JPH1028979A - Posttreatment of drinking water and swimming water sterilized with chlorine dioxide - Google Patents

Posttreatment of drinking water and swimming water sterilized with chlorine dioxide

Info

Publication number
JPH1028979A
JPH1028979A JP8207915A JP20791596A JPH1028979A JP H1028979 A JPH1028979 A JP H1028979A JP 8207915 A JP8207915 A JP 8207915A JP 20791596 A JP20791596 A JP 20791596A JP H1028979 A JPH1028979 A JP H1028979A
Authority
JP
Japan
Prior art keywords
water
chlorine dioxide
magnesium hydroxide
ore
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8207915A
Other languages
Japanese (ja)
Inventor
Katsutoshi Ogawa
勝利 小川
Masako Oyama
正子 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP8207915A priority Critical patent/JPH1028979A/en
Publication of JPH1028979A publication Critical patent/JPH1028979A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To completely remove chlorine dioxide remaining in the water which is sterilized by chlorine dioxide, by using a column, filter or filter bed containing water-insoluble iron sulfide ore and/or natural magnesium hydroxide to reduce and remove the chlorine dioxide. SOLUTION: Granular iron sulfide ore such as pyrrhotite is used to pack a column or formed into a filter or added to a filtering bed. Alternatively, natural magnesium hydroxide as a water-insoluble magnesium hydroxide fiber is used to pack a column, formed into a filter or added to a filtering bed. Magnesium hydroxide has an effect to remove chlorine dioxide remaining in water, perchloric acid or oxidizing material by the reducing effect of bivalent iron in the magnesium hydroxide. The column diameter and the treating amt. can be determined according to the concentration of oxidizing material such as the remaining chlorine dioxide, treating time of water. By this method, water can be surely treated and continuous feeding of water is possible for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水の殺菌方法に関
する。さらに詳しくは、二酸化塩素で殺菌された飲料用
水、スイミングプール用水の残存二酸化塩素及び派生す
る亜塩素酸等の酸化性物質の除去方法に関する。
[0001] The present invention relates to a method for sterilizing water. More particularly, the present invention relates to a method for removing residual chlorine dioxide and derived oxidizing substances such as chlorite and the like for drinking water and swimming pool water sterilized with chlorine dioxide.

【0002】[0002]

【従来の技術】従来、飲料用水、スイミングプール用水
の殺菌には塩素が用いられることがほとんどである。例
えば、水道法により水道水の給栓水中に塩素が残留する
ことが義務づけられており、また井戸水等の飲料用水の
殺菌には塩素剤が使用されることが一般的である。しか
し、塩素による殺菌方法ではトリハロメタン等の有害物
質が生じるという安全性の面での問題が残されていた。
また、スイミングプール用水は、飲料用水と比較すると
水中に有機物の蓄積量が多く塩素を多く消費するので、
多量の塩素を添加する必要がある。この為、安全性を重
視するあまり過剰使用することも多く、トリハロメタ
ン、ハロアセトニトリル、ハロ酢酸等がより多く生成す
るという問題、さらには目や喉に傷害を与えたり、頭髪
を脱色する等の問題があった。またスイミングプール用
水は連続的に殺菌を行う為に、塩素を用いて殺菌を行っ
た場合には変異原性が高くなりやすく、さらには発ガン
性を持つといわれているトリハロメタン類、ハロアセト
ニトリル類またはハロ酢酸類の生成割合が高く(日本環
境変異原性学会)殺菌方法の改善が望まれていた。
2. Description of the Related Art Conventionally, chlorine is almost always used for sterilizing drinking water and swimming pool water. For example, the tap water law requires that chlorine remain in tap water, and chlorine is generally used for sterilizing drinking water such as well water. However, the sterilization method using chlorine has a problem in terms of safety that harmful substances such as trihalomethane are generated.
In addition, swimming pool water has a large amount of accumulated organic matter in the water and consumes a lot of chlorine compared to drinking water,
A large amount of chlorine needs to be added. For this reason, they are often used excessively with an emphasis on safety, resulting in the production of more trihalomethane, haloacetonitrile, haloacetic acid, etc., as well as problems such as causing damage to eyes and throat and bleaching of hair. was there. In addition, because the water for swimming pools is continuously sterilized, when sterilized using chlorine, mutagenicity tends to increase, and trihalomethanes and haloacetonitriles, which are said to have carcinogenic properties Alternatively, the production ratio of haloacetic acids is high (Japanese Society for Environmental Mutagen Research), and improvement of the sterilization method has been desired.

