JPH10289442A - Protective film and magnetic recording medium using the protective film - Google Patents

Protective film and magnetic recording medium using the protective film

Info

Publication number
JPH10289442A
JPH10289442A JP3265398A JP3265398A JPH10289442A JP H10289442 A JPH10289442 A JP H10289442A JP 3265398 A JP3265398 A JP 3265398A JP 3265398 A JP3265398 A JP 3265398A JP H10289442 A JPH10289442 A JP H10289442A
Authority
JP
Japan
Prior art keywords
protective film
film
grains
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3265398A
Other languages
Japanese (ja)
Inventor
Yasushi Sasaoka
泰 笹岡
Junichi Kozu
順一 神津
Masatoshi Ichikawa
雅敏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3265398A priority Critical patent/JPH10289442A/en
Publication of JPH10289442A publication Critical patent/JPH10289442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize sufficient durability and corrosion resistance even if a film is made thin by providing a protective film comprising a fine grain having equal to or below a specific particle diameter. SOLUTION: Since the grain constituting the protective film has a small particle diameter of <=2 nm, the bonding power between the grains is increased and the omission of grains due to the sliding of a head at the time of CSS (contact start and stop) hardly occurs to improve the durability. And the gap of grain boundary is eliminated since the grains are rigidly arranged each other and the magnetic layer is completely shut out from the atmosphere to keep corrosion resistance excellent under a high temp. and high humidity condition. The film forming method is not limited if the film is formed to ham <=2 nm thickness and the film forming by a sputtering method, a chemical film forming method and the like is possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は磁気記録媒体に係
り、特に、従来の媒体よりも優れた耐久性及び耐食性を
示す薄膜型の磁気記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a thin-film type magnetic recording medium exhibiting better durability and corrosion resistance than conventional media.

【0002】[0002]

【従来の技術】磁気記録媒体は、通常、磁性金属または
それらの合金を塗布、メッキ、蒸着またはスパッタリン
グ法等により、非磁性基板上に被着することにより磁性
層を形成して製造される。ところで、磁気記録媒体は、
実使用時においては、磁気ヘッドとの摺動によって摩耗
損傷を受け、この結果、摩擦係数の上昇や磁気特性上の
劣化を起こす。この欠点を解決する方法として、磁性層
上に炭素膜、酸化物膜、炭化物膜、窒化物膜またはほう
化物膜などの保護膜や、パーフルオロポリエーテルや高
級脂肪酸またはその金属塩等の潤滑膜を設けることが提
案され、既に実用化されている。
2. Description of the Related Art A magnetic recording medium is usually manufactured by forming a magnetic layer by applying a magnetic metal or an alloy thereof on a non-magnetic substrate by coating, plating, vapor deposition, sputtering or the like. By the way, the magnetic recording medium
At the time of actual use, it is worn and damaged by sliding with the magnetic head, and as a result, the friction coefficient is increased and the magnetic characteristics are deteriorated. As a method for solving this drawback, a protective film such as a carbon film, an oxide film, a carbide film, a nitride film or a boride film on the magnetic layer, or a lubricating film such as perfluoropolyether, a higher fatty acid or a metal salt thereof. Has been proposed, and has already been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】磁気記録媒体の中には
媒体の回転により浮上する記録・再生ヘッドを用い、情
報の記録再生時にはヘッドが媒体と接触せず、媒体の回
転が十分遅い状態でのみヘッドと媒体が接触するような
方式(コンタクト・スタート・アンド・ストップ方式、
CSS方式)を採用している物がある。
A magnetic recording medium employs a recording / reproducing head which floats by rotation of the medium. When recording / reproducing information, the head does not come into contact with the medium and the medium rotates slowly. Only the method in which the head and the medium come into contact (contact start and stop method,
Some of them adopt the CSS method.

