化時にも硫黄を添加
すると、更に遊離炭素を1mass%程度に減らすことができ
た。炭化鉄中の硫黄濃度は実験3,4とも製鋼での脱硫
限界である0.05mass% 以下であった。
Experiments 3 and 4 are examples of the method of the present invention in which carbonization is performed after pre-reduction. As a result of adding 94 mol ppm of sulfur to the reducing gas during the preliminary reduction, the precipitation of free carbon could be suppressed to less than 5 mass%, which is the allowable range of impurities. As a result of suppressing the precipitation of free carbon, carbonization gas was sufficiently supplied inside the iron oxide-containing substance and downstream of the gas, and the carbonization rate reached 90% or more. The same was true for large pellets and dense ore. When sulfur was added during carbonization as in Experiment 4, free carbon could be further reduced to about 1 mass%. In both Experiments 3 and 4, the sulfur concentration in iron carbide was 0.05 mass% or less, which is the desulfurization limit in steelmaking.

【0040】硫化鉄/金属鉄(FeS/Fe)平衡におけるガス
中の硫黄の濃度は、還元性ガス中のH2 、COのモル濃
度の和に対する硫黄のモル濃度の比 [S]/([H2]+[CO])で
決まる。図2に示すように、FeS/Fe平衡におけるガス中
の硫黄の濃度は、還元性ガスの種類と濃度、温度に依存
し、温度が上がるほど高い。完全に平衡になると硫黄は
400〜900℃では平均して
The concentration of sulfur in the gas at the iron sulfide / metallic iron (FeS / Fe) equilibrium is determined by the ratio of the molar concentration of sulfur to the sum of the molar concentrations of H 2 and CO in the reducing gas [S] / ([ H 2 ] + [CO]). As shown in FIG. 2, the concentration of sulfur in the gas at the FeS / Fe equilibrium depends on the type, concentration, and temperature of the reducing gas, and is higher as the temperature increases. When completely equilibrated, sulfur
On average at 400-900 ° C

【0041】[0041]

【数10】 (Equation 10)

【0042】を満たすようにH2SとCOSに分配される。図
2に示したFeS/Fe平衡の時における[COS]/[CO]の関係を
利用すると、FeS/Fe平衡における還元性ガスCO、H2
に対する硫黄濃度(モルppm)は近似的に、(1)式で表され
る。
H 2 S and COS are distributed so as to satisfy the following. Figure
Using the [COS] / [CO] relationship at the time of FeS / Fe equilibrium shown in Fig. 2, the reducing gas CO, H 2
The sulfur concentration (mole ppm) with respect to is approximately expressed by equation (1).

【0043】[0043]

【数11】 [Equation 11]

【0044】ここで、t:還元温度(℃)、[i]:i成
分のモル濃度。
Here, t: reduction temperature (° C.), [i]: molar concentration of the i component.

【0045】金属鉄に吸着した硫黄は固溶炭素が遊離炭
素、いわゆる煤として析出するのを抑えて炭化性ガスに
よる炭化反応を均一に進行させる。炭化の進行とともに
吸着した硫黄の半分程度脱離する。炭化鉄に半分ほど残
留した硫黄は炭化鉄の黒鉛化を抑えるので炭化鉄を安定
的に製造できることが分かった。さらに、炭化性ガスに
硫黄を添加すれば硫黄の脱離が抑制でき、煤の析出をさ
けられるということが分かった。
The sulfur adsorbed on the metallic iron suppresses the solid solution carbon from precipitating as free carbon, so-called soot, so that the carbonization reaction by the carbonizable gas proceeds uniformly. About half of the adsorbed sulfur is desorbed with the progress of carbonization. It was found that the sulfur remaining about half of the iron carbide suppressed the graphitization of the iron carbide, so that iron carbide could be produced stably. Furthermore, it was found that if sulfur was added to the carbonizing gas, the desorption of sulfur could be suppressed, and the precipitation of soot could be avoided.