【0003】このような問題を回避する方法の一つとし
てトリハロメタン類等の有害物質を発生せずしかもフミ
ン質等のトリハロメタン前駆物質を分解する二酸化塩素
を用いた殺菌が考えられている。例えば、特開平6−3
9376号公報、特開平60−61510号公報には、
二酸化塩素によるスイミングプール用水の殺菌方法が示
されている。しかし、特開平6−39376号公報に記
載された方法では、通常用いられている方法であるスイ
ミングプール用水の循環使用に関する方法は明らかとさ
れていない。特開平60−61510号公報および特開
平6−233985号公報には安定化二酸化塩素を用い
る方法が記載されているが、殺菌後の副生成物等の除去
については考慮されていない。また、安定化二酸化塩素
は亜塩素酸塩に無機塩類を添加したものであるので、酸
を添加する等の処理により二酸化塩素の発生効率が高く
なるものである。従って、スイミングプール用水に単に
添加しただけでは二酸化塩素の発生効率が悪く、この為
にコスト高となり実用的ではなかった。
As one method of avoiding such a problem, sterilization using chlorine dioxide which does not generate harmful substances such as trihalomethanes and decomposes a trihalomethane precursor such as humic substances has been considered. For example, JP-A-6-3
No. 9376, JP-A-60-61510,
A method of disinfecting swimming pool water with chlorine dioxide is shown. However, in the method described in Japanese Patent Application Laid-Open No. 6-39376, a method for circulating water for a swimming pool, which is a commonly used method, has not been clarified. JP-A-60-61510 and JP-A-6-233985 describe a method using stabilized chlorine dioxide, but do not consider removal of by-products and the like after sterilization. Moreover, since stabilized chlorine dioxide is obtained by adding inorganic salts to chlorite, the efficiency of chlorine dioxide generation is increased by treatment such as addition of an acid. Therefore, the mere addition to the water for swimming pools is inefficient in the generation of chlorine dioxide, which increases the cost and is not practical.

【0004】二酸化塩素を用いて飲料用水およびスイミ
ングプール用水の殺菌を行った場合、残留する二酸化塩
素および派生する亜酸化塩素イオン等の酸化性物質の除
去または濃度の低減をしなければならない。二酸化塩素
によりスイミングプール用水を殺菌した場合残留する二
酸化塩素および亜塩素酸イオンの濃度はそれぞれ0.1
〜0.4mg/l、1.2mg/l以下であることが厚
生省により決められている。また過マンガン酸カリウム
消費量は12mg/l以下であることもまた厚生省によ
り決められている。飲料用水としてもちいられる水道水
中の二酸化塩素および亜塩素酸イオンの濃度の基準は設
定されていないが、米国等では二酸化塩素を一次殺菌に
用いた場合、亜塩素酸イオンは全て除去することが好ま
しいとされている。
[0004] When sterilizing drinking water and swimming pool water using chlorine dioxide, it is necessary to remove or reduce the concentration of residual oxidizing substances such as chlorine dioxide and derived chlorine oxide ions. When the water for the swimming pool is sterilized by chlorine dioxide, the concentrations of the remaining chlorine dioxide and chlorite ions are each 0.1%.
It is determined by the Ministry of Health and Welfare to be 0.4 mg / l or less and 1.2 mg / l or less. It is also determined by the Ministry of Health and Welfare that potassium permanganate consumption is 12 mg / l or less. Standards for the concentration of chlorine dioxide and chlorite ions in tap water used as drinking water are not set, but in the United States, etc., when chlorine dioxide is used for primary sterilization, it is preferable to remove all chlorite ions It has been.

【0005】従来、日本ではパルプや繊維等の漂白に二
酸化塩素が広く用いられてきたが、飲料用水、スイミン
グプール用水等に用いられることはなかった。この理由
の一つとして、二酸化塩素による殺菌を行ったのちに亜
塩素酸、酸性物質または残留する二酸化塩素を除去する
方法が限られていることを挙げることができ、新しい除
去方法の開発が望まれていた。
Conventionally, chlorine dioxide has been widely used for bleaching pulp and fiber in Japan, but has not been used for drinking water, swimming pool water and the like. One of the reasons is that there is a limited method to remove chlorous acid, acidic substances or residual chlorine dioxide after sterilization with chlorine dioxide, and it is hoped that a new removal method will be developed. Was rare.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、二酸
化塩素による水道水またはスイミングプール用水の殺菌
後に残存する二酸化塩素及び派生する亜塩素酸等の酸化
物質を有効にまたはほぼ完全に除去する方法を提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to effectively or almost completely remove residual chlorine dioxide and derived oxidizing substances such as chlorous acid after sterilization of tap water or swimming pool water with chlorine dioxide. Is to provide a way.

