JPH1028875A - Carbonaceous hollow body catalyst, and its manufacture, and use - Google Patents

Carbonaceous hollow body catalyst, and its manufacture, and use

Info

Publication number
JPH1028875A
JPH1028875A JP8255855A JP25585596A JPH1028875A JP H1028875 A JPH1028875 A JP H1028875A JP 8255855 A JP8255855 A JP 8255855A JP 25585596 A JP25585596 A JP 25585596A JP H1028875 A JPH1028875 A JP H1028875A
Authority
JP
Japan
Prior art keywords
carbonaceous
hollow body
catalyst
photocatalyst
carbonaceous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8255855A
Other languages
Japanese (ja)
Inventor
Yasuhiro Masaki
康浩 正木
Tadashi Yao
正 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8255855A priority Critical patent/JPH1028875A/en
Publication of JPH1028875A publication Critical patent/JPH1028875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst having excellent adsorption and powerful oxidation capability, being capable of effectively removing and decomposing particularly organic compounds in waste water, and the manufacturing method, and use method thereof. SOLUTION: In the carbonaceous hollow body catalyst supporting a photocatalyst (e.g. metal oxide semiconductor including titanium oxide, zinc oxide, and iron oxide) on the surface of microsphere carbonaceous hollow body, the catalyst preferably can be used for adsorption-removing and decomposing organic compounds in water (particularly in waste water) because it has a large surface area and tend to buoy up on the water surface. The catalyst can be manufactured by rendering it to support the photocatalyst on the surface of the microsphere hollow body obtained by rapidly heating a carbonaceous material (powder coal or pitch) in the state of less oxygen content where incomplete combustion occurs, or by that the carbonaceous material is rendered to include tetra-valent titanium compounds including titanium isopropoxide or titanium tetrachloride as an aqueous solution and the like, and then it is rapidly heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着力が大きく、
強い酸化力を有し、特に排水中の有機化合物を効率よく
除去し、分解できる炭素質中空体触媒、ならびに、その
触媒の製造方法および使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a carbonaceous hollow body catalyst having a strong oxidizing power and particularly capable of efficiently removing and decomposing organic compounds in wastewater, and a method for producing and using the catalyst.

【0002】[0002]

【従来の技術】半導体が光触媒として酸化作用を示すこ
とはよく知られている。この半導体を利用して光触媒反
応を行わせるには、一般に、微粉状の半導体粉末を被酸
化物質を含む溶液中に懸濁させ、これに光を照射する方
法が採られる。
2. Description of the Related Art It is well known that semiconductors have an oxidizing action as a photocatalyst. In order to carry out a photocatalytic reaction using this semiconductor, a method is generally employed in which fine semiconductor powder is suspended in a solution containing a substance to be oxidized, and this is irradiated with light.

【0003】排水に含まれる低濃度の有機化合物を除去
するためには、活性炭を用いて吸着・除去する方法が古
くから行われているが、排水中の有機化合物の酸化分解
に上記のような半導体が有する光触媒作用を利用する方
法も公知である。例えば、光触媒作用を有する酸化チタ
ン(TiO2 )を担持した活性炭を用いることにより排
水中に含まれる有機化合物(除草剤)を効率的に分解す
る方法が提案されている(Chemistry Let
ters(The Chemical Society
of Japan),P.1995〜1998(19
93))。
[0003] In order to remove low-concentration organic compounds contained in wastewater, a method of adsorbing and removing the same using activated carbon has been used for a long time. A method utilizing photocatalysis of a semiconductor is also known. For example, there has been proposed a method for efficiently decomposing organic compounds (herbicides) contained in wastewater by using activated carbon carrying titanium oxide (TiO 2 ) having a photocatalytic action (Chemistry Let).
ters (The Chemical Society)
of Japan), P.S. 1995-1998 (19
93)).

【0004】このように排水中の有機化合物の分解に半
導体光触媒が用いられるのは、光触媒が有する酸化力の
強さもさることながら、排水中では有機化合物の濃度が
小さく、しかもその処理量が莫大であるため、エネルギ
ーとして太陽光を利用することがコスト的にみて望まし
いからである。
As described above, semiconductor photocatalysts are used to decompose organic compounds in wastewater because the concentration of organic compounds in the wastewater is low and the amount of treatment is enormous, in addition to the oxidizing power of the photocatalyst. Therefore, it is desirable to use sunlight as energy from the viewpoint of cost.

【0005】排水中で光触媒反応を行わせるに際して
は、従来、半導体粉末を排水中に懸濁させてこれに太陽
光を照射する方法が採られているため、比重が大きく、
排水中で沈澱しやすい触媒は好ましくない。また、太陽
光の届く深さには限りがあるので、この沈澱しやすい半
導体粉末に太陽光を照射して触媒作用を発揮させるには
受光面積を著しく大きなものとする必要がある。
When a photocatalytic reaction is carried out in waste water, a method of suspending semiconductor powder in the waste water and irradiating the semiconductor powder with sunlight has been adopted.
Catalysts that tend to precipitate in the wastewater are not preferred. Further, since the depth to which sunlight can reach is limited, it is necessary to make the light-receiving area extremely large in order to irradiate the semiconductor powder which easily precipitates with sunlight to exert a catalytic action.

【0006】上記の提案された方法においては、活性炭
は真比重が1.6〜2.1であって排水中で沈澱しやす
いため、撹拌、回収などの処理が容易ではなく、さら
に、太陽光を利用するに際し、上述したように受光面積
を著しく大きなものとしなければならないという問題が
ある。
In the above-mentioned proposed method, the activated carbon has a true specific gravity of 1.6 to 2.1 and easily precipitates in wastewater, so that it is not easy to carry out treatments such as stirring and recovery. However, there is a problem that the light receiving area must be significantly increased as described above.

【0007】また、排水を処理の対象とした例ではない
が、特開平6−170220号公報には、活性炭の表面
に光触媒(TiO2 、WO3 、Fe23 等の金属酸化
物)を担持させた、安定した脱臭作用を長期間にわたっ
て維持できる脱臭剤が開示されている。この光触媒は、
気相中における有機化合物(臭気成分)の分解に対して
優れた効果を発揮する。しかし、液相中では上記の提案
された方法におけると同様に光触媒体が沈降するため、
排水中に含まれる有機化合物の分解には適用できない。
Further, although not an example in which wastewater is treated, JP-A-6-170220 discloses that a photocatalyst (metal oxide such as TiO 2 , WO 3 , Fe 2 O 3 ) is applied to the surface of activated carbon. A supported deodorant capable of maintaining a stable deodorizing effect for a long period of time is disclosed. This photocatalyst is
It exerts an excellent effect on the decomposition of organic compounds (odor components) in the gas phase. However, in the liquid phase the photocatalysts settle as in the proposed method above,
It cannot be applied to the decomposition of organic compounds contained in wastewater.

【0008】一方、直径100μm程度のガラス中空体
の表面に光触媒(TiO2 )を担持させた浮遊性の酸化
チタン光触媒が開発された(「季刊化学総説」No.2
3(1994)”光が関わる触媒化学”p.129〜1
32)。この触媒は水に浮くので、太陽光を効率よく利
用することができ、浮遊性の有機化合物(例えば、海上
に流出した原油等)の分解に好適であるとされている。
しかしながら、光触媒反応で重要な比表面積を大きくす
ることができないので、被酸化物質を効率的に分解する
ことができず、また、吸着能もほとんどないので、光照
射のない条件下では有機化合物の吸着・除去はできな
い。
On the other hand, a floating titanium oxide photocatalyst in which a photocatalyst (TiO 2 ) is supported on the surface of a hollow glass body having a diameter of about 100 μm has been developed (“Quarterly Chemical Review” No. 2).
3 (1994) "Catalytical Chemistry Involving Light", p. 129-1
32). Since the catalyst floats on water, it can utilize sunlight efficiently and is said to be suitable for decomposing floating organic compounds (for example, crude oil spilled to the sea).
However, since it is not possible to increase the specific surface area, which is important in the photocatalytic reaction, it is not possible to efficiently decompose the oxidized substance, and it has almost no adsorption capacity. It cannot be adsorbed or removed.