【0004】そして、磁気記録媒体の耐久性試験におい
て、媒体の回転を制御することによって断続的に浮上ヘ
ッドの離着陸を繰り返すCSSテストがあるが、従来の
磁気記録媒体では、CSSの回数を重ねるにつれて摩擦
係数が増加し、摩耗により表面に損傷を与えたり、なん
らかの原因でヘッドスライダーに浮力が働かず、通常な
らヘッドが浮上するような高速回転中でもヘッドが浮上
せず媒体と摺動し、ヘッド及び媒体が破壊されるヘッド
クラッシュという現象を生ずるという問題がある。
In a durability test of a magnetic recording medium, there is a CSS test in which the flying head is intermittently repeated by controlling the rotation of the medium. However, in the conventional magnetic recording medium, as the number of CSSs increases, the number of CSSs increases. The friction coefficient increases, the surface is damaged by wear, and the head slider does not exert buoyancy for any reason, and the head slides with the medium without floating even during high-speed rotation where the head normally floats. There is a problem that a phenomenon called head crash in which the medium is destroyed occurs.

【0005】また、高温高湿環境の下で使用した場合、
従来の磁気記録媒体では、磁性層が環境中の水分や酸素
にさらされるのを保護膜によって完全には防ぐことがで
きず、磁性層が腐食して、エラーを発生したりヘッドク
ラッシュを起こすことがあった。この問題を抑えるため
に潤滑剤の厚さを厚くすることが考えられるが、この場
合には、ヘッドとディスク媒体との間にメニスカスが形
成され、ヘッドがディスクに吸着しやすくなるという不
具合がある。
When used in a high-temperature, high-humidity environment,
In conventional magnetic recording media, the protective layer cannot completely prevent the magnetic layer from being exposed to environmental moisture or oxygen, and the magnetic layer may corrode, causing errors or causing a head crash. was there. In order to suppress this problem, it is conceivable to increase the thickness of the lubricant, but in this case, a meniscus is formed between the head and the disk medium, and there is a problem that the head is easily attracted to the disk. .

【0006】さらには、記録密度の高密度化のためには
保護膜は薄いことが望まれ、近年のギガビット毎平方イ
ンチオーダーの媒体ではその厚さが10nm以下になろ
うとしている。そのため、10nmを超える厚さの従来
の保護膜で使用していた材料を単に薄膜化しただけで
は、実用上十分な耐久性、耐食性が得られないという問
題が表面化し始めている。
Furthermore, it is desired that the protective film be thin for increasing the recording density. In recent years, the thickness of a medium of the order of gigabits per square inch has been reduced to 10 nm or less. For this reason, a problem that the durability and corrosion resistance sufficient for practical use cannot be obtained by simply reducing the thickness of the material used for the conventional protective film having a thickness exceeding 10 nm has begun to surface.

【課題を解決する手段】[Means to solve the problem]

【0007】本発明の目的は、10nm以下の厚さにな
っても、十分な耐久性及び耐食性を実現する保護膜及び
この保護膜を用いた磁気記録媒体を実現することにあ
る。本発明者は保護膜の微視的な構成に着目し、鋭意検
討した結果、保護膜を形成するグレインの大きさが耐久
性及び耐食性を左右していることを見出し、本発明に到
達した。すなわち、本発明の要旨は、粒径が2nm以下
のグレインで構成される保護膜及び、非磁性基板上に少
なくとも強磁性金属薄膜が形成される磁気記録媒体であ
って、粒径2nm以下のグレインで構成される保護膜を
有することを特徴とする磁気記録媒体にそれぞれ存す
る。
An object of the present invention is to provide a protective film that achieves sufficient durability and corrosion resistance even when the thickness is 10 nm or less, and a magnetic recording medium using the protective film. The present inventor paid attention to the microscopic structure of the protective film, and as a result of diligent studies, found that the size of the grains forming the protective film affected the durability and corrosion resistance, and reached the present invention. That is, the gist of the present invention is to provide a protective film composed of grains having a grain size of 2 nm or less and a magnetic recording medium having at least a ferromagnetic metal thin film formed on a nonmagnetic substrate, wherein the grain has a grain size of 2 nm or less. Wherein each of the magnetic recording media has a protective film composed of:

【0008】[0008]

【発明の実施の形態】以下、本発明につき更に詳細に説
明する。本発明において、保護膜を構成するグレインと
は、多数の原子が集合して出来た粒状物を示す。そし
て、グレインはたとえば保護膜を走査型電子顕微鏡(S
EM)で100,000 〜300,000 倍程度の倍率で観察したと
きに、それらグレイン間の境界である粒界によってグレ
インを一つ一つ区別することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. In the present invention, the grains constituting the protective film refer to particulates formed by assembling a large number of atoms. Then, the grain is formed, for example, on the protective film by a scanning electron microscope (S
When observed at a magnification of about 100,000 to 300,000 times by EM), grains can be distinguished one by one by a grain boundary which is a boundary between the grains.

【0009】ひとつひとつのグレインの粒径は全く同じ
ではないが、本発明においては、グレインを数十個程度
無作為に抽出して、それらの粒径の平均値を求めること
でその膜のグレインの粒径とする。
Although the grain size of each grain is not exactly the same, in the present invention, several tens of grains are randomly extracted, and the average value of the grain sizes is determined to obtain the grain size of the film. Let it be the particle size.

【0010】従来の磁気記録媒体に使用されている保護
膜を測定した結果、グレイン粒径が3nm以上と大きい
ものであった。このようにグレインの粒径が大きくなる
と、グレイン間の結合力が小さく、また粒界の隙間から
磁性層が雰囲気にさらされやすい。そのため、CSS時
にヘッドの摺動によってグレインが欠落して摩擦係数が
上昇したり、高温高湿条件下では粒界の隙間から浸入し
た水分や酸素が磁性層を腐食させるものと考えられる。
As a result of measuring a protective film used for a conventional magnetic recording medium, the grain size was as large as 3 nm or more. When the grain size of the grains is large, the bonding force between the grains is small, and the magnetic layer is easily exposed to the atmosphere from the gap between the grain boundaries. Therefore, it is considered that the grains are lost due to the sliding of the head at the time of CSS to increase the friction coefficient, and that under high temperature and high humidity conditions, moisture and oxygen entering from the gaps between grain boundaries corrode the magnetic layer.

【0011】本発明における保護膜を構成するグレイン
は、粒径が2nm以下と小さいため、グレイン間の結合
力が増加し、CSS時にヘッドの摺動によるグレインの
欠落が起こりにくくなり耐久性が向上する。また、グレ
イン同士が緻密に配置されるため粒界の隙間が無くな
り、磁性層が雰囲気から完全に遮断され、高温高湿条件
下での耐食性も良好である。グレインの粒径は、1nm
以下であることがCSS耐久性、高温高湿条件下での耐
食性をさらに向上させるために、好ましい。
Since the grains constituting the protective film in the present invention have a small particle size of 2 nm or less, the bonding force between the grains is increased, and the drop of the grains due to the sliding of the head during CSS is less likely to occur, thereby improving the durability. I do. Further, since the grains are densely arranged, there is no gap between the grain boundaries, the magnetic layer is completely shielded from the atmosphere, and the corrosion resistance under high temperature and high humidity conditions is also good. Grain size is 1nm
The following is preferable in order to further improve CSS durability and corrosion resistance under high temperature and high humidity conditions.

【0012】本発明における保護膜の形成方法について
説明する。保護膜の成膜方法は、保護膜のグレインの粒
径が2nm以下となるように成膜されれば特に限定され
ないが、スパッタリング法、化学的成膜法(以下「CV
D法」と略す)等による成膜が可能である。スパッタリ
ング法では直流、交流、高周波、パルス等、電源は特に
限定されないが、直流あるいは高周波(周波数13.5
6MHz)電源が好ましい。
A method for forming a protective film according to the present invention will be described. The method of forming the protective film is not particularly limited as long as the protective film is formed so that the grain diameter of the protective film is 2 nm or less.
D method) and the like. In the sputtering method, the power source such as direct current, alternating current, high frequency, pulse, etc. is not particularly limited, but direct current or high frequency (frequency 13.5
6 MHz) power supply is preferred.