【0046】ここで、還元ガス中の硫黄濃度が(1)式で
規定される濃度の約0.05倍以上であれば硫化物イオンと
して金属鉄の表面に飽和吸着(又は偏析)し、その量は少
ないが、鉱石の気孔内も外表面と同様に均一に吸着する
ため炭化工程で遊離炭素の生成を抑制することができ
る。還元ガス中の硫黄濃度が(1)式の規定値を超えた硫
黄濃度となると金属鉄の一部が硫化されて炭化鉄中の硫
黄濃度が1桁増えるため好ましくない。
Here, when the sulfur concentration in the reducing gas is about 0.05 times or more of the concentration specified by the equation (1), the sulfur ions are saturatedly adsorbed (or segregated) on the surface of metallic iron as sulfide ions, and the amount thereof is Although it is small, the inside of the pores of the ore is uniformly adsorbed similarly to the outer surface, so that the generation of free carbon can be suppressed in the carbonization step. If the sulfur concentration in the reducing gas exceeds the specified value of the formula (1), part of the metallic iron is sulfided, and the sulfur concentration in the iron carbide is increased by one digit, which is not preferable.

【0047】還元直後の成品に酸化鉄や炭化鉄が含まれ
ていると、硫黄の吸着量や鉄との親和力が落ちる。しか
し、炭化鉄が20mass%未満で金属化率が60%以上であれば
問題ないことが分かった。実際の操業では還元ガスにC
Oが含まれているが、その時には金属鉄が浸炭されてγ
鉄ができる730℃以上の温度では冷却時にγ鉄が分解し
て鉄炭化物が最大20mass%生成することもある。ただ
し、還元時に炭素が固溶していれば問題はない。しか
し、還元反応と同程度に炭化速度が速いと還元率及び炭
化率の制御ができないので、炭化ガスは少ない方が望ま
しい。
If the product immediately after reduction contains iron oxide or iron carbide, the amount of adsorbed sulfur and the affinity for iron are reduced. However, it was found that there was no problem if iron carbide was less than 20 mass% and the metallization ratio was 60% or more. In actual operation, reducing gas is C
O is contained, but at that time, metallic iron is carburized and γ
At temperatures above 730 ° C where iron is formed, γ-iron may decompose during cooling, producing up to 20 mass% of iron carbide. However, there is no problem as long as carbon is dissolved in the solution at the time of reduction. However, if the carbonization rate is as high as the reduction reaction, the reduction rate and the carbonization rate cannot be controlled.

【0048】還元工程において硫黄を吸着させるに必要
な金属化率を検討したところ、金属化率60%以上では還
元鉄表面に遊離炭素の析出を抑制するのに必要な硫黄を
吸着できるが、金属化率60%未満では硫黄の吸着が充分
でないため好ましくない。酸化鉄含有物資を上記条件の
Sを含有する還元ガスで予備還元する場合、還元温度が
400〜750℃では還元ガス中のCOモル濃度はH2モル濃度
以下とする必要がある。還元ガス中のCOモル濃度がH2
モル濃度超であると還元中に遊離炭素が生成するため好
ましくない。また、還元温度が750℃超1000℃以下で還
元処理する場合、750〜1000℃の温度では、次のガスシ
フト反応の平衡定数は約1である。
When the metallization rate required for adsorbing sulfur in the reduction step was examined, it was found that when the metallization rate was 60% or more, the sulfur required to suppress the deposition of free carbon on the reduced iron surface could be adsorbed. If the conversion is less than 60%, the adsorption of sulfur is not sufficient, which is not preferable. When the iron oxide-containing material is pre-reduced with a reducing gas containing S under the above conditions, the reduction temperature is
At 400 to 750 ° C., the CO molar concentration in the reducing gas must be H 2 molar concentration or less. CO molar concentration in the reducing gas is H 2
If it exceeds the molar concentration, free carbon is generated during the reduction, which is not preferable. When the reduction treatment is performed at a reduction temperature of more than 750 ° C. and 1,000 ° C. or less, the equilibrium constant of the next gas shift reaction is about 1 at a temperature of 750 to 1000 ° C.

【0049】[0049]

【数12】 (Equation 12)

【0050】(4)式の平衡定数は次の式で表される。The equilibrium constant of the equation (4) is represented by the following equation.

【0051】[0051]

【数13】 (Equation 13)

【0052】(10)式の2つの平衡定数KB、KHの間には次
の水性ガスシフト反応の平衡定数Kを用いるとKB=K・KH
関係が成り立つ。
When the following equilibrium constant K of the water gas shift reaction is used between the two equilibrium constants K B and K H in the equation (10), the relationship of K B = K · K H is established.

