JPH10288615A - Exhalation metabolism measuring device - Google Patents

Exhalation metabolism measuring device

Info

Publication number
JPH10288615A
JPH10288615A JP9547997A JP9547997A JPH10288615A JP H10288615 A JPH10288615 A JP H10288615A JP 9547997 A JP9547997 A JP 9547997A JP 9547997 A JP9547997 A JP 9547997A JP H10288615 A JPH10288615 A JP H10288615A
Authority
JP
Japan
Prior art keywords
light
exhalation
light emitting
living body
emitting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9547997A
Other languages
Japanese (ja)
Inventor
Shuichi Oshima
修一 尾島
Masami Wada
正己 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9547997A priority Critical patent/JPH10288615A/en
Publication of JPH10288615A publication Critical patent/JPH10288615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to measure exhalation without using a mask and a hose by applying light on the part of an organism, wherein the exhalation passes, and measuring the amount of the exhalation component from the change in the amount of received light caused by the exhalation passing the organism. SOLUTION: This device is constituted of a light emitting means 1, a light receiving means 2 and an analyzing means 3. As the light emitting means 1, a light emitting diode, which emits the wavelength in the near infrared ray region having, e.g. high organism transmission property, is used. As the light receiving means 2, a photo-diode is used. When the transmitting light is used, the light emitting means 1 and the light receiving means 2 are mounted on the mutually opposite sides with respect to the organism part, wherein the exhalation passes, e.g. the center of the neck. When the light is applied from the light emitting means 1, the wavelength component peculiar to CO2 contained in the exhausting exhalation is strongly absorbed. Then, the light received with the light receiving means 2 is analyzed with the analyzing means 3, and the absorbancy at this wavelength is obtained. Thus, the CO2 concentration is specified.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体から排出され
る呼気中の所定の成分または呼吸数を測定する呼気測定
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a breath measurement apparatus for measuring a predetermined component or respiratory rate in expired air exhaled from a living body.

【0002】[0002]

【従来の技術】従来、呼気代謝測定装置として、米国・
センサーメディクス製の装置(承認番号:04B輸11
32)などが知られている。
2. Description of the Related Art Conventionally, as a breath metabolism measuring device, the United States
Sensor Medix device (approval number: 04B Transport 11
32) are known.

【0003】図3に従来の呼気代謝測定装置の構造を示
しており、口を完全に覆うマスク11で排出した呼気を
集めこれをホース12で測定装置13まで導いて、この
集めた気体に対して、赤外線吸収方式などで炭酸ガス濃
度の測定などを行なってきた。
[0003] FIG. 3 shows the structure of a conventional breath metabolism measuring apparatus. The expired breath is collected by a mask 11 that completely covers the mouth, and the collected breath is guided to a measuring apparatus 13 by a hose 12. Therefore, the measurement of carbon dioxide concentration has been performed by an infrared absorption method or the like.

【0004】[0004]

【発明が解決しようとする課題】一般に、呼気測定装置
においては、口から体外に発せられる呼気を測定対象と
している。そのため、呼気を収集する方法が必要とな
り、口を完全に覆うマスクとホースを用いることにな
り、被測定者に苦痛を強い、また、生体を強く拘束する
ものであった。
Generally, in a breath measurement apparatus, the breath to be emitted from the mouth to the outside of the body is to be measured. For this reason, a method of collecting exhaled air is required, and a mask and a hose that completely cover the mouth are used, which causes pain to the subject and strongly restrains the living body.

【0005】本発明は、生体の動きを拘束することにな
しに、マスクやホースを用いない被測定者に苦痛を与え
ない呼気測定装置を提供することを目的とする。
[0005] It is an object of the present invention to provide a breath measuring apparatus that does not cause pain to a subject who does not use a mask or a hose without restraining the movement of a living body.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明は、呼気が通過する生体内部を光が伝搬するよ
うに装着した光測定器により生体通過中の呼気の計測を
行なう。
SUMMARY OF THE INVENTION In order to solve this problem, the present invention measures an expired gas passing through a living body using an optical measuring device mounted so that light propagates inside the living body through which the expired gas passes.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て、説明する。発明を実施する方法は、様々あるが、そ
の実現例の一つとして光の透過光強度を用いた測定方法
について述べる。図1に全体の概要図を示す。
Embodiments of the present invention will be described below. Although there are various methods for carrying out the present invention, a measuring method using transmitted light intensity of light will be described as one of the realization examples. FIG. 1 shows an overall schematic diagram.

【0008】図1によれば、装置は、発光手段1、受光
手段2、解析手段3よりなり、例えば、発光手段1とし
て生体透過性の高い近赤外域の波長を出す発光ダイオー
ド、受光手段2としてフォトダイオードを用いることが
できる。図1に示すように、呼気が通過する生体部、例
えば、首などにこれらを装着し、透過光を利用する場合
は、例えば、首の中心に対して反対側に発光手段1と受
光手段2を装着する。
According to FIG. 1, the apparatus comprises a light emitting means 1, a light receiving means 2, and an analyzing means 3. For example, as the light emitting means 1, a light emitting diode which emits near-infrared wavelengths having high biological permeability, a light receiving means 2 Can be used as a photodiode. As shown in FIG. 1, when these are attached to a living body part through which exhalation passes, for example, a neck or the like and transmitted light is used, for example, a light emitting unit 1 and a light receiving unit 2 are provided on opposite sides of the center of the neck. Attach.