【0009】[0009]

【発明が解決しようとする課題】本発明は、有機化合物
を酸化分解する作用を有する半導体光触媒、特にこの光
触媒を用いて排水中の有機化合物を分解するに際しての
上記の問題を解決し、太陽光の利用が容易で、反応効率
が高く、しかも光照射のない条件下でも有機化合物の吸
着・除去が可能な光触媒体、ならびにその製造方法およ
び使用方法を提供することを目的としてなされたもので
ある。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems in decomposing an organic compound in wastewater by using a semiconductor photocatalyst having an action of oxidatively decomposing an organic compound, and in particular, by using this photocatalyst. It is an object of the present invention to provide a photocatalyst which can be easily used, has high reaction efficiency, and can adsorb and remove organic compounds even under conditions without light irradiation, and a method for producing and using the same. .

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために検討を重ねた結果、微小球状の炭素
質の中空体を光触媒の担体として使用することにより、
太陽光を利用するに際して受光面積を著しく大きくする
必要がなく、触媒の比表面積を大きくして分解反応を効
率的に行わせることが可能であることを見いだした。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have found that by using a fine spherical carbonaceous hollow body as a carrier for a photocatalyst,
It has been found that it is not necessary to remarkably increase the light receiving area when using sunlight, and it is possible to increase the specific surface area of the catalyst so that the decomposition reaction can be performed efficiently.

【0011】また、前記の微小球状の炭素質の中空体の
表面に光触媒を担持させるには、微粉砕した石炭やピッ
チを不活性な雰囲気下で急速に加熱することにより微小
球状の炭素質中空体とし、これに光触媒を担持させる
か、あるいは微粉砕した石炭やピッチにチタンイソプロ
ポキシドや四塩化チタン等の4価のチタン化合物(本発
明では、これを「光触媒前駆物質」という)をアルコー
ル溶液や水溶液として含浸させ、不活性な雰囲気下で急
速に加熱すればよいことを確認した。
Further, in order to support the photocatalyst on the surface of the above-mentioned microspherical carbonaceous hollow body, the finely pulverized coal or pitch is rapidly heated in an inert atmosphere to thereby produce a fine spherical carbonaceous hollow body. A photocatalyst is supported on this, or a tetravalent titanium compound such as titanium isopropoxide or titanium tetrachloride (this is referred to as a "photocatalyst precursor" in the present invention) is added to finely pulverized coal or pitch. It was confirmed that impregnation as a solution or an aqueous solution was sufficient, and heating was performed rapidly under an inert atmosphere.

【0012】上記の微小球状の炭素質中空体の表面に光
触媒を担持させた炭素質中空体光触媒を用いれば、排水
中に含まれる有機化合物、例えば、従来処理が困難であ
ったBTX(ベンゼン、トルエン、キシレン)、潤滑油
などの混入油、あるいは農薬等を容易に分解することが
できる。
The use of a carbonaceous hollow body photocatalyst in which a photocatalyst is carried on the surface of the above-mentioned microspherical carbonaceous hollow body allows the use of organic compounds contained in wastewater, for example, BTX (benzene, Toluene, xylene), mixed oil such as lubricating oil, or pesticides can be easily decomposed.

【0013】本発明は上記の知見に基づいてなされたも
ので、その要旨は、下記(1)の炭素質中空体触媒、
(2)および(3)のその触媒の製造方法、ならびに
(4)のその触媒の使用方法にある。
The present invention has been made on the basis of the above findings, and the gist of the invention is as follows:
(2) and (3) the method for producing the catalyst and (4) the method for using the catalyst.

【0014】(1)微小球状の炭素質中空体の表面に光
触媒が担持されていることを特徴とする炭素質中空体触
媒。
(1) A carbonaceous hollow body catalyst, wherein a photocatalyst is supported on the surface of a microspherical carbonaceous hollow body.

【0015】(2)粉状の炭素質材料を不活性雰囲気中
で急速に加熱し、得られた微小球状の炭素質中空体に光
触媒を担持させることを特徴とする上記(1)に記載の
炭素質中空体触媒の製造方法。
(2) The powdery carbonaceous material is rapidly heated in an inert atmosphere, and a photocatalyst is supported on the obtained microspherical carbonaceous hollow body. A method for producing a carbonaceous hollow catalyst.

【0016】(3)粉状の炭素質材料に光触媒前駆物質
を担持させた後、不活性雰囲気中で急速に加熱し、次い
で焼成することを特徴とする上記(1)に記載の炭素質
中空体触媒の製造方法。
(3) The carbonaceous hollow material according to the above (1), wherein after the photocatalyst precursor is supported on the powdery carbonaceous material, the material is rapidly heated in an inert atmosphere and then fired. A method for producing a body catalyst.

【0017】(4)上記(1)に記載の炭素質中空体触
媒を用いて水中に含まれる有機化合物を分解することを
特徴とする炭素質中空体触媒の使用方法。
(4) A method for using a hollow carbonaceous catalyst, which comprises decomposing an organic compound contained in water using the hollow carbonaceous catalyst described in (1) above.

【0018】[0018]

【発明の実施の形態】以下に、本発明(上記(1)〜
(4)の発明)について詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention (the above (1) to (1))
The invention (4) will be described in detail.

【0019】上記(1)の発明の炭素質中空体触媒(以
下、これを特に「本発明の炭素質中空体触媒」という)
は、微小球状の炭素質中空体の表面に光触媒が担持され
た触媒である。
The carbonaceous hollow catalyst of the invention of the above (1) (hereinafter referred to as “the carbonaceous hollow catalyst of the present invention” in particular)
Is a catalyst in which a photocatalyst is supported on the surface of a fine spherical carbonaceous hollow body.

【0020】前記の微小球状の炭素質中空体とは、後に
詳述するが、微粉砕した石炭やピッチを原料として加熱
することにより得られる嵩比重が0.02〜0.1g/
cm3 、粒子径が100〜2500μmの多孔質炭素粒
子である。光触媒を担持した後においても、見掛け比重
が水より小さく、浮遊性(水面に浮かぶ性質)を有して
おり、比表面積が極めて大きい。
The microspherical carbonaceous hollow body described above has a bulk specific gravity of 0.02 to 0.1 g / h obtained by heating finely pulverized coal or pitch as a raw material.
It is a porous carbon particle having a particle size of 100 to 2500 μm in cm 3 . Even after carrying the photocatalyst, the apparent specific gravity is smaller than that of water, the material has a floating property (the property of floating on the water surface), and the specific surface area is extremely large.

【0021】また、光触媒とは、そのバンドギャップ以
上のエネルギーを有する波長の光を照射すると光触媒機
能を発現する物質であり、例えば、酸化チタン、酸化亜
鉛、チタン酸ストロンチウム、酸化タングステン、酸化
イットリウム、酸化鉄等の公知の金属酸化物半導体が挙
げられる。これらの半導体物質は、単一であってもよい
し、二種類以上が組み合わされた混合物あるいは複合酸
化物であってもよい。この光触媒としては、特に、高い
光触媒能を有し、化学的に安定でかつ無害な酸化チタン
が好ましい。
A photocatalyst is a substance that exhibits a photocatalytic function when irradiated with light having a wavelength having energy equal to or greater than the band gap. Examples thereof include titanium oxide, zinc oxide, strontium titanate, tungsten oxide, yttrium oxide, and the like. Known metal oxide semiconductors such as iron oxide can be used. These semiconductor substances may be a single substance, or a mixture or a composite oxide in which two or more kinds are combined. As this photocatalyst, particularly, titanium oxide which has high photocatalytic activity, is chemically stable and harmless is preferable.

【0022】上記本発明の微小球状の炭素質中空体の光
触媒担持量は、この中空体が光触媒を担持した状態で浮
遊性を維持できる量であれば特に限定されない。しか
し、炭素質中空体の大きな比表面積が十分保持され、同
時に、光触媒の分散性もよく、より高い光触媒活性を得
ることができるように、炭素質中空体に対して100重
量%以下であるのが好ましい。より好ましくは、50重
量%以下である。
The amount of the photocatalyst carried by the microspherical carbonaceous hollow body of the present invention is not particularly limited as long as the hollow body can maintain the buoyancy while the photocatalyst is supported. However, in order to maintain the large specific surface area of the carbonaceous hollow body sufficiently and at the same time, the dispersibility of the photocatalyst is good and a higher photocatalytic activity can be obtained, the content is 100% by weight or less based on the carbonaceous hollow body. Is preferred. More preferably, it is 50% by weight or less.