【0007】[0007]

【問題を解決するための手段】本発明者らは二酸化塩素
による水道水またはスイミングプール用水の殺菌後に残
存する二酸化塩素及び派生する亜塩素酸等の酸化物質を
有効に除去する方法を開発するために鋭意研究を重ねた
結果、水に不溶な硫化鉄鉱物あるいは水に不溶な水酸化
マグネシウム繊維を用いることにより前記課題が解決で
きることを見いだし、この知見に基づいて本発明を完成
した。
SUMMARY OF THE INVENTION The present inventors have developed a method for effectively removing chlorine dioxide and derived oxidizing substances such as chlorite remaining after sterilization of tap water or swimming pool water with chlorine dioxide. As a result of intensive studies, the present inventors have found that the above problem can be solved by using a water-insoluble iron sulfide mineral or a water-insoluble magnesium hydroxide fiber, and completed the present invention based on this finding.

【0008】すなわち、本発明は (1)二酸化塩素により殺菌された飲料用水またはスイ
ミング用水中の残存二酸化塩素、亜塩素酸イオンまたは
酸化性物質を、水に不溶性の硫化鉄鉱石及び/または天
然の水酸化マグネシウム繊維を含むカラム、フィルター
または濾過床により還元除去する方法。 (2)硫化鉄鉱石として磁硫鉄鉱石、黄鉄鉱石、白鉄鉱
石のうちの少なくとも1種以上の鉄鉱石を用いる前記
(1)に記載の方法。である。
That is, the present invention relates to (1) a method for removing residual chlorine dioxide, chlorite ions or oxidizing substances in drinking water or swimming water sterilized by chlorine dioxide by using water-insoluble iron sulfide ore and / or natural sulfide ore. A method of reducing and removing by a column, a filter or a filtration bed containing magnesium hydroxide fiber. (2) The method according to (1) above, wherein at least one ore of pyrrhotite, pyrite ore, ore is used as the iron sulfide ore. It is.

【0009】[0009]

【発明の実施の形態】本発明において硫化鉄鉱石として
磁硫鉄鉱石(ピロータイトとも呼ばれ、鉱石中に含まれ
る硫化鉄はFe1ーxSである。但しxは0〜0.2であ
る。)、黄鉄鉱石(パイライトとも呼ばれ、鉱石中に含
まれる硫化鉄はFeS2である。)または白鉄鉱石(マ
ーカサイトとも呼ばれ、鉱石中に含まれる硫化鉄はFe
2である。)のうちの少なくとも1種以上を好適に用
いることができる。この他にもFeS及び/またはSを
含む鉱物も用いることができる。前記鉱石は、まず粒状
物としたのち次の方法等により良好に使用することがで
きる。(a)カラムに充填する。(b)フィルター状の
成形物に含ませる。(c)濾過床に加える。
DETAILED DESCRIPTION OF THE INVENTION The present invention is also called a pyrrhotite ore (pyrrhotite as sulfide ore, iron sulfide contained in the ore is Fe 1 over x S. Where x is a 0 to 0.2 ), Pyrite ore (also called pyrite and the iron sulfide contained in the ore is FeS 2 ) or marble ore (also called marker site and the iron sulfide contained in the ore is Fe
It is S 2. ) Can be suitably used. In addition, minerals containing FeS and / or S can also be used. The ore can be satisfactorily used by the following method after first forming the ore into a granular material. (A) Pack into a column. (B) To be included in a filter-like molded product. (C) Add to the filtration bed.