【0009】例として、呼気成分として、CO2の測定
を行なうとする。CO2は、酸素を吸入した生体が、排
出する呼気に含まれる成分で、発光手段1から生体に入
射した光は、このCO2に特有の波長成分が強く吸収さ
れる。従って、この波長での吸光度を受光手段2によっ
て検出された光に対して解析手段3によって求めること
により、CO2濃度の特定が可能となる。
[0009] As an example, suppose that CO 2 is measured as a breath component. CO 2 is a component contained in the exhaled breath exhaled by the living body that has inhaled oxygen, and the wavelength component specific to this CO 2 is strongly absorbed in the light incident on the living body from the light emitting means 1. Therefore, by determining the absorbance at this wavelength by the analyzing means 3 for the light detected by the light receiving means 2, the CO 2 concentration can be specified.

【0010】この吸光度の測定に対して、例えば、違っ
た波長を持った複数の発光ダイオードを発光手段1とし
て用い、これらの違った波長に対応して受光手段2で得
られる出力から、以下の解析手段3を行なう。
For the measurement of the absorbance, for example, a plurality of light emitting diodes having different wavelengths are used as the light emitting means 1, and the following outputs are obtained from the light receiving means 2 corresponding to these different wavelengths. Analysis means 3 is performed.

【0011】例えば、入射光量をI0、生体を通過した
後の光量をI、吸収係数ε、各成分の濃度Ciとする
と、ランバート−ベール則は、 log(I0/I)=ΣCi・εi であり、これを複数波長について連立方程式として解く
ことを解析手段3で行ない、所望の成分の濃度を得る。
For example, assuming that the incident light amount is I 0 , the light amount after passing through the living body is I, the absorption coefficient ε, and the concentration of each component C i , the Lambert-Beer rule is log (I 0 / I) = は C i Ε i, which is solved as a simultaneous equation for a plurality of wavelengths by the analysis means 3 to obtain the concentration of the desired component.

【0012】これは、また、発光手段として標準光源を
用い、受光手段としてマルチチャネル検出器を用いても
実現できることは、容易に類推できる。
It can be easily analogized that this can also be realized by using a standard light source as the light emitting means and using a multi-channel detector as the light receiving means.

【0013】これにより得られたCO2濃度の典型的な
測定結果を図2に示す。図2では、時間経過にしたがっ
て、生体の呼吸に応じ、CO2が周期的に減少増加を繰
り返していることが示されている。この図より、CO2
の減少増加を一呼吸としてカウントすれば、呼吸数を算
出することができる。
FIG. 2 shows a typical measurement result of the CO 2 concentration thus obtained. FIG. 2 shows that CO 2 periodically decreases and increases with time in accordance with the respiration of the living body. From this figure, CO 2
If the decrease / increase of is counted as one breath, the respiratory rate can be calculated.

【0014】ここでは、実施の形態としてCO2を示し
たが、これが、他の成分であっても同様な方法で測定可
能であることは自明である。また、透過光にかぎらず、
拡散光、透過拡散光を用いても測定可能であることも明
らかである。
Although CO 2 has been described as an embodiment, it is obvious that CO 2 can be measured in a similar manner even if other components are used. Also, not only the transmitted light,
It is clear that the measurement can be performed using diffused light and transmitted diffused light.

【0015】[0015]

【発明の効果】以上のように本発明によれば、被測定者
の口を塞ぐマスクや、呼気を解析装置に導入するホース
を携帯するという面倒無しに呼気を非侵襲に測定しうる
という顕著な効果が得られる。
As described above, according to the present invention, the breath can be measured non-invasively without the trouble of carrying a mask for closing the mouth of the subject or a hose for introducing the breath into the analyzer. Effects can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】呼気測定装置の概略図FIG. 1 is a schematic diagram of a breath measurement device.

【図2】測定されたCO2濃度の時間変化を示す図FIG. 2 is a diagram showing a time change of a measured CO2 concentration.

【図3】従来の呼気測定装置の概略図FIG. 3 is a schematic diagram of a conventional breath measurement device.