【0053】[0053]

【数14】 [Equation 14]

【0054】混合ガスの場合、完全に水性ガスシフト反
応が進行すると、ガス中の酸素濃度は(11)式を満たすよ
うにCO2とH2Oに分配される。特に、750〜1000℃の温度
では平衡定数Kが1に近くなるので、ガスの炭素ポテンシ
ャルは分圧の比、p(CO)(p(CO)+p(H2))/(p(CO2)+p(H2O))
(atm) により決定される。よって、浸炭反応(4)式の
平衡定数KB、KHは同じ(2)式で近似できる。
In the case of a mixed gas, when the water gas shift reaction proceeds completely, the oxygen concentration in the gas is distributed between CO 2 and H 2 O so as to satisfy the equation (11). In particular, since the equilibrium constant K approaches 1 at a temperature of 750 to 1000 ° C., the carbon potential of the gas is determined by the ratio of the partial pressures, p (CO) (p (CO) + p (H 2 )) / (p (CO 2 ) + p (H 2 O))
(atm). Therefore, the equilibrium constants K B and K H in the carburizing reaction (4) can be approximated by the same formula (2).

【0055】上記条件で還元し、硫黄を十分吸着させた
予備還元物の炭化は、CH4とCOとの和がモル濃度で50%以
上の炭化性ガスを用いて炭化する。CH4とCOとの和がモ
ル濃度で50%未満では炭素源が不足し炭化鉄の生成速度
が低下するため好ましくない。400〜750℃の低温ではC
O、CH4 が50mol%以上含まれる領域で炭化が進行す
る。
Carbonization of the pre-reduced product reduced under the above conditions and sufficiently adsorbing sulfur is carbonized using a carbonizing gas in which the sum of CH 4 and CO is 50% or more in molar concentration. If the sum of CH 4 and CO is less than 50% in molar concentration, it is not preferable because the carbon source becomes insufficient and the production rate of iron carbide decreases. C at low temperature of 400 ~ 750 ℃
Carbonization proceeds in a region containing 50 mol% or more of O and CH 4 .

【0056】また、上記の条件に加えて炭化性ガスに、
H2とCOの和がモル濃度で10%以上で、Fe/FeS平衡におけ
るH2とCOのモル濃度の和に対する硫黄モル濃度比未満
のSを添加することにより炭化反応時の遊離炭素の生成
をさらに抑制することができるため特に好ましい。
Further, in addition to the above conditions, a carbonizing gas
With H 2 and the sum of CO molar concentration of 10% or more, generation of free carbon during carbonization reaction by adding S less than the sulfur molar ratio to the sum of the molar concentrations of H 2 and CO in the Fe / FeS equilibrium Is particularly preferable since the above can be further suppressed.

【0057】還元ガス及び炭化ガスは、天然ガス、石
炭、若しくはコークス、チャー等の固形炭素又は石油等
の液状炭化水素等を原料として作られる。これらの物質
はチオール(-SH)、スルフィド(-S-)、ジスルフィド(-S2
-)、チオフェン(-CSH)、チオシアン(-CSN)等の官能基を
持つ有機化合物や、金属硫化物の形態で硫黄化合物を含
んでいる。
The reducing gas and the carbonizing gas are produced using natural gas, coal, solid carbon such as coke and char, or liquid hydrocarbon such as petroleum as a raw material. These substances thiol (-SH), sulfide (-S-), disulfide (-S 2
Organic compounds having functional groups such as-), thiophene (-CSH) and thiocyan (-CSN), and sulfur compounds in the form of metal sulfides.