【0010】水に不溶である水酸化マグネシウム繊維と
してはFeOを含む天然の水酸化マグネシウム繊維を好
適に用いることができる。該水酸化マグネシウム中には
FeOがおよそ5〜7重量%、Fe23が微量、SiO
2がおよそ1〜2重量%含まれるが、このうちの2価の
鉄による還元作用が残存二酸化塩素、亜塩素酸または酸
化性物質の除去に作用しているものと考えられる。該水
酸化マグネシウム繊維は次の方法等により良好に使用す
ることができる。(イ)カラムに充填する。(ロ)カー
トリッジフィルタに組み込む。
As the magnesium hydroxide fiber insoluble in water, a natural magnesium hydroxide fiber containing FeO can be suitably used. Magnesium hydroxide FeO approximately 5-7 wt% during, Fe 2 O 3 is small amount, SiO
2 is contained in an amount of about 1 to 2% by weight, of which it is considered that the reducing action by divalent iron acts on the removal of residual chlorine dioxide, chlorite or oxidizing substances. The magnesium hydroxide fiber can be favorably used by the following method. (A) Pack into a column. (B) Assemble into cartridge filter.

【0011】前記(a)〜(c)の方法および(イ)ま
たは(ロ)の方法において、カラム径、長さ及び処理剤
の量等は残留二酸化塩素、派生する亜塩素酸等の酸化性
物質濃度、水と処理剤の接触時間等により決定すること
ができる。前記(a)〜(c)の方法および(イ)また
は(ロ)の方法によれば処理が確実でありまた長期の連
続注水が可能である。従って設備コストが低く抑えら、
メンテナンスが簡単であることから経済効果も高い。
In the methods (a) to (c) and the methods (a) and (b), the column diameter, the length, the amount of the treating agent and the like are determined based on the residual chlorine dioxide, the oxidizing ability of the derived chlorous acid and the like. It can be determined by the substance concentration, the contact time between water and the treatment agent, and the like. According to the methods (a) to (c) and the method (a) or (b), the treatment is reliable and long-term continuous water injection is possible. Therefore, if the equipment cost is kept low,
The economic effect is high because the maintenance is simple.

【0012】[0012]

【実施例】次に実施例により本発明をさらに具体的に説
明する。
Next, the present invention will be described more specifically with reference to examples.

【0013】実施例1 硫化鉄による亜塩素酸イオンの除去試験を次のように行
った。 硫化鉄を用いたカラムの調整:硫化水素発生用硫化鉄
(関東化学製試薬)の塊状物を鉄乳鉢にて粉砕して、1
2メッシュの篩により通過粉を除き、3ミリ以下の粒度
品を集めた。この粒状品を直径10ミリ×長さ300ミ
リ、G4ガラスフイルター、下部コック付きガラスカラ
ムの200ミリまで充填した。 亜塩素酸イオンを含む水溶液の調整:亜塩素酸イオン標
準液として、25重量%の亜塩素酸ソーダ水溶液を調整
し、これをチオ硫酸ソーダ標準液にて評定したのち水で
希釈して亜塩素酸イオン濃度で5.0mg/l(5pp
m)の亜塩素酸イオンを含む水溶液を調整した。
Example 1 A test for removing chlorite ions with iron sulfide was performed as follows. Adjustment of column using iron sulfide: A lump of iron sulfide for hydrogen sulfide generation (Kanto Chemical's reagent) was crushed in an iron mortar,
The passing powder was removed by a 2-mesh sieve, and a particle size of 3 mm or less was collected. The granules were filled up to a diameter of 10 mm × a length of 300 mm, a G4 glass filter, and a glass column with a lower cock having a diameter of 200 mm. Preparation of aqueous solution containing chlorite ion: A 25% by weight aqueous solution of sodium chlorite was prepared as a standard solution of chlorite ion, which was evaluated with a standard solution of sodium thiosulfate, diluted with water, and then diluted with water. 5.0 mg / l (5 pp)
An aqueous solution containing chlorite ion of m) was prepared.