【0023】本発明の発明の炭素質中空体触媒は有機化
合物を光酸化する作用があり、しかも担体として微小球
状の炭素質中空体を用いているので、下記の特徴を有し
ている。
The hollow carbonaceous material catalyst of the present invention has the following characteristics because it has a function of photooxidizing an organic compound and uses a microspherical carbonaceous hollow material as a carrier.

【0024】担体としてガラス質中空体を用いた場合
と同様に水面上に集まりやすく(浮遊性を有し)、その
ため太陽光が届き易い。
As in the case where a glassy hollow body is used as a carrier, it easily gathers on the water surface (has a floating property), so that sunlight easily reaches.

【0025】微小球状の炭素質中空体は活性炭と同様
に比表面積が大きい。
The microspherical carbonaceous hollow body has a large specific surface area like activated carbon.

【0026】炭素質中空体触媒は活性炭と同様に被酸
化物質を吸着することができる。
The carbonaceous hollow catalyst can adsorb a substance to be oxidized similarly to activated carbon.

【0027】前記(4)の発明は、この炭素質中空体触
媒を水中に含まれる有機化合物の分解に使用する方法で
ある。すなわち、本発明の炭素質中空体触媒が有する上
記の特徴を最大限に利用するもので、この炭素質中空体
触媒を用いて水中に含まれる有機化合物、特に、排水中
のBTX、混入油等を分解する方法である。
The invention (4) is a method of using the carbonaceous hollow body catalyst for decomposing an organic compound contained in water. That is, the present invention makes the most of the above-mentioned features of the carbonaceous hollow catalyst of the present invention, and uses the carbonaceous hollow catalyst to make use of the organic compounds contained in water, in particular, BTX, waste oil and the like contained in wastewater. Is a method of decomposing

【0028】この炭素質中空体触媒を用いるに際し、特
別の装置等は必要ではない。例えば、この炭素質中空体
触媒を上記の有機化合物を含有する排水中に加えて分散
させ、必要に応じて撹拌すると、有機化合物は触媒表面
に吸着、濃縮される。さらに、太陽光に曝すと、水面上
に集まっている炭素質中空体触媒の光触媒粒子によっ
て、前記の吸着された有機化合物は効率よく酸化分解さ
れる。
No special equipment is required for using the carbonaceous hollow catalyst. For example, when this carbonaceous hollow body catalyst is added to and dispersed in wastewater containing the above-mentioned organic compound and stirred as necessary, the organic compound is adsorbed and concentrated on the catalyst surface. Further, when exposed to sunlight, the adsorbed organic compound is efficiently oxidatively decomposed by the photocatalyst particles of the carbonaceous hollow catalyst collected on the water surface.

【0029】この炭素質中空体触媒は、水面上に集まり
やすいという特性を有しているので、大きな受光面積を
必要とせずに太陽光を利用することができる。また、比
表面積が大きいので反応効率が高い。さらに、光照射の
ない条件下でも有機化合物を吸着除去し、光が照射され
たときにその吸着した有機化合物を酸化分解して吸着能
を回復させることができる。したがって、常に一定の高
い吸着能を維持することができ、繰り返しの使用にも好
適である。そのため、特に排水中の有機化合物の酸化分
解に適しており、効率的な分解処理が可能である。
Since the carbonaceous hollow catalyst has a characteristic that it easily gathers on the water surface, sunlight can be used without requiring a large light receiving area. In addition, the reaction efficiency is high because the specific surface area is large. Further, the organic compound can be adsorbed and removed even under the condition without light irradiation, and when the light is irradiated, the adsorbed organic compound can be oxidized and decomposed to recover the adsorbing ability. Therefore, it is possible to always maintain a constant high adsorption capacity, and it is suitable for repeated use. Therefore, it is particularly suitable for oxidative decomposition of organic compounds in wastewater, and efficient decomposition treatment is possible.

【0030】なお、本発明の炭素質中空体触媒は、排水
中の有機化合物に限らず、上水、工業用水、あるいは海
水など、一般に水中に含まれる有機化合物の除去・分解
に有効である。したがって、工場排水や、一般家庭から
排出されるいわゆる生活排水の浄化処理、農薬、有機ハ
ロゲン化合物などの有害物質を含有した河川水、地下水
等の処理、あるいは海上流出油や、赤潮などの処理等、
広範な分野で使用することができる。
The hollow carbonaceous catalyst of the present invention is effective not only for removing organic compounds in wastewater but also for removing and decomposing organic compounds generally contained in water such as clean water, industrial water or seawater. Therefore, purification treatment of industrial wastewater and so-called domestic wastewater discharged from ordinary households, treatment of river water and groundwater containing harmful substances such as pesticides and organic halogen compounds, treatment of oil spilled at sea, red tide, etc. ,
Can be used in a wide range of fields.

【0031】前記の(2)の発明は、上記本発明の炭素
質中空体触媒の製造方法で、粉状の炭素質材料を不活性
な雰囲気で急速に加熱して得られる微小球状の中空体の
表面に光触媒を担持させる方法である。
The invention of the above (2) is a method for producing a carbonaceous hollow body catalyst according to the present invention, wherein the powdery carbonaceous material is rapidly heated in an inert atmosphere to obtain a microspherical hollow body. Is a method in which a photocatalyst is supported on the surface of the substrate.

【0032】原料として用いる炭素質材料は粉状の石炭
やピッチ等で、好ましくは粒径が5mm以下になるよう
に微粉砕したものである。
The carbonaceous material used as a raw material is powdered coal, pitch, or the like, which is preferably finely pulverized so as to have a particle size of 5 mm or less.

【0033】これらの原料を、不活性な雰囲気下で急速
に加熱する。不活性な雰囲気とは、原料が完全燃焼する
には不十分な量の酸素が含まれ、燃焼が不完全な状態で
進行する雰囲気である。完全燃焼するに必要な量あるい
はそれよりも過剰量の酸素が存在すると、石炭やピッチ
が完全燃焼し、目的とする微小球状の炭素質中空体を得
ることができない。
These raw materials are rapidly heated under an inert atmosphere. The inert atmosphere is an atmosphere in which the raw material contains an insufficient amount of oxygen for complete combustion and the combustion proceeds in an incomplete state. If the amount of oxygen necessary for complete combustion or an excess amount of oxygen is present, the coal and the pitch are completely burned, and the desired microscopic carbonaceous hollow body cannot be obtained.

【0034】加熱は、原料に含まれる揮発成分をガス化
分離し、残部を炭化するために行うもので、加熱温度
は、600〜900℃とするのが好ましい。加熱温度が
600℃よりも低いと原料中に含まれている揮発成分が
十分にガス化せず、得られる炭素質の中空体の比重が大
きくなりやすい。また、900℃を超えると加熱に要す
るコストが増大し経済的でない。
The heating is carried out to gasify and separate volatile components contained in the raw material and to carbonize the remainder, and the heating temperature is preferably set to 600 to 900 ° C. When the heating temperature is lower than 600 ° C., the volatile components contained in the raw material are not sufficiently gasified, and the specific gravity of the obtained carbonaceous hollow body tends to increase. On the other hand, if the temperature exceeds 900 ° C., the cost required for heating increases, which is not economical.

【0035】大きい比表面積を有する炭素質中空体を得
るためには、ガス化により生成した気泡を粒子内部で生
成したものまで含め急速に膨張させることが必要であ
り、急速に加熱する。穏やかな加熱では、気泡自体の成
長が緩慢で十分膨張しないうちに炭化が完結してしまう
ので、空孔を多数有する比表面積の大きい炭素質中空体
は得られない。なお、急速加熱は、室温付近から前記の
加熱温度(600〜900℃)までの全温度範囲にわた
って、200〜600℃/秒の加熱速度で行うのが好ま
しい。
In order to obtain a carbonaceous hollow body having a large specific surface area, it is necessary to rapidly expand bubbles including gas generated by gasification, including those generated inside the particles, and the material is rapidly heated. With gentle heating, the carbonization is completed before the growth of the bubbles themselves is slow and they do not expand sufficiently, so that a carbonaceous hollow body having a large specific surface area having many pores cannot be obtained. The rapid heating is preferably performed at a heating rate of 200 to 600 ° C./sec over the entire temperature range from around room temperature to the above-mentioned heating temperature (600 to 900 ° C.).