【0058】また、硫黄濃度の高い銘柄の鉄鉱石、硫化
鉄、ダスト並びにこれらの硫化物を含むものをか焼した
もの等の硫黄及び鉄を含む物質を酸化鉄含有物質に混合
して使用できる。これらは高温でS2、COS、H2S、CS2、H
2S2、(NH4)2S、SOxその他の硫黄化合物気体に分解する
一方、硫化物イオンとして金属鉄の表面に吸着(又は偏
析)することが一般に知られている。反応ガスの硫黄モ
ル濃度が低い場合には、上記の硫黄化合物の内、少なく
とも一種を添加して硫黄モル濃度を上げて調整すること
ができる。
Further, a substance containing sulfur and iron, such as iron ore, iron sulfide, dust having a high sulfur concentration, and a product obtained by calcining a substance containing these sulfides, can be used by mixing with an iron oxide-containing substance. . These are S 2 , COS, H 2 S, CS 2 , H
2 S 2, are known (NH 4) 2 S, while decomposed into SO x other sulfur compounds gases generally be adsorbed (or segregation) on the surface of metallic iron as sulfide ions. When the sulfur molar concentration of the reaction gas is low, it can be adjusted by adding at least one of the above sulfur compounds to increase the sulfur molar concentration.

【0059】また、そのようなガス組成になるように硫
黄及び鉄を含む物質や石炭等の炭材を原料に混ぜたり、
ペレットに内装してもよい。逆に、CaO、CaCO3、Ca(OH)
2、ドロマイト、蛍石、金属カルシウム等の脱硫剤の添
加や、硫黄を含まないガス(炭化性又は還元性ガスが望
ましい)の添加により反応ガスの硫黄の硫黄モル濃度を
低下させて調整することができる。
Further, a material containing sulfur and iron or a carbon material such as coal may be mixed with the raw material so as to have such a gas composition,
You may decorate in pellets. Conversely, CaO, CaCO 3 , Ca (OH)
2, dolomite, fluorite, or the addition of a desulfurizing agent such as metal calcium, be adjusted to reduce the sulfur molar concentration of sulfur in the reaction gas by the addition of gas containing no sulfur (carbonization or reducing gas is desirable) Can be.

【0060】以上をまとめると、還元と炭化を同時に行
う従来の炭化鉄製造方法では、鉱石粒子内でも還元と炭
化が同時に起こる。よって、還元後に硫黄が十分に吸着
していない状態の金属鉄表面の炭化反応が進むので遊離
炭素の析出を抑制できない。しかし、還元と炭化を分け
て還元時間を十分にとれば硫黄が還元した金属表面に十
分に吸着されるので、炭化工程での遊離炭素の析出が抑
えられる。さらに本発明では還元と炭化を同時に行う場
合に比べ、還元・炭化時のガス組成や操業温度、鉱石の
粒径、層高等の適用範囲を拡大できるのでより有利であ
る。
In summary, in the conventional iron carbide production method in which reduction and carbonization are performed simultaneously, reduction and carbonization occur simultaneously in the ore particles. Therefore, the carbonization reaction on the surface of the metallic iron in which sulfur is not sufficiently adsorbed after the reduction proceeds, so that the precipitation of free carbon cannot be suppressed. However, if the reduction time is separated from the carbonization and the reduction time is sufficient, sulfur is sufficiently adsorbed on the reduced metal surface, so that the precipitation of free carbon in the carbonization step is suppressed. Further, the present invention is more advantageous in that the applicable range of the gas composition, operating temperature, ore particle size, bed height, and the like during reduction and carbonization can be expanded as compared with the case where reduction and carbonization are performed simultaneously.

【0061】[0061]

【実施例】粒径0.05〜15mmの鉱石を高速循環流動層によ
り予備還元した後、気泡流動層で炭化した。表2に操業
条件と成品の炭化率(%)、遊離炭素濃度(mass%)を示す。
実施例1は、還元工程と炭化工程で同じ組成のガスを使
った例で、このように900℃と高温で還元すると還元
時間を短縮できる。ただし、前述のように高温では硫化
鉄の生成する硫黄のモル比は高いが低温では下がるの
で、温度の高い還元工程では硫黄の供給量を増やし、逆
に、温度の低い炭化工程では減らす(又は脱硫する)必要
がある。炭化工程では600℃と温度を低下させたが、
これは炭化ガスがCOが主体であり、高温では炭化反応
速度が低下するためである。
EXAMPLE The ore having a particle size of 0.05 to 15 mm was preliminarily reduced by a high-speed circulating fluidized bed and then carbonized in a bubble fluidized bed. Table 2 shows the operating conditions, the carbonization rate (%) of the product, and the free carbon concentration (mass%).
Example 1 is an example in which gases having the same composition are used in the reduction step and the carbonization step. When the reduction is performed at a high temperature of 900 ° C., the reduction time can be reduced. However, as described above, since the molar ratio of sulfur generated by iron sulfide is high at high temperatures but lower at low temperatures, the supply amount of sulfur is increased in the high-temperature reduction step, and is decreased in the low-temperature carbonization step (or Desulfurization). In the carbonization process, the temperature was lowered to 600 ° C,
This is because the carbonization gas is mainly composed of CO, and at high temperatures, the carbonization reaction rate decreases.