【0013】保護膜の主材料としては炭素が好ましい。
また、炭素をターゲットとしてスパッタリングする際の
導入ガスとしては、Ar、He、H2 、N2 、O2 、炭
化水素、アルコール類、窒素含有炭化水素、フッ素含有
炭化水素等特に限定されないが、望ましい導入ガスとし
ては、不活性ガスとしてAr、反応性ガスとしてH2
2 、炭化水素、ピロール等の窒素含有炭化水素が挙げ
られる。また、望ましい電力は10〜1000Wであ
る。
[0013] Carbon is preferable as the main material of the protective film.
In addition, as a gas introduced when sputtering with carbon as a target, Ar, He, H 2 , N 2 , O 2 , hydrocarbons, alcohols, nitrogen-containing hydrocarbons, fluorine-containing hydrocarbons, etc. are not particularly limited, but are preferable. As the introduced gas, Ar as an inert gas, H 2 as a reactive gas,
Nitrogen-containing hydrocarbons such as N 2 , hydrocarbons and pyrrole are exemplified. Desirable electric power is 10 to 1000 W.

【0014】一方、CVD法でも直流、交流、高周波、
パルス等、電源は特に限定されないが、直流、交流、あ
るいは周波数13.56MHzの高周波電源が望まし
い。望ましい電力は10〜1000Wである。熱フィラ
メント、容量結合、誘導結合、電子サイクロトロン共鳴
等、形式も限定されないが、ディスク両面に同時に成膜
するために、熱フィラメント、容量結合、誘導結合をイ
オン化源とするプラズマCVD法が望ましい。また、工
業生産におけるメンテナンス及び稼働率を考慮すると熱
フィラメントプラズマCVD法が特に好ましい。
On the other hand, in the CVD method, DC, AC, high frequency,
The power source such as a pulse is not particularly limited, but a direct current, an alternating current, or a high frequency power source having a frequency of 13.56 MHz is preferable. Desirable power is 10 to 1000 W. Although the type is not limited, such as hot filament, capacitive coupling, inductive coupling, and electron cyclotron resonance, a plasma CVD method using the hot filament, capacitive coupling, and inductive coupling as an ionization source is preferable in order to simultaneously form films on both surfaces of the disk. Considering maintenance and operation rate in industrial production, hot filament plasma CVD is particularly preferable.

【0015】CVD法における原料ガスはメタン、エタ
ン、プロパン、エチレン、アセチレン、ベンゼン、トル
エン等の炭化水素、アルコール類、窒素含有炭化水素、
フッ素含有炭化水素等、炭素を含む化合物であれば用い
ることができるが、ベンゼン、トルエン、ピロールが好
ましい。また、Ar、He、H2 、N2 、O2 等の不活
性ガスを併用しても差し支えはない。
The source gases in the CVD method include hydrocarbons such as methane, ethane, propane, ethylene, acetylene, benzene, and toluene, alcohols, nitrogen-containing hydrocarbons,
Any compound containing carbon, such as a fluorine-containing hydrocarbon, can be used, but benzene, toluene, and pyrrole are preferred. An inert gas such as Ar, He, H 2 , N 2 and O 2 may be used in combination.

【0016】保護膜を成膜する磁気記録媒体にはバイア
ス電圧を印加しなくても良いが、電圧を印加することが
膜硬度の点から好ましい。ガス圧力、電源電圧、バイア
ス電圧、成膜時間等の条件は、その装置の形状、大きさ
等によって変わるので特に限定することはできないが、
いずれも公知の条件で行うことができる。
It is not necessary to apply a bias voltage to the magnetic recording medium on which the protective film is formed, but it is preferable to apply a voltage from the viewpoint of film hardness. Conditions such as gas pressure, power supply voltage, bias voltage, film formation time and the like vary depending on the shape, size, etc. of the apparatus, and thus cannot be particularly limited.
All can be performed under known conditions.