【符号の説明】[Explanation of symbols]

1 発光部 2 受光部 3 解析部 11 マスク 12 ホース 13 解析装置 DESCRIPTION OF SYMBOLS 1 Light-emitting part 2 Light-receiving part 3 Analysis part 11 Mask 12 Hose 13 Analysis device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの発光手段と、少なくと
も一つの受光手段とを備え、 前記発光手段より発せられた光を、呼気が通過する生体
部分に入射させ、この光の出射光を前記受光手段で検出
し、 生体中を通過する呼気によって受けた変化から、少なく
とも一つの呼気成分の量を測定する呼気代謝測定装置。
1. An apparatus comprising at least one light emitting means and at least one light receiving means, wherein light emitted from the light emitting means is made incident on a living body part through which exhaled breath passes, and light emitted from the light is emitted to the light receiving means. An exhalation metabolism measuring apparatus for measuring the amount of at least one exhalation component from a change received by exhalation passing through a living body, detected by the method.
【請求項2】 少なくとも一つの発光手段と、少なくと
も一つの受光手段とを備え、 前記発光手段より発せられた光を、呼気が通過する生体
部分に入射させ、この光の出射光を前記受光手段で検出
し、 生体中を通過する呼気によって受けた変化から、呼吸数
を測定する呼気代謝測定装置。
2. At least one light-emitting means and at least one light-receiving means, wherein light emitted from the light-emitting means is made incident on a living body part through which exhaled breath passes, and light emitted from the light is received by the light-receiving means. An exhalation metabolism measurement device that measures the respiratory rate from changes received by exhaled air that passes through the living body.
【請求項3】 少なくとも一つの発光手段と、少なくと
も一つの音波を検知する手段とを備え、 前記発光手段より発せられた光を、呼気が通過する生体
部分に入射させ、 この光により生じる、生体を通過中の呼気の少なくとも
一つの成分に依存した光音響信号により、少なくとも一
つの呼気成分の量を測定する呼気代謝測定装置。
3. A living body, comprising: at least one light emitting means; and at least one means for detecting a sound wave, wherein light emitted from the light emitting means is incident on a living body portion through which exhaled breath passes, A breath metabolism measuring device for measuring the amount of at least one breath component by a photoacoustic signal depending on at least one component of the breath passing through the apparatus.
【請求項4】 少なくとも一つの発光手段と、少なくと
も一つの音波を検知する手段とを備え、 前記発光手段より発せられた光を、呼気が通過する生体
部分に入射させ、この光により生じる、生体を通過中の
呼気の少なくとも一つの成分に依存した光音響信号によ
り、呼吸数を測定する呼気代謝測定装置。
4. A living body, comprising: at least one light emitting means; and at least one means for detecting at least one sound wave, wherein light emitted from the light emitting means is made incident on a part of a living body through which exhaled breath passes, and the living body is generated by the light. An apparatus for measuring respiratory metabolism, which measures a respiratory rate by a photoacoustic signal depending on at least one component of expired air passing through the apparatus.
JP9547997A 1997-04-14 1997-04-14 Exhalation metabolism measuring device Pending JPH10288615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9547997A JPH10288615A (en) 1997-04-14 1997-04-14 Exhalation metabolism measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9547997A JPH10288615A (en) 1997-04-14 1997-04-14 Exhalation metabolism measuring device

Publications (1)

Publication Number Publication Date
JPH10288615A true JPH10288615A (en) 1998-10-27

Family

ID=14138762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9547997A Pending JPH10288615A (en) 1997-04-14 1997-04-14 Exhalation metabolism measuring device

Country Status (1)

Country Link
JP (1) JPH10288615A (en)

Similar Documents

Publication Publication Date Title
US9456773B2 (en) Method for spectrophotometric blood oxygenation monitoring
US6599253B1 (en) Non-invasive, miniature, breath monitoring apparatus
JP4240154B1 (en) Gas detection method and gas detection apparatus
US8078250B2 (en) Method for spectrophotometric blood oxygenation monitoring
US5127406A (en) Apparatus for measuring concentration of substances in blood
US5057695A (en) Method of and apparatus for measuring the inside information of substance with the use of light scattering
CA1087867A (en) Method and apparatus for pulmonary function analysis
US20030208133A1 (en) Breath ketone analyzer
SE8703564D0 (en) OPTICAL GAS ANALYZER
US20090112074A1 (en) Method for measuring blood oxygen content under low perfusion
US20090270700A1 (en) Non-invasive glucose sensor
JPH0786462B2 (en) Multichannel molecular gas analysis by laser-triggered Raman light scattering
US5063275A (en) Method and apparatus for gas analysis
US20210100478A1 (en) Capnometer
Van Wagenen et al. Dedicated monitoring of anesthetic and respiratory gases by Raman scattering
US4928703A (en) Non-contact respiration rate and apnea monitor using pulmonary gas exchange technique
US20100076319A1 (en) Pathlength-Corrected Medical Spectroscopy
EP1420842B1 (en) Device for quantitative analysis of respiratory gases
JPH10288615A (en) Exhalation metabolism measuring device
US20040210152A1 (en) Device at quantitative analysis of respiratory gases
CN102784427B (en) Airway adapter and gas analyzer for measuring oxygen concentration in breathing gas
GB2049182A (en) Method and apparatus for sensing respiration
CN215812403U (en) A kind of13C gas detection device
GB2395260A (en) Gas sensor having respective optical windows for its light source and optical detector
WO2001027615A1 (en) Differential gas measurement, in particular for breathing-gas analysis