【0062】実施例2は還元工程の排ガスを炭化工程で
使った例で、COを炭化剤に使う場合、還元力の落ちたガ
スを低温で炭化ガスとして使用できるので、プロセス全
体のガス利用率を向上させることができる。
Embodiment 2 is an example in which the exhaust gas from the reduction step is used in the carbonization step. When CO is used as the carbonizing agent, the gas with reduced reducing power can be used as the carbonization gas at a low temperature. Can be improved.

【0063】実施例3、4は還元工程でH2の多いガス
を、炭化工程でCOの多いガスを使った例で、例えば、石
炭の乾留ガスを改質して還元ガスとし、残ったチャーを
ガス化して炭化ガスとすることができる。
Embodiments 3 and 4 are examples in which a gas containing a large amount of H 2 is used in the reduction step and a gas containing a large amount of CO is used in the carbonization step. Can be gasified into carbonized gas.

【0064】実施例5、6は天然ガスや石炭の乾留ガス
の改質を炭化炉内で行った例である。ガス改質触媒に対
する被毒作用のある硫黄が多くても改質できるので有効
である。
Embodiments 5 and 6 are examples in which the reforming of natural gas or coal dry distillation gas is performed in a carbonization furnace. This is effective because even a large amount of sulfur having a poisoning effect on the gas reforming catalyst can be reformed.

【0065】[0065]

【表2】 [Table 2]

【0066】本実施例では還元工程および炭化工程に流
動層を使っているが、ペレットや塊鉱石を使った場合で
も気孔内に煤が詰まることなく炭化率が90%に達する成
品を得ているので、シャフト炉やロータリーキルン等を
使ったプロセスでも制限なく使用でき、流動層に限定す
るものではない。
In this embodiment, a fluidized bed is used for the reduction step and the carbonization step. However, even when pellets or lump ore is used, a product whose carbonization rate reaches 90% without soot clogging in the pores is obtained. Therefore, it can be used without limitation in a process using a shaft furnace, a rotary kiln, or the like, and is not limited to a fluidized bed.

【0067】[0067]

【発明の効果】本発明にしたがって従来操業が難しかっ
た低い反応温度で、炭化性ガスの多い条件でも、硫黄分
が低くて遊離炭素の含有が少ない高品位の炭化鉄を安定
的に製造できる。更に、工程を還元工程と炭化工程に分
けることにより、還元後のガスを炭化に再利用したり、
金属鉄の触媒反応を利用して炭化工程でガスの改質を行
うこともできるので、従来よりもガスの利用率を向上さ
せることができる。
According to the present invention, it is possible to stably produce high-grade iron carbide having a low sulfur content and a small amount of free carbon even at a low reaction temperature at which conventional operation has been difficult and a large amount of carbonizing gas. Furthermore, by dividing the process into a reduction process and a carbonization process, the reduced gas can be reused for carbonization,
Since the gas can be reformed in the carbonization step by utilizing the catalytic reaction of metallic iron, the gas utilization rate can be improved as compared with the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】予備還元条件と炭化率、遊離炭素、硫黄濃度と
の関係を示す図
FIG. 1 is a diagram showing the relationship between pre-reduction conditions and carbonization rates, free carbon and sulfur concentrations.