【0017】本発明の磁気記録媒体に用いる非磁性基板
としては、通常無電解メッキ法により形成したNi−P
層を設けたAl合金板が用いられるが、その他、Cu、
Ti等の金属基板、ガラス基板、セラミック基板、炭素
質基板または樹脂基板等の基板を用いることもできる。
The non-magnetic substrate used for the magnetic recording medium of the present invention is usually Ni-P formed by electroless plating.
An Al alloy plate provided with a layer is used.
A substrate such as a metal substrate such as Ti, a glass substrate, a ceramic substrate, a carbonaceous substrate, or a resin substrate can also be used.

【0018】基板上に少なくとも形成する強磁性金属薄
膜層よりなる磁性層は、無電解めっき、スパッタリン
グ、蒸着等の方法によって形成される。この磁性層とし
ては、Co−P、Co−Ni−P、Co−Ni−Cr、
Co−Cr−Ta、Co−Ni−Pt、Co−Cr−P
t、Co−Cr−Pt−Ta系合金等の強磁性金属薄膜
が形成され、その膜厚は通常30〜70nm程度とされ
る。また、必要に応じて磁性層を複数層構成とすること
もできる。
The magnetic layer comprising at least the ferromagnetic metal thin film layer formed on the substrate is formed by a method such as electroless plating, sputtering, and vapor deposition. As this magnetic layer, Co-P, Co-Ni-P, Co-Ni-Cr,
Co-Cr-Ta, Co-Ni-Pt, Co-Cr-P
A ferromagnetic metal thin film such as t, Co-Cr-Pt-Ta alloy is formed, and its thickness is usually about 30 to 70 nm. Further, if necessary, the magnetic layer may have a multilayer structure.

【0019】基板上に形成する層としては、強磁性金属
薄膜層と非磁性基板表面の間に設ける下地層や中間層な
どを必要に応じて設けることができる。下地層として
は、通常5〜200nm厚みのCrをスパッタリングに
より形成したものが良く知られているが、他の材質を用
いても良いし、複数の層から形成しても良い。下地層の
上に設ける層を中間層と呼ぶが、材料や構成については
いかなる物を用いてもよい。
As a layer formed on the substrate, an underlayer or an intermediate layer provided between the ferromagnetic metal thin film layer and the surface of the nonmagnetic substrate can be provided as necessary. As the underlayer, a Cr layer having a thickness of usually 5 to 200 nm formed by sputtering is well known. However, another material may be used, or a plurality of layers may be used. The layer provided on the underlayer is called an intermediate layer, but any material or configuration may be used.

【0020】本発明による保護層は、通常強磁性金属薄
膜層の最上層表面に設けられるが、必要に応じて他の層
を介しても良い。また、本発明による保護層を設けた
後、更に他の保護層を設けたり、厚さ1〜3nm程度の
潤滑層を設けても良い。潤滑層としては、パーフルオロ
ポリエーテル等フッ素系材料を用いることが好ましい。
The protective layer according to the present invention is usually provided on the uppermost layer surface of the ferromagnetic metal thin film layer, but may be provided with another layer if necessary. After providing the protective layer according to the present invention, another protective layer may be further provided, or a lubricating layer having a thickness of about 1 to 3 nm may be provided. It is preferable to use a fluorine-based material such as perfluoropolyether for the lubricating layer.

【0021】[0021]

【実施例】以下、実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はその要旨を超えない限
り以下の実施例により限定されるものではない。 (実施例1〜3)まず、表面の平均粗さが1.5nm、
直径3.5インチのNiPメッキ被覆Al合金ディスク
基板上にテキスチャー加工(表面処理)を施し、その
後、スパッタリング法により基板温度200℃で、Cr
下地層(厚さ40nm)、Co合金磁性層(厚さ50n
m)を形成した。
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof. (Examples 1 to 3) First, the average surface roughness was 1.5 nm,
A 3.5 inch diameter NiP plating-coated Al alloy disk substrate is textured (surface treated), and then subjected to sputtering at a substrate temperature of 200 ° C.
Underlayer (thickness: 40 nm), Co alloy magnetic layer (thickness: 50 n)
m) was formed.