【0014】亜塩素酸イオンの除去の試験:前記の硫化
鉄粒状物を充填したカラム頭部に前記の亜塩素酸イオン
濃度5ppmの水溶液を1,000ml含有する分液ロ
ートを接続したのち、該分液ロートからカラムに毎分3
0ミリリッターで溶液を滴下した。滴下開始後、2分
後、5分後、10分後、20分後および30分後にカラ
ム下部より流出した処理液を採取した。採取した処理液
中の亜塩素酸イオン濃度をDPD(ジエチル-p-フェニ
レンジアミン)吸光光度法により測定した結果、亜塩素
酸イオン濃度はすべての処理液とも0ppmであった。
処理前および滴下開始後30分に採取した処理液のpH
はいずれも5.8でpHは変化しなかった。
Test for removal of chlorite ion: A separating funnel containing 1,000 ml of the above aqueous solution having a chlorite ion concentration of 5 ppm was connected to the column head filled with the iron sulfide granules. 3 per minute from separation funnel to column
The solution was added dropwise at 0 milliliter. After 2 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes after the start of the dropping, the treatment liquid flowing out from the lower part of the column was collected. As a result of measuring the chlorite ion concentration in the collected processing solutions by DPD (diethyl-p-phenylenediamine) absorption spectrophotometry, the chlorite ion concentration was 0 ppm in all the processing solutions.
PH of treatment liquid collected before treatment and 30 minutes after the start of dropping
Was 5.8 and the pH did not change.

【0015】実施例2 硫化鉄による亜塩素酸イオンの除去試験を次のように行
った。亜塩素酸イオン濃度を50ppmとする以外は実
施例1と同様の試験を行った。この結果滴下開始後の時
間によらず、すべての処理液の亜塩素酸イオン濃度は
0.8ppmであり、98%の亜塩素酸イオンが除去で
きた。この結果、亜塩素酸イオンが高濃度となっても十
分に亜塩素酸イオンを除去できることがわかった。処理
前の水溶液のpHは8.6、滴下開始後30分に採取し
た処理液のpHは5.8であった。
Example 2 A test for removing chlorite ions with iron sulfide was conducted as follows. The same test as in Example 1 was performed except that the chlorite ion concentration was set to 50 ppm. As a result, irrespective of the time after the start of dropping, the chlorite ion concentration of all the processing solutions was 0.8 ppm, and 98% of chlorite ion could be removed. As a result, it was found that chlorite ions could be sufficiently removed even when the concentration of chlorite ions was high. The pH of the aqueous solution before the treatment was 8.6, and the pH of the treatment liquid collected 30 minutes after the start of the dropping was 5.8.

【0016】参考例1 黄鉄鉱石による亜塩素酸イオン除去能力の試験を次のよ
うに行った。ペルー、Huanuco Huanzal
a鉱山産の純粋黄鉄鉱石(化学分析のよる組成は、鉄4
6.5%、硫黄分52.5%、銅0.04%、酸不溶分
0.7%重量%である)を鉄乳鉢にて粉砕し、12メッ
シュの篩により通過粉を除き、3ミリ以下の粒度品を集
めた。この粒状品2gを10gのNaClO2を含む5
00ml溶液に加えて180分間、常温(19℃)にて
マグネットスタラー撹拌180分行い、処理溶液をサン
プリングし、ろ紙ろ過、ろ液についてDPD比色法で残
留亜塩素酸イオンを測定した。その結果亜塩素酸イオン
の99.4%が除去されていた。これより黄鉄鉱石1g
当たりほぼ5gの亜塩素酸イオンを還元反応により除去
出来ることがわかった。
Reference Example 1 A test for the ability of pyrite to remove chlorite ions was conducted as follows. Peru, Huanuco Huanzal
a) Pure pyrite ore from the mine (composition by chemical analysis is iron 4
6.5%, sulfur content 52.5%, copper 0.04%, acid-insoluble content 0.7% weight%) were ground in an iron mortar, and the passing powder was removed with a 12-mesh sieve to remove 3 mm. The following granules were collected: 2 g of this granulate is mixed with 5 g of NaClO 2
The solution was added to the 00 ml solution, and the mixture was stirred with a magnetic stirrer for 180 minutes at normal temperature (19 ° C.) for 180 minutes. As a result, 99.4% of the chlorite ions were removed. 1 g of pyrite ore
It was found that approximately 5 g of chlorite ion could be removed by the reduction reaction.