【図2】FeS/Fe平衡における還元ガス中の硫黄濃度と温
度との関係を示す図
FIG. 2 is a graph showing the relationship between the sulfur concentration in the reducing gas and the temperature in the FeS / Fe equilibrium.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 昭二 愛知県稲沢市奥田計用町8−2 (72)発明者 国友 和也 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 澤井 敏 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Shoji Hayashi 8-2 Okuda Keiyocho, Inazawa, Aichi Prefecture (72) Inventor Kazuya Kunitomo 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (72) Inventor Satoshi Sawai 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄含有物質を還元後、炭化して炭化
鉄を製造する際に、H2とCOのモル濃度の和に対する硫
黄モル濃度比([S]/([H2]+[CO]))を、Fe/FeS平衡時の
該硫黄モル濃度比の0.05倍から1倍未満としたSを含む
還元ガスにより酸化鉄含有物質を還元して、炭化鉄が20
mass%未満で金属化率が60%以上の予備還元物を製造し、
該予備還元物を炭化性ガスにより炭化して炭化鉄を製造
することを特徴とする炭化鉄の製造方法。
When the iron oxide-containing substance is reduced and then carbonized to produce iron carbide, the molar ratio of sulfur to the sum of the molar concentrations of H 2 and CO ([S] / ([H 2 ] + [ CO])) was reduced to a content of 0.05 to less than 1 times the molar ratio of sulfur at the time of Fe / FeS equilibrium to reduce the iron oxide-containing substance with a reducing gas containing S.
Produces a pre-reduced product with a metallization rate of less than 60% by mass,
A method for producing iron carbide, comprising producing iron carbide by carbonizing the pre-reduced product with a carbonizing gas.
【請求項2】 還元温度及び還元ガス中の各成分のモル
濃度により(1)式で得られる{[S]/([H2]+[CO])}eを、Fe/
FeS平衡におけるH2とCOのモル濃度の和に対する硫黄モ
ル濃度の比とすることを特徴とする請求項1記載の炭化
鉄の製造方法。 【数1】 ここで、t:還元温度(℃)、[i]:i成分のモル濃
度。
2. The method according to claim 1, wherein {[S] / ([H 2 ] + [CO])} e obtained by the equation (1) is represented by Fe /
2. The method for producing iron carbide according to claim 1, wherein the ratio of the molar concentration of sulfur to the total molar concentration of H2 and CO in FeS equilibrium is set. (Equation 1) Here, t: reduction temperature (° C.), [i]: molar concentration of the i component.
【請求項3】 COモル濃度をH2モル濃度以下とした還元
ガスを用い400〜750℃で還元することを特徴とす
る請求項1または2記載の炭化鉄の製造方法。
3. The method for producing iron carbide according to claim 1, wherein the reduction is performed at 400 to 750 ° C. using a reducing gas having a CO molar concentration of H 2 molar concentration or less.
【請求項4】 H2、H2O、CO2の各分圧との関係式(2)
を満足させるCO分圧未満のCOを含有する還元ガスを用い
750℃超1000℃以下で還元することを特徴とする
請求項1または請求項2記載の炭化鉄の製造方法。 【数2】 ここで、p(i):i成分の分圧(atm)、t:還元温度
(℃)。
4. Relational expression (2) with each partial pressure of H 2 , H 2 O and CO 2
3. The method for producing iron carbide according to claim 1, wherein the reduction is performed at a temperature higher than 750 ° C. and equal to or lower than 1000 ° C. using a reducing gas containing CO having a CO partial pressure less than a partial pressure satisfying the following. (Equation 2) Here, p (i): partial pressure of the i component (atm), t: reduction temperature (° C.).
【請求項5】 CH4とCOとの和がモル濃度で50%以上の炭
化性ガスを用いて炭化することを特徴とする請求項1〜4
のいずれかに記載の炭化鉄の製造方法。
5. The carbonization using a carbonizing gas in which the sum of CH 4 and CO is 50% or more in molar concentration.
The method for producing iron carbide according to any one of the above.
【請求項6】 H2とCOの和がモル濃度で10%以上で、Fe/
FeS平衡におけるH2とCOのモル濃度の和に対する硫黄
モル濃度比未満のSを含む炭化性ガスで炭化することを
特徴とする請求項1〜5のいずれかに記載の炭化鉄の製造
方法。
6. The method according to claim 1, wherein the molar concentration of H 2 and CO is 10% or more, and Fe /
Method for producing iron carbide according to claim 1, characterized in that the carbonized in carbonizing gas containing S less than the sulfur molar ratio to the sum of the molar concentrations of H 2 and CO in the FeS equilibrium.
JP11176997A 1997-04-15 1997-04-15 Method for producing iron carbide Expired - Fee Related JP3964959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11176997A JP3964959B2 (en) 1997-04-15 1997-04-15 Method for producing iron carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11176997A JP3964959B2 (en) 1997-04-15 1997-04-15 Method for producing iron carbide