【0022】次に、上記基板をプラズマCVD装置内に
設置し、装置内を真空ポンプで3×10-4Paまで排気
した。その後、トルエンを流量3.5ccm、圧力0.
1Paで装置内に導入し、装置内部のフィラメントに電
流を流してトルエンのイオン化源となる熱電子を得て、
フィラメント−アノード間で放電させ、安定したプラズ
マ状態を維持した。基板−フィラメント間電位差は40
0Vになるようにバイアスを印加しながら非晶質炭素保
護膜を成膜した。成膜した炭素質保護膜の膜厚は5、1
0、15nmであった。この保護膜上に、パーフルオロ
ポリエーテル液体潤滑剤を2nmの厚さで塗布した。
Next, the substrate was placed in a plasma CVD apparatus, and the inside of the apparatus was evacuated to 3 × 10 -4 Pa by a vacuum pump. Thereafter, toluene was supplied at a flow rate of 3.5 ccm and a pressure of 0.5 ccm.
Introduced into the device at 1 Pa, a current was passed through the filament inside the device to obtain thermoelectrons that would be the ionization source of toluene,
Discharge was caused between the filament and the anode to maintain a stable plasma state. Substrate-filament potential difference is 40
An amorphous carbon protective film was formed while applying a bias so that the voltage became 0V. The thickness of the formed carbonaceous protective film is 5, 1
0, 15 nm. On this protective film, a perfluoropolyether liquid lubricant was applied in a thickness of 2 nm.

【0023】得られた3種類のディスクについて、保護
膜を30万の倍率でSEM観察したところ、保護膜を形
成するグレインの粒径は膜厚にかかわらず1nmであっ
た。同ディスクを用いてCSS試験を行った。ヘッドに
は、押し付け荷重5gfのMRヘッドを用いた。ディス
クを4,500rpmで5秒間回転させた後、電源を切
って25秒間放置するのをCSSの1サイクルとした。
試験中の環境は32℃80%である。CSSを20,0
00サイクル繰り返した後の摩擦係数を測定した。ま
た、試験後にディスク表面の傷、汚れの有無を表面観察
した。
When the protective films of the three types of disks obtained were observed by SEM at a magnification of 300,000, the grain size of the grains forming the protective films was 1 nm regardless of the film thickness. A CSS test was performed using the same disk. An MR head having a pressing load of 5 gf was used as the head. After rotating the disk at 4,500 rpm for 5 seconds, turning off the power and allowing the disk to stand for 25 seconds was defined as one cycle of CSS.
The environment during the test is 32 ° C. and 80%. 20,0 CSS
The friction coefficient after repeating the 00 cycle was measured. After the test, the surface of the disk was inspected for scratches and dirt.

【0024】その結果、20,000サイクル後の動摩
擦係数は膜厚5nmでは1.0、10nmでは0.5、
15nmでは0.4であった。また、いずれの膜厚でも
ディスク表面に傷は見られなかった。さらに、同ディス
クの耐食試験を行った。85℃80%の環境に2週間放
置して、腐食の有無を高輝度ランプの下で観察した。そ
の結果、いずれの膜厚でも腐食は見られなかった。
As a result, the coefficient of dynamic friction after 20,000 cycles was 1.0 for a film thickness of 5 nm, 0.5 for a film thickness of 10 nm, and 0.5 for a film thickness of 5 nm.
At 15 nm, it was 0.4. In addition, no scratch was observed on the disk surface at any film thickness. Further, the disk was subjected to a corrosion resistance test. It was left in an environment of 85 ° C. and 80% for 2 weeks, and observed for corrosion under a high-intensity lamp. As a result, no corrosion was observed at any film thickness.