【0036】上記の急速な加熱を行うためには、流動層
型あるいは気流層型の反応器を用いるのが好適である。
これらの反応器を使用し、例えば600〜900℃に加
熱された反応域を有する反応器の下流部から、原料と、
この原料が完全燃焼するには不十分な量の酸素が含まれ
るガスを供給して、すなわち前記の不活性な雰囲気下で
原料を不完全燃焼させる。
In order to perform the above-mentioned rapid heating, it is preferable to use a fluidized bed type or gas bed type reactor.
Using these reactors, starting from the downstream of a reactor having a reaction zone heated to, for example, 600 to 900 ° C.,
By supplying a gas containing an insufficient amount of oxygen to completely burn the raw material, the raw material is incompletely burned in the above-mentioned inert atmosphere.

【0037】なお、このように、燃焼が不完全な状態で
進行する条件のもとで、原料である石炭やピッチの一部
を熱源として用いることもできる。その場合には、目的
とする炭素質中空体の収率は低下するが、原料の一部の
燃焼で生じる水蒸気によって、生成する微小球状の炭素
質中空体が賦活されるので好適である。
As described above, under the condition that the combustion proceeds in an incomplete state, a part of the raw material such as coal and pitch can be used as a heat source. In this case, the yield of the target carbonaceous hollow body is reduced, but it is preferable because the steam generated by combustion of a part of the raw material activates the generated microspherical carbonaceous hollow body.

【0038】このような加熱処理により生成する微小球
状の炭素質中空体は反応器の上流部から燃焼ガスを含む
ガスとともに排出されるので、濾過、比重分離等により
ガスと分離する。
Since the fine spherical carbonaceous hollow bodies generated by such a heat treatment are discharged together with the gas containing the combustion gas from the upstream part of the reactor, they are separated from the gas by filtration, specific gravity separation or the like.

【0039】得られる微小球状の炭素質中空体は、その
嵩比重が0.02〜0.1g/cm3 、粒子径が100
〜2500μmである。その性状は、用いる原料の性状
(特に、揮発成分量、灰分量)に大きく依存するが、適
正な性状の微小球状の炭素質中空体が得られるように、
反応器における反応域の長さや、原料、不活性ガスの供
給速度等を適宜調整する。
The resulting microspherical carbonaceous hollow body has a bulk specific gravity of 0.02 to 0.1 g / cm 3 and a particle diameter of 100
22500 μm. The properties greatly depend on the properties of the raw materials used (especially, the amount of volatile components and the amount of ash), but in order to obtain a fine spherical carbonaceous hollow body of appropriate properties,
The length of the reaction zone in the reactor, the feed rate of the raw material and the inert gas, and the like are appropriately adjusted.

【0040】このようにして得られた微小球状の炭素質
中空体に、前記の光触媒を担持させる。
The above-mentioned photocatalyst is carried on the fine spherical carbonaceous hollow body thus obtained.

【0041】これらの光触媒の担持方法について特に限
定はなく、含浸法、混練法等、通常の触媒調製法によっ
て担持させることができる。
The method for supporting the photocatalyst is not particularly limited, and the photocatalyst can be supported by a usual catalyst preparation method such as an impregnation method or a kneading method.

【0042】例えば、酸化チタンを担持させる場合に
は、チタンイソプロキシド、四塩化チタン、硫酸チタン
等の4価のチタン化合物(すなわち、光触媒前駆物質)
のアルコール溶液あるいは水溶液に炭素質中空体を十分
浸してチタン化合物を含浸させた後、濾過、遠心分離等
によってこの炭素質中空体を分離する。その後、風乾、
あるいは必要に応じて水蒸気処理を行うことによりチタ
ン化合物を加水分解し、続いて乾燥・焼成することによ
り目的の炭素質中空体触媒を得る。
For example, when supporting titanium oxide, a tetravalent titanium compound such as titanium isoproxide, titanium tetrachloride, titanium sulfate, etc. (that is, a photocatalyst precursor)
After the carbonaceous hollow body is sufficiently immersed in the alcohol solution or aqueous solution of the above to impregnate the titanium compound, the carbonaceous hollow body is separated by filtration, centrifugation or the like. Then air-dry,
Alternatively, the titanium compound is hydrolyzed by performing steam treatment as needed, and then dried and calcined to obtain the desired carbonaceous hollow catalyst.

【0043】焼成は、光触媒を炭素質中空体に強固に担
持させ、耐久性をもたせるために行うもので、窒素、ア
ルゴン等の非酸化性雰囲気下で行うことが望ましいが、
炭素質が燃焼しない温度以下で焼成する場合は空気中で
行っても差し支えない。また、焼成温度について特に限
定はなく、担持させた光触媒の粒子間に結合が生じて固
まる、いわゆる焼結現象が生じる温度域であればよい。
ただ、二酸化チタンの場合には、高い光触媒能を有する
アナターゼ結晶が多く含まれるような焼成条件を選ぶ必
要がある。
The calcination is carried out in order to firmly support the photocatalyst in the carbonaceous hollow body and to provide durability, and it is desirable to carry out the calcination in a non-oxidizing atmosphere such as nitrogen or argon.
When firing at a temperature lower than the temperature at which the carbonaceous material does not burn, the firing may be performed in air. The sintering temperature is not particularly limited, and may be any temperature as long as a so-called sintering phenomenon occurs in which bonding occurs between the particles of the supported photocatalyst and solidifies.
However, in the case of titanium dioxide, it is necessary to select calcination conditions that include many anatase crystals having high photocatalytic activity.

【0044】上述した方法によれば、前記本発明の炭素
質中空体触媒を特別の手段を必要とせず、容易に製造す
ることができる。
According to the method described above, the carbonaceous hollow catalyst of the present invention can be easily produced without requiring any special means.

【0045】前記の(3)の発明は、同じく本発明の炭
素質中空体触媒の製造方法で、炭素質材料に光触媒前駆
物質を担持させた後、急速に加熱し、さらに不活性雰囲
気下で焼成する方法である。
The invention of the above (3) is also a method for producing a hollow carbonaceous catalyst according to the present invention, wherein a photocatalyst precursor is supported on a carbonaceous material, then rapidly heated, and further heated under an inert atmosphere. This is a firing method.

【0046】炭素質材料としては、前記(2)の発明に
おけると同様に、粉状の石炭やピッチ等を用いる。粒径
が5mm以下になるように微粉砕したものが好ましい。
As the carbonaceous material, powdered coal, pitch or the like is used as in the invention of the above (2). Finely pulverized so that the particle size becomes 5 mm or less is preferable.

【0047】光触媒前駆物質とは、前記のように、チタ
ンイソプロキシド、四塩化チタン、硫酸チタン等の4価
のチタン化合物で、そのアルコール溶液あるいは水溶液
に炭素質材料を十分に浸してチタン化合物を含浸させた
後、濾過、遠心分離等によってこの炭素質材料を分離す
る。
The photocatalyst precursor is, as described above, a tetravalent titanium compound such as titanium isoproxide, titanium tetrachloride, and titanium sulfate. The titanium compound is obtained by sufficiently immersing the carbonaceous material in an alcohol solution or an aqueous solution thereof. After impregnation, the carbonaceous material is separated by filtration, centrifugation or the like.

【0048】次いで、光触媒前駆物質を含浸させた炭素
質材料を不活性な雰囲気下で急速に加熱する。不活性な
雰囲気とは、前記(2)の発明の場合と同様で、原料が
完全燃焼するには不十分な量の酸素が含まれ、燃焼が不
完全な状態で進行する雰囲気である。完全に燃焼するに
必要な量あるいはそれよりも過剰量の酸素が存在する
と、炭素質材料が完全燃焼するため、目的とする炭素質
中空体触媒を得ることができない。
Next, the carbonaceous material impregnated with the photocatalyst precursor is rapidly heated in an inert atmosphere. The inert atmosphere is an atmosphere in which an insufficient amount of oxygen is contained for complete combustion of the raw material and combustion proceeds in an incomplete state, as in the case of the invention (2). If the amount of oxygen required for complete combustion or an excess amount of oxygen is present, the carbonaceous material will be completely burnt, and the desired carbonaceous hollow body catalyst cannot be obtained.

【0049】加熱温度は、600〜900℃とするのが
好ましい。加熱温度が600℃よりも低いと原料中に含
まれている揮発成分のガス化が十分ではなく、得られる
中空体の比重が大きくなりやすい。一方、900℃を超
えると加熱に要するコストが増大する。
The heating temperature is preferably from 600 to 900 ° C. If the heating temperature is lower than 600 ° C., the gasification of volatile components contained in the raw material is not sufficient, and the specific gravity of the obtained hollow body tends to increase. On the other hand, if the temperature exceeds 900 ° C., the cost required for heating increases.