【0017】実施例3 本発明に係る黄鉄鉱石による亜塩素酸イオンの除去試験
を次のように行った。 黄鉄鉱石を用いたカラムの調整:実施例1と同様にして
作成した粒状の黄鉄鉱石140gを直径10ミリ×長さ
300ミリ、綿ストッパー、下部コック付きガラスカラ
ムの200ミリまで充填した。 亜塩素酸イオン、二酸化塩素の除去の試験:カラム頭部
より水温16℃、濃度4.5mg/lの亜塩素酸ソーダ
溶液を1500ml、線速度を0.02〜0.1m/h
rに段階的に上げて流下させ、流下したものを8フラク
ションに分割し、各フラクションにつき残留亜塩素酸イ
オンをDPD比色法にて測定した。このカラムにさら
に、濃度が20mg/lの二酸化塩素水1500ml
を、前記の亜塩素酸ソーダ溶液と同一の方法で流下させ
た。同じく8フラクションに分割し、二酸化塩素の検出
を行った。この結果、流出液中に亜塩素酸イオン及び二
酸化塩素は全く検出されず、本発明により亜塩素酸イオ
ン及び二酸化塩素が除去できる事がわかった。
Example 3 A test for removing chlorite ions by the pyrite ore according to the present invention was performed as follows. Adjustment of column using pyrite ore: 140 g of granular pyrite ore prepared in the same manner as in Example 1 was packed into a glass column having a diameter of 10 mm, a length of 300 mm, a cotton stopper and a lower cock up to 200 mm. Test for removal of chlorite ion and chlorine dioxide: 1500 ml of sodium chlorite solution having a water temperature of 16 ° C. and a concentration of 4.5 mg / l from the column head, and a linear velocity of 0.02 to 0.1 m / h.
r, and the mixture was allowed to flow down in a stepwise manner. The mixture was divided into eight fractions, and the residual chlorite ion of each fraction was measured by a DPD colorimetric method. The column is further filled with 1500 ml of chlorine dioxide water having a concentration of 20 mg / l.
Was allowed to flow down in the same manner as the sodium chlorite solution described above. Similarly, it was divided into 8 fractions, and chlorine dioxide was detected. As a result, chlorite ion and chlorine dioxide were not detected at all in the effluent, and it was found that chlorite ion and chlorine dioxide could be removed by the present invention.

【0018】[0018]

【発明の効果】二酸化塩素殺菌後の残留二酸化塩素及び
その派生物である亜塩素酸イオン等の酸化性物質を完全
に還元除去することができる。また、本発明に係る還元
除去方法はカラム充填法、フイルター状成型物若しくは
濾過床法等が採用できるので現行の浄水場やプールの水
処理設備に容易に付加し易すく、かつ経済性も兼ね備え
ている。本発明に係る還元除去方法により、水道水源水
等の飲料用水に含まれる発癌性物質やその前駆体を二酸
化塩素殺菌にて分解除去した後の残留酸化性物質を還元
除去して無害な塩素イオンとする二酸化塩素による水道
水の殺菌システムを確立することが容易となった。これ
により、現行法下で異臭味のない安全な水道水の提供を
可能ならしめることが容易となった。また、スイミング
プール用水の二酸塩素消毒−リサイクルシステムの確立
が容易となるので、塩素臭がなくかつ人の健康を充分配
慮した、より快適な体育、レジャー施設の提供が容易と
なった。
According to the present invention, residual chlorine dioxide after chlorine dioxide sterilization and oxidizing substances such as chlorite ions which are derivatives thereof can be completely reduced and removed. In addition, since the reduction and removal method according to the present invention can employ a column packing method, a filter-like molded product, a filtration bed method, or the like, it can be easily added to existing water treatment plants and pool water treatment facilities, and also has economical efficiency. ing. By the reduction removal method according to the present invention, harmless chlorine ions by reducing and removing residual oxidizing substances after decomposing and removing carcinogenic substances and their precursors contained in drinking water such as tap water source water by chlorine dioxide sterilization. It has become easy to establish a sterilization system for tap water using chlorine dioxide. This facilitated the provision of safe tap water without off-flavors under the current law. In addition, since it is easy to establish a chlorine dioxide disinfection-recycling system for swimming pool water, it has become easier to provide more comfortable physical education and leisure facilities with no chlorine odor and sufficient consideration for human health.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化塩素により殺菌された飲料用水お
よびスイミング用水中の残存二酸化塩素、亜塩素酸イオ
ンおよび酸化性物質を、水に不溶性の硫化鉄及び/また
は天然の水酸化マグネシウム繊維を含むカラム、フィル
ターまたは濾過床により還元除去する方法。
1. A column containing water-insoluble iron sulfide and / or natural magnesium hydroxide fiber, which contains residual chlorine dioxide, chlorite ions and oxidizing substances in drinking water and swimming water sterilized by chlorine dioxide. , A filter or a filtration bed for reduction.
【請求項2】 硫化鉄として磁硫鉄鉱石、黄鉄鉱石、白
鉄鉱石のうちの少なくとも1種以上の鉄鉱石を用いる請
求項1に記載の方法。
2. The method according to claim 1, wherein at least one ore selected from pyrrhotite ore, pyrite ore, and ore ore is used as the iron sulfide.
JP8207915A 1996-07-17 1996-07-17 Posttreatment of drinking water and swimming water sterilized with chlorine dioxide Pending JPH1028979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8207915A JPH1028979A (en) 1996-07-17 1996-07-17 Posttreatment of drinking water and swimming water sterilized with chlorine dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8207915A JPH1028979A (en) 1996-07-17 1996-07-17 Posttreatment of drinking water and swimming water sterilized with chlorine dioxide