【0025】(比較例1〜3)比較のための試料を、実
施例と同様の方法により下地層及び磁性層を成膜した
後、水素化カーボン保護膜をスパッタリング法で成膜し
た。水素化カーボン膜は、ArとH2 の混合ガスを、H
2 の流量が全流量の14%になるようにして、0.5P
aのスパッタ圧力で、カーボンターゲットを用いてスパ
ッタリングすることにより形成した。水素化カーボン膜
の膜厚は5、10、15nmであった。この保護膜上
に、パーフルオロポリエーテル液体潤滑剤を2nmの厚
さで塗布した。
(Comparative Examples 1 to 3) For a sample for comparison, an underlayer and a magnetic layer were formed in the same manner as in the example, and a hydrogenated carbon protective film was formed by a sputtering method. The hydrogenated carbon film is formed by mixing a mixed gas of Ar and H 2 with H 2
0.5P so that the flow rate of 2 becomes 14% of the total flow rate.
It was formed by sputtering using a carbon target at a sputtering pressure of a. The thickness of the hydrogenated carbon film was 5, 10, and 15 nm. On this protective film, a perfluoropolyether liquid lubricant was applied in a thickness of 2 nm.

【0026】得られた各ディスクについて、実施例1〜
3と同様に保護膜をSEMで観察したところ、保護膜を
形成するグレインの粒径は、膜厚5nmでは3nm、膜
厚10nmでは4nm、膜厚15nmでは5nmであっ
た。同ディスクを用いて、実施例1と同様の方法により
CSS試験を行った。その結果、20,000サイクル
後の動摩擦係数は膜厚15nmでは0.2であったが、
膜厚5nmと10nmでは途中でヘッドクラッシュを起
こした。さらに実施例1と同様の方法により、各ディス
クの耐食試験を行った。その結果、膜厚15nmでは腐
食は見られなかったが、膜厚5nmと10nmではほぼ
全面に腐食が認められた。
For each of the obtained disks,
When the protective film was observed by SEM in the same manner as in No. 3, the grain size of the grains forming the protective film was 3 nm for a film thickness of 5 nm, 4 nm for a film thickness of 10 nm, and 5 nm for a film thickness of 15 nm. Using this disk, a CSS test was performed in the same manner as in Example 1. As a result, the dynamic friction coefficient after 20,000 cycles was 0.2 at a film thickness of 15 nm,
At a film thickness of 5 nm or 10 nm, a head crash occurred halfway. Further, each disk was subjected to a corrosion resistance test in the same manner as in Example 1. As a result, no corrosion was observed at the film thickness of 15 nm, but corrosion was observed over almost the entire surface at the film thicknesses of 5 nm and 10 nm.

【0027】[0027]