【0050】加熱は急速に行う。これによって、前記の
(2)の発明で述べたと同様に比表面積の大きい炭素質
中空体が得られ、さらに、炭素質材料(石炭、ピッチ
等)が有しているカルボキシル基や水酸基と光触媒前駆
物質との間に新たな結合が生じる。すなわち、光触媒が
炭素質中空体に化学的に固定された状態となり、その安
定性が向上する。なお、急速加熱は、(2)の発明の場
合と同様に、室温付近から前記の加熱温度(600〜9
00℃)までの全温度範囲にわたって、200〜600
℃/秒の加熱速度で行うのが好ましい。
The heating is rapid. As a result, a carbonaceous hollow body having a large specific surface area can be obtained in the same manner as described in the invention of the above (2), and further, the carboxyl group or the hydroxyl group of the carbonaceous material (coal, pitch, etc.) and A new bond is created with the substance. That is, the photocatalyst is in a state of being chemically fixed to the carbonaceous hollow body, and its stability is improved. Incidentally, the rapid heating is carried out from the vicinity of room temperature to the above-mentioned heating temperature (600 to 9) as in the case of the invention (2).
200-600 over the entire temperature range up to
The heating is preferably performed at a heating rate of ° C / sec.

【0051】上記の急速な加熱を行うためには、例え
ば、電気炉、マッフル炉等の高温槽を用い、炭素質材料
と光触媒前駆物質との間で前記の結合が生じる温度にあ
らかじめ加熱しておき、その中に前記の光触媒前駆物質
を含浸させた炭素質材料を装入して加熱するのが好まし
い。
In order to perform the above-mentioned rapid heating, for example, a high-temperature tank such as an electric furnace or a muffle furnace is used, and is heated in advance to a temperature at which the above-mentioned bonding occurs between the carbonaceous material and the photocatalyst precursor. Preferably, a carbonaceous material impregnated with the photocatalyst precursor is charged therein and heated.

【0052】急速加熱を終えた後、さらに焼成する。焼
成は、(2)の発明の場合と同様、炭素質中空体に固定
された状態の光触媒の粒子を焼結させることにより一層
強固に固定するために行うもので、この発明の目的物で
ある炭素質中空体触媒の炭素質が燃焼しない条件下であ
れば、焼成時の雰囲気について特に限定はない。窒素、
アルゴン等の非酸化性雰囲気下で行うことが望ましい
が、炭素質が燃焼しない温度以下で焼成する場合は空気
中で行っても差し支えない。
After the rapid heating is completed, firing is further performed. The sintering is carried out to sinter the particles of the photocatalyst fixed in the carbonaceous hollow body more firmly as in the case of the invention (2), and is an object of the present invention. As long as the carbonaceous material of the carbonaceous hollow catalyst does not burn, the atmosphere during firing is not particularly limited. nitrogen,
It is desirable to carry out in a non-oxidizing atmosphere such as argon, but when firing at a temperature below the temperature at which carbonaceous material does not burn, it may be carried out in air.

【0053】焼成温度についても特に限定はなく、上記
の焼結現象が生じる温度域であればよい。ただ、二酸化
チタンの場合には、(2)の発明におけると同様に、高
い光触媒能を有するアナターゼ結晶が多く含まれるよう
な焼成条件を選ぶ必要がある。
The sintering temperature is not particularly limited as long as the sintering phenomenon occurs. However, in the case of titanium dioxide, it is necessary to select calcination conditions such that many anatase crystals having high photocatalytic activity are contained, as in the invention of (2).

【0054】なお、装入物の急速昇温が可能な上記の高
温槽を用いれば、例えば、600〜900℃に加熱され
た高温槽内に原料を装入してそのまま保持することによ
って急速加熱と同時に焼成を行うことができるので、好
適である。
If the above-mentioned high temperature tank capable of rapidly increasing the temperature of the charge is used, for example, the raw material is charged into a high temperature tank heated to 600 to 900 ° C. and held as it is, thereby rapidly heating the material. At the same time, baking can be performed, which is preferable.

【0055】上記の(3)の発明の方法によっても、特
別の手段を必要とせずに前記本発明の炭素質中空体触媒
を容易に製造することができる。
According to the method (3), the carbonaceous hollow catalyst of the present invention can be easily produced without requiring any special means.

【0056】前記(2)の発明と(3)の発明とを比較
した場合、(2)の発明では比較的軽質なものが得られ
るのに対して、(3)の発明では比表面積の大きいもの
が得られる傾向がある。また、(3)の発明では、得ら
れる炭素質中空体触媒の収率は低くなるが、炭素質材料
として用いる石炭等の構成分子が有している官能基(カ
ルボキシル基、水酸基など)を介して二酸化チタン等の
光触媒を炭素質中空体に強固に結合できるという特徴が
ある。
When the invention of the above (2) is compared with the invention of the above (3), the invention of the above (2) provides a relatively light one, whereas the invention of the above (3) has a large specific surface area. Things tend to be obtained. In addition, in the invention of (3), the yield of the obtained carbonaceous hollow catalyst is low, but the yield is low via the functional groups (carboxyl group, hydroxyl group, etc.) of the constituent molecules such as coal used as the carbonaceous material. Thus, a photocatalyst such as titanium dioxide can be strongly bonded to the carbonaceous hollow body.

【0057】したがって、この炭素質中空体触媒を用い
て行う処理対象物に含まれる有機化合物の種類、濃度、
あるいは処理環境に応じて、製造方法を使い分け、それ
ぞれの条件に適応した触媒を用いることが可能となる。
Therefore, the type, concentration, and the like of the organic compound contained in the object to be treated using the carbonaceous hollow catalyst are described.
Alternatively, it is possible to use a catalyst suitable for each condition by properly using a production method according to a processing environment.

【0058】[0058]

【実施例】【Example】

(実施例1)炭素質材料(炭素質中空体の原料)として
粒径0.5〜3mmに粉砕した亜歴青炭(揮発成分46
%、無水無灰基準)を用い、これを気流層型の反応器に
装入し、600℃に急速昇温(反応時間3秒)する加熱
処理を行い、生成した炭素質中空体を水で浮選し、浮遊
性の微小球状の炭素質中空体を得た。その嵩比重は0.
09g/cm3 、BET比表面積は100cm2 /gで
あった。
(Example 1) As a carbonaceous material (a raw material of a carbonaceous hollow body), a sub-bituminous coal (having a volatile component of 46
%, Anhydrous ash-free basis), and this was charged into a gas-bed reactor and subjected to a heat treatment of rapidly raising the temperature to 600 ° C. (reaction time: 3 seconds), and the resulting carbonaceous hollow body was treated with water. By flotation, a floating microspherical carbonaceous hollow body was obtained. Its bulk specific gravity is 0.
09 g / cm 3 , and the BET specific surface area was 100 cm 2 / g.

【0059】この炭素質中空体10gを、チタンイソプ
ロキシド30gをエタノール30ミリリットル(ml)
に混合した溶液に入れ、適宜、超音波を与えながら、3
時間緩やかに撹拌した。次いで、浮遊物を濾別し、これ
を24時間風乾した後、空気中250℃で2時間乾燥
し、続いて窒素気流下(200ml/分)、600℃で
5時間焼成することによって、酸化チタンを炭素質中空
体に対して30重量%担持した炭素質中空体触媒を得
た。担持された酸化チタンは、アナターゼ型結晶である
ことをX線回析によって確認した。
10 g of this carbonaceous hollow body, 30 g of titanium isoproxide and 30 ml of ethanol (ml)
Into the mixed solution, while applying ultrasonic waves as appropriate.
Stirred gently for hours. Next, the suspended matter was separated by filtration, air-dried for 24 hours, dried in air at 250 ° C. for 2 hours, and subsequently calcined at 600 ° C. for 5 hours in a nitrogen stream (200 ml / min) to obtain titanium oxide. Was supported on the carbonaceous hollow body in an amount of 30% by weight to obtain a carbonaceous hollow body catalyst. It was confirmed by X-ray diffraction that the supported titanium oxide was an anatase crystal.

【0060】このようにして得られた炭素質中空体触媒
を用いて蒸留水に添加したベンゼンの酸化を行った。
Using the carbonaceous hollow catalyst thus obtained, benzene added to distilled water was oxidized.