Publications (1)

Publication Number Publication Date
JPH1028979A true JPH1028979A (en) 1998-02-03

Family

ID=16547677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8207915A Pending JPH1028979A (en) 1996-07-17 1996-07-17 Posttreatment of drinking water and swimming water sterilized with chlorine dioxide

Country Status (1)

Country Link
JP (1) JPH1028979A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365556B1 (en) * 2000-05-12 2002-12-26 한국수자원공사 Advanced Wastewater Treatment System Adding Dechlorination Process
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2011125844A (en) * 2009-12-15 2011-06-30 Ind Technol Res Inst Water body self-generating electrolytic reduction module
KR101373749B1 (en) * 2007-12-21 2014-03-14 (주)세호코리아 Deoxidization vessel for filtering seawater after seawater electrolysis
JP2018202354A (en) * 2017-06-08 2018-12-27 株式会社神戸製鋼所 Purification method and treatment agent for perchlorate, chlorate, chlorite, or hypochlorite chlorite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365556B1 (en) * 2000-05-12 2002-12-26 한국수자원공사 Advanced Wastewater Treatment System Adding Dechlorination Process
KR101373749B1 (en) * 2007-12-21 2014-03-14 (주)세호코리아 Deoxidization vessel for filtering seawater after seawater electrolysis
JP2010088991A (en) * 2008-10-07 2010-04-22 Waseda Univ Water treatment agent and water treatment method
JP2011125844A (en) * 2009-12-15 2011-06-30 Ind Technol Res Inst Water body self-generating electrolytic reduction module
US8366885B2 (en) 2009-12-15 2013-02-05 Industrial Technology Research Institute Water body self-generating electrolytic reduction module
JP2018202354A (en) * 2017-06-08 2018-12-27 株式会社神戸製鋼所 Purification method and treatment agent for perchlorate, chlorate, chlorite, or hypochlorite chlorite

Similar Documents

Publication Publication Date Title
Siddiqui Chlorine-ozone interactions: formation of chlorate
US4693832A (en) Preparation of safe drinking water
US6863905B1 (en) Enhanced iodine treatment of drinking water
JPH1028979A (en) Posttreatment of drinking water and swimming water sterilized with chlorine dioxide
US5609766A (en) Process for treating bromide-containing water using ozone
US7384565B2 (en) Method for chlorite removal
Sorlini et al. Chlorite removal with granular activated carbon
RU2687925C1 (en) Method for decontamination of waste water of gold-mining factory
JPH08206410A (en) Coagulant for water treatment
US20040048762A1 (en) Method of purifying or cleansing a body of liquid
Ventresque et al. Ozone: A means of stimulating biological activated carbon reactors
JPH10277541A (en) Zeolite type water purifying agent
Swietlik et al. Effect of oxidation with chlorine dioxide on the adsorption of natural organic matter on granular activated carbon
US2041584A (en) Process for the purification of water
JPH06206066A (en) Water purifying agent and water treatment device using the same
Jadas-Hecart et al. Effect of ozonation on the chlorine demand of a treated surface water and some macromolecular compounds
RU2098359C1 (en) Method of purifying water
Oakes et al. Ozone disinfection of fish hatchery waters: pilot plant results, prototype design and control considerations
Faber et al. Super-chlorination practice in North America [with discussion]
SU945085A1 (en) Process for decontaminating water and effluents
Thombre Drinking Water, Iron, and Manganese Removal in Groundwater Purification
JPH0315516B2 (en)
SU1174384A1 (en) Method of removing organic compounds from sewage
Schneider et al. Use of ozone in the technology of bottled water
RU2186721C2 (en) Method of iodine extraction from drilling waters