Publications (2)

Publication Number Publication Date
JPH10291816A true JPH10291816A (en) 1998-11-04
JP3964959B2 JP3964959B2 (en) 2007-08-22

Family

ID=14569715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11176997A Expired - Fee Related JP3964959B2 (en) 1997-04-15 1997-04-15 Method for producing iron carbide

Country Status (1)

Country Link
JP (1) JP3964959B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052369A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for Manufacturing Iron Carbide
WO2012047041A2 (en) * 2010-10-08 2012-04-12 주식회사 포스코 Fine direct reduced irons containing iron carbide and preparation apparatus thereof
KR101197697B1 (en) * 2010-10-08 2012-11-05 주식회사 포스코 Apparauts for manufacturing iron carbide bearing drect reduced iron
KR101197696B1 (en) * 2010-10-08 2012-11-05 주식회사 포스코 Iron carbide bearing drect reduced iron
WO2023048232A1 (en) * 2021-09-24 2023-03-30 日本製鉄株式会社 Agglomerated ore and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030052369A (en) * 2001-12-21 2003-06-27 주식회사 포스코 Method for Manufacturing Iron Carbide
WO2012047041A2 (en) * 2010-10-08 2012-04-12 주식회사 포스코 Fine direct reduced irons containing iron carbide and preparation apparatus thereof
WO2012047041A3 (en) * 2010-10-08 2012-05-31 주식회사 포스코 Fine direct reduced irons containing iron carbide and preparation apparatus thereof
KR101197697B1 (en) * 2010-10-08 2012-11-05 주식회사 포스코 Apparauts for manufacturing iron carbide bearing drect reduced iron
KR101197696B1 (en) * 2010-10-08 2012-11-05 주식회사 포스코 Iron carbide bearing drect reduced iron
CN103154281A (en) * 2010-10-08 2013-06-12 Posco公司 Fine direct reduced irons containing iron carbide and preparation apparatus thereof
WO2023048232A1 (en) * 2021-09-24 2023-03-30 日本製鉄株式会社 Agglomerated ore and method for producing same

Also Published As

Publication number Publication date
JP3964959B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US6328946B1 (en) Two step process for the conversion of iron oxide into iron carbide using gas recycle
AU748102B2 (en) Method and apparatus for controlling DRI carburization
JP3299063B2 (en) Iron carbide manufacturing method
JPH0451481B2 (en)
JP3964959B2 (en) Method for producing iron carbide
JPH0360884B2 (en)
US6039916A (en) Apparatus for producing direct reduced iron with a controlled amount of carbon
CN113663711A (en) Difunctional Cu-based desulfurization catalyst and preparation method and application thereof
KR100653046B1 (en) Method for removal of hydrogen sulfide by reaction of catalyst
AU633760B2 (en) Process for purifying high-temperature reducing gases
JP3294763B2 (en) Manufacturing method of iron carbide
US3595965A (en) Purification of petroleum coke
JP4967191B2 (en) Method and apparatus for controlling carburization of DRI
KR101197697B1 (en) Apparauts for manufacturing iron carbide bearing drect reduced iron
CN1276018A (en) Method and apapratus for controlling direct carburization
KR101384801B1 (en) Method for manufacturing reduced iron
KR101197696B1 (en) Iron carbide bearing drect reduced iron
US1836357A (en) Process for the recovery of sulphur from sulphur dioxide
JPH09278428A (en) Production of iron carbide
CN103154281A (en) Fine direct reduced irons containing iron carbide and preparation apparatus thereof
JPH09194920A (en) Production of low sulfur and high carbon-containing reduced iron
JPH08253307A (en) Production of iron carbide
Fukase et al. Residual oil cracking combined with hydrogen production by steam‐iron reaction
JPS595639B2 (en) Desulfurization method for high temperature gas
JPS6352079B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070525

LAPS Cancellation because of no payment of annual fees