【0061】まず、平型セル(パイレックス製、内径6
cm、深さ5cm)に、蒸留水にベンゼンを50ミリモ
ル/リットル(mmol/l)になるように添加した混
合液30cm3 を入れ、これに炭素質中空体触媒0.5
gを加えて分散させ、石英製円板で蓋をした。次いで、
空気飽和状態の下で、光照射を行わずに緩やかに磁気撹
拌し(500rpm)、1時間後、液中のベンゼン濃度
を測定した。これは、太陽光が利用できない場合を想定
して行った試験である。
First, a flat cell (manufactured by Pyrex, having an inner diameter of 6)
30 cm 3 of a mixture obtained by adding benzene to distilled water so as to have a concentration of 50 mmol / l (mmol / l).
g was added and dispersed, and covered with a quartz disk. Then
Under air-saturated condition, magnetic stirring was performed gently without light irradiation (500 rpm), and after 1 hour, the benzene concentration in the liquid was measured. This is a test performed on the assumption that sunlight cannot be used.

【0062】その後、25℃において、上方から250
Wの高圧水銀灯の光を、UVカットフィルター(東芝製
UV−31)を通して照射し、反応を行わせた。なお、
反応の際、触媒は液面に浮遊状態で存在しており、光は
その全面に照射されることを確認した。
Thereafter, at 25 ° C., 250
Light from a high-pressure mercury lamp of W was irradiated through a UV cut filter (UV-31 manufactured by Toshiba) to cause a reaction. In addition,
At the time of the reaction, it was confirmed that the catalyst was present in a floating state on the liquid surface, and that light was applied to the entire surface.

【0063】ベンゼンおよびその分解生成物の分析は、
液相部については高速液体クロマトグラフィー(カラ
ム;トーソー製TSK−gel ODS−80TS)に
より、また、気相部についてはガスクロマトグラフィー
(カラム;GLサイエンス製UNIBEADS−C)に
より行った。
Analysis of benzene and its decomposition products
The liquid phase was analyzed by high performance liquid chromatography (column: TSK-gel ODS-80TS manufactured by Tosoh), and the gas phase was analyzed by gas chromatography (column: UNIBEADS-C manufactured by GL Sciences).

【0064】その結果、ベンゼンは、光照射せずに緩や
かに撹拌する間に炭素質中空体触媒に吸着され、1時間
でその濃度は50mmol/lから10.5mmol/
lに減少した。また、その後4時間の光照射によって、
ベンゼンは酸化分解され、二酸化炭素が0.88mmo
l、一酸化炭素が0.07mmol生成した。
As a result, benzene was adsorbed on the carbonaceous hollow body catalyst while being stirred gently without irradiation with light, and the concentration was 50 mmol / l to 10.5 mmol / l in 1 hour.
l. Also, after that, by light irradiation for 4 hours,
Benzene is oxidatively decomposed and carbon dioxide is 0.88 mmol
1, 0.07 mmol of carbon monoxide was produced.

【0065】(実施例2)チタンイソプロキシド80g
を、激しく撹拌している蒸留水500cm3 に滴下し、
その後硝酸(60%)5gを加えた。次いで、80℃に
おいて24時間撹拌し、真空下で濃縮した後、さらに1
N水酸化ナトリウム溶液を加えてpHを調整し、酸化チ
タンを10重量%含むゾル液(pH約3.0)を得た。
Example 2 80 g of titanium isoproxide
Is dropped into 500 cm 3 of vigorously stirred distilled water,
Thereafter, 5 g of nitric acid (60%) was added. Then, the mixture was stirred at 80 ° C. for 24 hours and concentrated under vacuum.
The pH was adjusted by adding an N sodium hydroxide solution to obtain a sol solution (pH about 3.0) containing 10% by weight of titanium oxide.

【0066】このゾル液に、実施例1で調製した酸化チ
タンを担持していない炭素質中空体10gを入れ、5時
間緩やかに撹拌した。その後、浮遊物を濾別し、蒸留水
で十分に洗浄した後、空気中250℃で2時間焼成し
て、酸化チタンを45重量%担持した炭素質中空体触媒
を得た。この酸化チタンは、アナターゼ型結晶として存
在することをX線回析によって確認した。
10 g of the carbonaceous hollow body not supporting titanium oxide prepared in Example 1 was added to this sol solution, and the mixture was gently stirred for 5 hours. Thereafter, the suspended matter was separated by filtration, sufficiently washed with distilled water, and then calcined in air at 250 ° C. for 2 hours to obtain a carbonaceous hollow catalyst carrying 45% by weight of titanium oxide. It was confirmed by X-ray diffraction that this titanium oxide was present as an anatase type crystal.

【0067】このようにして得られた炭素質中空体触媒
を用いてベンゼンの酸化を行った。なお、酸化の条件お
よび分析方法は実施例1の場合と同じとした。
Using the carbonaceous hollow catalyst thus obtained, benzene was oxidized. The oxidation conditions and analysis method were the same as in Example 1.

【0068】その結果、光照射せずに緩やかに撹拌する
間における炭素質中空体触媒への吸着により、ベンゼン
の濃度は50mmol/lから12.4mmol/lに
減少した。また、その後4時間の光照射によってベンゼ
ンは酸化分解され、二酸化炭素が1.15mmol、一
酸化炭素が0.025mmol生成した。
As a result, the concentration of benzene was reduced from 50 mmol / l to 12.4 mmol / l due to adsorption to the carbonaceous hollow body catalyst during gentle stirring without light irradiation. In addition, benzene was oxidatively decomposed by light irradiation for 4 hours thereafter, and 1.15 mmol of carbon dioxide and 0.025 mmol of carbon monoxide were produced.

【0069】(実施例3)炭素質材料として、実施例1
で使用した粒径0.5〜3mmに粉砕した亜歴青炭(揮
発成分46%、無水無灰基準)を用い、その10gを、
チタンイソプロキシド30gをエタノール30mlに混
合した溶液に入れ、適宜、超音波を与えながら、3時間
緩やかに撹拌した。次いで、浮遊物を濾別し、これを2
4時間風乾した後、空気中250℃で2時間乾燥し、続
いて窒素雰囲気下、600℃に保持した高温槽中に入れ
て5時間焼成し、酸化チタンが炭素質中空体に担持され
た炭素質中空体触媒6gを得た。酸化チタンの炭素質中
空体触媒に対する割合は35重量%であり、アナターゼ
型結晶であることをX線回析によって確認した。
Example 3 Example 1 was used as a carbonaceous material.
The sub-bituminous coal (having a volatile component of 46%, based on anhydrous ashless) pulverized to a particle size of 0.5 to 3 mm used for
30 g of titanium isoproxide was placed in a solution mixed with 30 ml of ethanol, and gently stirred for 3 hours while appropriately applying ultrasonic waves. Then, the suspended matter was separated by filtration,
After air-drying for 4 hours, it is dried in air at 250 ° C. for 2 hours, and then placed in a high-temperature bath maintained at 600 ° C. in a nitrogen atmosphere and calcined for 5 hours. 6 g of a porous hollow catalyst was obtained. The ratio of titanium oxide to the carbonaceous hollow catalyst was 35% by weight, and it was confirmed by X-ray diffraction that the titanium oxide was an anatase crystal.

【0070】このようにして得られた炭素質中空体触媒
には、水上に浮遊するものと、水中に沈むものとがあっ
たが、両者が混在した状態のまま、実施例1と同様の方
法で水溶液中のベンゼンの酸化を行った。なお、酸化の
条件および分析方法は実施例1の場合と同じとした。
The carbonaceous hollow body catalyst obtained in this way includes a catalyst floating on water and a catalyst sinking in water. The same method as in Example 1 is used with both of them mixed. Oxidized benzene in the aqueous solution. The oxidation conditions and analysis method were the same as in Example 1.

【0071】その結果、光照射を行わずに緩やかに撹拌
する間にベンゼンは炭素質中空体触媒に吸着され、1時
間でその濃度が50mmol/lから10mmol/l
に減少した。また、その後4時間の光照射によってベン
ゼンは酸化分解され、二酸化炭素が0.9mmol、一
酸化炭素が0.08mmol生成した。
As a result, the benzene was adsorbed on the carbonaceous hollow catalyst during the gentle stirring without light irradiation, and the concentration of benzene was reduced from 50 mmol / l to 10 mmol / l in 1 hour.
Decreased to. In addition, benzene was oxidatively decomposed by light irradiation for 4 hours, and 0.9 mmol of carbon dioxide and 0.08 mmol of carbon monoxide were produced.