【発明の効果】以上説明したように、本発明の保護膜を
用いることにより、従来の保護膜では膜厚10nm以下
になるとCSS耐久性、高温高湿条件下での耐食性が不
十分であったのに対し、膜厚が10nm以下と薄くなっ
ても摩擦係数の大幅な増加とそれに伴うヘッドクラッシ
ュを防ぎ、耐食性も改善され、高温高湿下であっても高
い信頼性を有する磁気記録媒体を得ることができる。な
お、実施例においてはいわいるハードディスクを例に用
いたが、本発明の保護膜はフレキシブルディスクや磁気
テープ等にも適用可能である。
As described above, by using the protective film of the present invention, when the film thickness of the conventional protective film becomes 10 nm or less, the CSS durability and the corrosion resistance under high temperature and high humidity conditions were insufficient. On the other hand, even when the film thickness is reduced to 10 nm or less, a large increase in the coefficient of friction and the accompanying head crash are prevented, the corrosion resistance is improved, and a magnetic recording medium having high reliability even at high temperature and high humidity is required. Obtainable. In the embodiments, a hard disk is used as an example, but the protective film of the present invention can be applied to a flexible disk, a magnetic tape, and the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 スパッタリング又はCVDにより形成さ
れた厚さ15nm以下の保護膜であって、該保護膜を形
成するグレインの粒径が2nm以下であることを特徴と
する保護膜。
1. A protective film formed by sputtering or CVD and having a thickness of 15 nm or less, wherein the grains forming the protective film have a grain size of 2 nm or less.
【請求項2】 非磁性基板上に直接又は他の層を介して
強磁性金属薄膜が形成されると共に、該強磁性金属薄膜
上に直接又は他の層を介して保護膜が形成されてなる磁
気記録媒体において、該保護膜を構成するグレインの粒
径が2nm以下であることを特徴とする磁気記録媒体。
2. A ferromagnetic metal thin film is formed directly or through another layer on a nonmagnetic substrate, and a protective film is formed directly or through another layer on the ferromagnetic metal thin film. A magnetic recording medium according to claim 1, wherein the particle diameter of the grains constituting said protective film is 2 nm or less.
【請求項3】 前記保護膜の主成分が炭素である請求項
2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 2, wherein a main component of the protective film is carbon.
JP3265398A 1997-02-17 1998-02-16 Protective film and magnetic recording medium using the protective film Pending JPH10289442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3265398A JPH10289442A (en) 1997-02-17 1998-02-16 Protective film and magnetic recording medium using the protective film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3187997 1997-02-17
JP9-31879 1997-02-17
JP3265398A JPH10289442A (en) 1997-02-17 1998-02-16 Protective film and magnetic recording medium using the protective film

Publications (1)

Publication Number Publication Date
JPH10289442A true JPH10289442A (en) 1998-10-27

Family

ID=26370390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3265398A Pending JPH10289442A (en) 1997-02-17 1998-02-16 Protective film and magnetic recording medium using the protective film

Country Status (1)

Country Link
JP (1) JPH10289442A (en)

Similar Documents

Publication Publication Date Title
US20040137207A1 (en) Magnetic disk comprising a first carbon overcoat having a high SP3 content and a second carbon overcoat having a low SP3 content
US5068152A (en) Magnetic recording medium
KR20010021674A (en) Magnetic recording medium comprising multilayered carbon-containing protective overcoats
US7175926B2 (en) Dual-layer carbon-based protective overcoats for recording media by filtered cathodic ARC deposition
US8767350B2 (en) Magnetic recording medium having recording regions and separating regions and methods of manufacturing the same
US5981018A (en) Magnetic recording media used in a high-density hard disk drive
US6517956B1 (en) Magneto-resistance recording media comprising aluminum nitride corrosion barrier layer and a c-overcoat
KR20050012227A (en) Vertical magnetic recording medium, magnetic recorder having same, vertical magnetic recording medium manufacturing method, and vertical magnetic recording medium manufacturing apparatus
JP2594534B2 (en) Magnetic storage
JP2001084554A (en) Magnetic recording medium
JPH10289442A (en) Protective film and magnetic recording medium using the protective film
JP2003217110A (en) Magnetic disk and magnetic disk device
JP2004256837A (en) Carbon protective film, magnetic recording medium and magnetic head having the same, and magnetic storage device
CA2081095A1 (en) Magnetic recording medium and method for examining magnetic recording medium
JP2000173040A (en) Recording medium
JP3705474B2 (en) Magnetic recording medium
JP3657344B2 (en) Method for manufacturing magnetic recording medium
JP2005092970A (en) Magnetic recording medium and magnetic storage device
JP4523705B2 (en) Magnetic recording medium, magnetic recording medium manufacturing method, and information reproducing apparatus
Lal et al. Asymmetric DC-magnetron sputtered carbon-nitrogen thin-film overcoat for rigid-disk applications
JP2006318535A (en) Magnetic recording medium
JP4944471B2 (en) Magnetic disk and manufacturing method thereof
JP2004054991A (en) Magnetic recording medium, its manufacturing method, and magnetic storage device
JPH05298689A (en) Formation of magnetic disk protective film
JP4113787B2 (en) Magnetic disk