【0072】(実施例4)製鉄所内で使用される石油系
の工業用潤滑油の0.1gを水30mlに加え、それに
実施例1で調製した炭素質中空体触媒0.5gを分散さ
せた液を用いて、実施例1と同様の方法で潤滑油の酸化
分解試験を行った。なお、水中の潤滑油量の測定は、触
媒をろ過した後、ろ液からクロロホルムを用いて潤滑油
を抽出し、その抽出液の吸光度を測定することにより行
った。
(Example 4) 0.1 g of petroleum-based industrial lubricating oil used in an ironworks was added to 30 ml of water, and 0.5 g of the carbonaceous hollow catalyst prepared in Example 1 was dispersed therein. Using the liquid, an oxidative decomposition test of the lubricating oil was conducted in the same manner as in Example 1. The amount of lubricating oil in water was measured by filtering the catalyst, extracting lubricating oil from the filtrate using chloroform, and measuring the absorbance of the extract.

【0073】その結果、光照射せずに緩やかに撹拌する
間に潤滑油の80%程度が炭素質中空体に吸着された。
また、その後4時間の光照射によって潤滑油は酸化分解
され、二酸化炭素が1.3mmol、一酸化炭素が0.
30mmol生成した。
As a result, about 80% of the lubricating oil was adsorbed on the carbonaceous hollow body during gentle stirring without light irradiation.
After that, the lubricating oil is oxidatively decomposed by light irradiation for 4 hours, and 1.3 mmol of carbon dioxide and 0.1 mmol of carbon monoxide.
30 mmol was produced.

【0074】(比較例1)炭素質中空体触媒の代わりに
市販の酸化チタン(日本アエロジル製P−25)0.3
gを触媒として用い、それ以外は全て実施例1の場合と
同じ条件でベンゼンの酸化を行った。
(Comparative Example 1) Instead of the carbonaceous hollow catalyst, commercially available titanium oxide (P-25, manufactured by Nippon Aerosil) 0.3
g was used as a catalyst, and benzene was oxidized under the same conditions as in Example 1 except for the above.

【0075】その結果、ベンゼンの濃度は光照射せずに
緩やかに撹拌する間にはほとんど減少せず、ベンゼンの
吸着は認められなかった。また、その後4時間の光照射
によって、二酸化炭素が0.19mmol、一酸化炭素
が0.062mmol生成したが、その量は実施例1お
よび2に比べてはるかに少なかった。
As a result, the benzene concentration hardly decreased during gentle stirring without light irradiation, and no benzene adsorption was observed. Further, the light irradiation for 4 hours thereafter produced 0.19 mmol of carbon dioxide and 0.062 mmol of carbon monoxide, but the amounts were much smaller than those in Examples 1 and 2.

【0076】(比較例2)炭素質中空体触媒の代わり
に、別に調製したアナターゼ型結晶からなる酸化チタン
を担持させたガラス中空体(酸化チタン担持量:ガラス
中空体に対して20.4重量%)を触媒として用い、そ
れ以外は全て実施例1の場合と同じ条件でベンゼンの酸
化を行った。なお、このとき、触媒は炭素質中空体触媒
を用いた場合と同様に液面に浮遊し、光は全面に照射さ
れることを確認した。
(Comparative Example 2) Instead of the carbonaceous hollow body catalyst, a separately prepared glass hollow body supporting titanium oxide composed of anatase type crystal (amount of titanium oxide: 20.4 weight per glass hollow body) %) As a catalyst, and benzene was oxidized under the same conditions as in Example 1 except for the above. At this time, it was confirmed that the catalyst floated on the liquid surface in the same manner as in the case of using the carbonaceous hollow body catalyst, and light was applied to the entire surface.

【0077】その結果、光照射せず撹拌する間に、ベン
ゼンの濃度は50mmol/lから47.3mmol/
lまで減少しただけで、ベンゼンの吸着はわずかに認め
られる程度であった。また、その後4時間の光照射によ
って、二酸化炭素が0.27mmol、一酸化炭素が痕
跡量生成したが、その量は実施例1および2に比べて少
なかった。
As a result, the concentration of benzene was changed from 50 mmol / l to 47.3 mmol /
The benzene adsorption was only slightly noticeable. Further, after irradiation for 4 hours, 0.27 mmol of carbon dioxide and a trace amount of carbon monoxide were generated, but the amounts were smaller than those in Examples 1 and 2.

【0078】(比較例3)炭素質中空体の代わりに市販
の活性炭(ワコー純薬製)を用い、それ以外は全て実施
例1の場合と同じ手順で、アナターゼ型結晶からなる酸
化チタンを26重量%担持させた活性炭(触媒)を得
た。この触媒を、炭素質中空体触媒の代わりに用い、そ
れ以外は全て実施例1の場合と同じ条件でベンゼンの酸
化を行った。なお、このとき、触媒は処理に用いた容器
の底面に沈降し、やや凝集する傾向にあった。
(Comparative Example 3) A commercially available activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the carbonaceous hollow body. Activated carbon (catalyst) supported by weight% was obtained. This catalyst was used in place of the carbonaceous hollow body catalyst, and benzene was oxidized under the same conditions as in Example 1 except for that. At this time, the catalyst tended to settle on the bottom surface of the vessel used for the treatment and to slightly aggregate.

【0079】その結果、光照射せず撹拌する間に、ベン
ゼン濃度は50mmol/lから7.3mmol/lに
減少し、ベンゼンの吸着が認められた。また、光照射に
よって二酸化炭素が0.65mmol、一酸化炭素が
0.084mmol生成したが、その量は、実施例1お
よび2に比べると、ベンゼンの吸着が多かった割には少
なかった。これは、主に触媒が容器内で沈降ないしは凝
集したため光照射の効果が減殺されたことによるもので
ある。
As a result, during stirring without irradiation with light, the benzene concentration was reduced from 50 mmol / l to 7.3 mmol / l, and adsorption of benzene was observed. In addition, although 0.65 mmol of carbon dioxide and 0.084 mmol of carbon monoxide were produced by light irradiation, the amounts thereof were smaller than those of Examples 1 and 2 in spite of the higher benzene adsorption. This is mainly because the effect of light irradiation was reduced because the catalyst settled or aggregated in the vessel.

【0080】(比較例4)炭素質中空体触媒の代わりに
市販の酸化チタン(日本アエロジル製P−25)0.3
gを触媒として用い、それ以外は全て実施例4の場合と
同じ条件で石油系の工業用潤滑油の酸化分解試験を行っ
た。
Comparative Example 4 Commercially available titanium oxide (Nippon Aerosil P-25) 0.3 was used instead of the carbonaceous hollow catalyst.
g was used as a catalyst, and an oxidative decomposition test of petroleum-based industrial lubricating oil was performed under the same conditions as in Example 4 except for the above.

【0081】その結果、光照射せずに緩やかに撹拌して
も潤滑油は炭素質中空体にほとんど吸着されなかった。
また、その後4時間の光照射によって潤滑油は酸化分解
され、二酸化炭素が0.31mmol、一酸化炭素が
0.12mmol生成したが、その量は、実施例4に比
べるとはるかに少ないものであった。
As a result, the lubricating oil was scarcely adsorbed on the carbonaceous hollow body even if it was gently stirred without irradiation with light.
Further, the lubricating oil was oxidatively decomposed by light irradiation for 4 hours thereafter to produce 0.31 mmol of carbon dioxide and 0.12 mmol of carbon monoxide, but the amounts were much smaller than those in Example 4. Was.

【0082】[0082]

【発明の効果】本発明の炭素質中空体触媒は有機化合物
を光酸化する作用があり、しかも担体として比表面積が
大きい炭素質中空体を用いているので、被酸化物質に対
する吸着能に優れ、高い反応効率を有するとともに、太
陽光が届き易い水面上に集まりやすいという特質を有し
ている。そのため、大きな受光面積を必要とせずに太陽
光を利用することができ、特に排水中の有機化合物の酸
化分解に適している。
The carbonaceous hollow body catalyst of the present invention has a function of photooxidizing an organic compound, and since it uses a carbonaceous hollow body having a large specific surface area as a carrier, it has excellent adsorption capacity for a substance to be oxidized. In addition to having high reaction efficiency, it has the characteristic of being easily collected on the water surface where sunlight can easily reach. Therefore, sunlight can be used without requiring a large light receiving area, and is particularly suitable for oxidative decomposition of organic compounds in wastewater.

【0083】この炭素質中空体触媒は本発明の方法によ
り容易に製造することができる。
This carbonaceous hollow catalyst can be easily produced by the method of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】微小球状の炭素質中空体の表面に光触媒が
担持されていることを特徴とする炭素質中空体触媒。
1. A carbonaceous hollow body catalyst, wherein a photocatalyst is supported on the surface of a microspherical carbonaceous hollow body.
【請求項2】粉状の炭素質材料を不活性雰囲気中で急速
に加熱し、得られた微小球状の炭素質中空体に光触媒を
担持させることを特徴とする請求項1に記載の炭素質中
空体触媒の製造方法。
2. The carbonaceous material according to claim 1, wherein the powdery carbonaceous material is rapidly heated in an inert atmosphere, and a photocatalyst is carried on the obtained microspherical carbonaceous hollow body. A method for producing a hollow body catalyst.
【請求項3】粉状の炭素質材料に光触媒前駆物質を担持
させた後、不活性雰囲気中で急速に加熱し、次いで焼成
することを特徴とする請求項1に記載の炭素質中空体触
媒の製造方法。
3. The carbonaceous hollow body catalyst according to claim 1, wherein the photocatalyst precursor is supported on the powdery carbonaceous material, and then heated rapidly in an inert atmosphere and then calcined. Manufacturing method.
【請求項4】請求項1に記載の炭素質中空体触媒を用い
て水中に含まれる有機化合物を分解することを特徴とす
る炭素質中空体触媒の使用方法。
4. A method for using a carbonaceous hollow body catalyst, comprising decomposing an organic compound contained in water using the carbonaceous hollow body catalyst according to claim 1.
JP8255855A 1996-05-17 1996-09-27 Carbonaceous hollow body catalyst, and its manufacture, and use Pending JPH1028875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8255855A JPH1028875A (en) 1996-05-17 1996-09-27 Carbonaceous hollow body catalyst, and its manufacture, and use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP12300896 1996-05-17
JP8-123008 1996-05-17
JP8255855A JPH1028875A (en) 1996-05-17 1996-09-27 Carbonaceous hollow body catalyst, and its manufacture, and use

Publications (1)

Publication Number Publication Date
JPH1028875A true JPH1028875A (en) 1998-02-03

Family

ID=26460028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8255855A Pending JPH1028875A (en) 1996-05-17 1996-09-27 Carbonaceous hollow body catalyst, and its manufacture, and use

Country Status (1)

Country Link
JP (1) JPH1028875A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001024927A1 (en) * 1999-10-01 2001-04-12 Showa Denko Kabushiki Kaisha Composite member for deodorization or waste water treatment
KR100405375B1 (en) * 2000-02-25 2003-11-12 이종호 Manufactural method of activated carbon as a bactericidal photo-catalyst
US6803023B1 (en) 1999-10-01 2004-10-12 Showa Denko Kabushiki Kaisha Composite structure for deodorization or wastewater treatment
JP2005199261A (en) * 2003-12-17 2005-07-28 Fujikura Kasei Co Ltd Photocatalyst composite material, coating composition comprising photocatalyst and self-cleaning type coating film
EP1656985A1 (en) * 2003-04-23 2006-05-17 National Institute of Advanced Industrial Science and Technology Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
WO2009011658A1 (en) * 2007-07-18 2009-01-22 Nanyang Technological University Hollow porous microspheres
KR20180010819A (en) * 2016-07-22 2018-01-31 주식회사 엘지화학 Method for preparation of organic zinc-carbon black composite catalyst
JP2019069410A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light activated photocatalytic composite filter material, and production method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6803023B1 (en) 1999-10-01 2004-10-12 Showa Denko Kabushiki Kaisha Composite structure for deodorization or wastewater treatment
WO2001024927A1 (en) * 1999-10-01 2001-04-12 Showa Denko Kabushiki Kaisha Composite member for deodorization or waste water treatment
KR100405375B1 (en) * 2000-02-25 2003-11-12 이종호 Manufactural method of activated carbon as a bactericidal photo-catalyst
JP2011000589A (en) * 2003-04-23 2011-01-06 National Institute Of Advanced Industrial Science & Technology Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
EP1656985A1 (en) * 2003-04-23 2006-05-17 National Institute of Advanced Industrial Science and Technology Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
EP1656985A4 (en) * 2003-04-23 2008-10-29 Nat Inst Of Advanced Ind Scien Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
JP4803653B2 (en) * 2003-04-23 2011-10-26 独立行政法人産業技術総合研究所 Visible light responsive type three-dimensional fine cell structure photocatalytic filter, manufacturing method thereof, and purification apparatus
US7704913B2 (en) 2003-04-23 2010-04-27 National Institute Of Advanced Industrial Science And Technology Visible-light-responsive three-dimensional fine cell-structured photocatalytic filter, its manufacturing method and purifier device
JP2005199261A (en) * 2003-12-17 2005-07-28 Fujikura Kasei Co Ltd Photocatalyst composite material, coating composition comprising photocatalyst and self-cleaning type coating film
WO2009011658A1 (en) * 2007-07-18 2009-01-22 Nanyang Technological University Hollow porous microspheres
US8460547B2 (en) 2007-07-18 2013-06-11 Nanyang Technological University Hollow porous microspheres
KR20180010819A (en) * 2016-07-22 2018-01-31 주식회사 엘지화학 Method for preparation of organic zinc-carbon black composite catalyst
JP2019069410A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light activated photocatalytic composite filter material, and production method thereof

Similar Documents

Publication Publication Date Title
Shinde et al. Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO 2 and SnO 2: A comparative study
Kumar et al. Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO 2 conversion using sustainable coal-char/polymeric-gC 3 N 4/RGO metal-free nano-hybrids
Iliev et al. Promoting the oxidative removal rate of 2, 4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation
Mohammadi et al. Photocatalytic degradation of aqueous ammonia by using TiO2ZnO/LECA hybrid photocatalyst
Tu et al. Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst
Mohamed et al. Rational design of manganese ferrite-graphene hybrid photocatalysts: Efficient water splitting and effective elimination of organic pollutants
Shalaby et al. Mesoporous waste-extracted SiO 2–Al 2 O 3-supported Ni and Ni–H 3 PW 12 O 40 nano-catalysts for photo-degradation of methyl orange dye under UV irradiation
AU2017101171A4 (en) The synthesis of GO/hemin/TiO2 nanocomposite catalyst and the photocatalytic degradation rate of organic pollutants
WO2011049085A1 (en) Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst
AU2010263314A1 (en) Doped catalytic carbonaceous composite materials and uses thereof
CN113649052B (en) Graphite-phase carbon nitride-based photocatalytic composite material and preparation and application thereof
Zhang et al. Floating photocatalysts based on loading Bi/N-doped TiO 2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel
CN111974404A (en) Photo-assisted BiFe1-xCuxO3Method for treating residual ciprofloxacin in water body by activated peroxymonosulfate
JPH1028875A (en) Carbonaceous hollow body catalyst, and its manufacture, and use
Sakuna et al. The influence of metal-doped graphitic carbon nitride on photocatalytic conversion of acetic acid to carbon dioxide
CN113244929B (en) Iron bismuth oxide Bi 2 Fe 4 O 9 Preparation method and application in organic wastewater treatment
CN113499776B (en) Porous carbon-based nano zero-valent iron-copper composite material and preparation method and application thereof
CN113578364B (en) Molecularly imprinted photocatalytic material and preparation method and application thereof
JPH10226509A (en) Activated carbon
CN102010055B (en) Ozonization water treatment method using zinc oxide nanometer material as catalyst
Kebede et al. Synthesis and characterization of CdS/UiO-66/Ag3PO4 nanocomposite for photocatalytic degradation of methyl orange under visible light irradiation
JP3231733B2 (en) Photocatalytic granules for fluidized beds
Sheshmani et al. ZnS and ZnS/ZnO assembly for photocatalytic removal of Reactive Red 66
CN116809106B (en) Microwave-assisted oxygen-enriched vacancy Co@NC for efficiently degrading organic pollutantsXA aerogel catalyst
JPH0967111A (en) Production of activated carbon