JPH10287298A - Astronautical body - Google Patents

Astronautical body

Info

Publication number
JPH10287298A
JPH10287298A JP9101739A JP10173997A JPH10287298A JP H10287298 A JPH10287298 A JP H10287298A JP 9101739 A JP9101739 A JP 9101739A JP 10173997 A JP10173997 A JP 10173997A JP H10287298 A JPH10287298 A JP H10287298A
Authority
JP
Japan
Prior art keywords
spacecraft
propeller
spacecrafts
orbit
propulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9101739A
Other languages
Japanese (ja)
Inventor
Takashi Sugano
崇 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9101739A priority Critical patent/JPH10287298A/en
Publication of JPH10287298A publication Critical patent/JPH10287298A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2427Transfer orbits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • B64G1/1064Space science specifically adapted for interplanetary, solar or interstellar exploration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/105Space science
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To drivingly control the other propeller even if one fails to constitute a propulsive system by connecting a plurality of spacecraft loading propellers in such a manner as to be separable in the state where each propeller is independently drivable, and selectively drivingly controlling the propellers of the spacecraft to generate a thrust. SOLUTION: A second spacecraft 12 is connected to a first spacecraft 10 in such a manner as to be separable through a separating and connecting mechanism 13. The second spacecraft 12 is loaded with a propeller 14 such as two- liquid type apogee engine in substantially the reverse direction to the propeller 11 of the first spacecraft 10. Namely, the propeller 14 is mounted and arranged in the reverse direction to the propeller 11 of the first spacecraft 10 in such a manner as to be drivable in the state where the second spacecraft 12 is connected to the first spacecraft 10 through the separating and connecting mechanism 13. Thus, when the propeller 11 of the first spacecraft 10 fails, the propeller 14 of the other second spacecraft 12 is drivingly-controlled, whereby the first spacecraft 10 can be navigated to a desired orbit position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば宇宙空間
や惑星において各種のミッションを遂行する惑星探査機
等に好適する宇宙航行体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spacecraft suitable for a spacecraft or the like performing various missions in space or a planet.

【0002】[0002]

【従来の技術】最近、宇宙開発の分野においては、月等
の惑星探査用宇宙航行体として、異なるミッションを遂
行する複数、例えば第1及び第2の宇宙機を分離自在に
結合させて宇宙空間に打ち上げて、独立して所望のミッ
ションを遂行することにより、運用の多様化を図る方法
が考えれている。
2. Description of the Related Art Recently, in the field of space exploration, as a spacecraft for exploring the moon or the like, a plurality of, for example, first and second spacecraft performing different missions are connected in a separable manner. In order to diversify the operation, it has been considered that the mission can be independently launched and a desired mission can be performed.

【0003】このような宇宙航行体は、例えば第1の宇
宙機が月周回軌道において所望のミッションを遂行する
宇宙機を構成し、他の第2の宇宙機が月面で所望のミッ
ションを遂行する月面着陸機を構成する。すなわち、第
1及び第2の宇宙機は、宇宙空間に到達した状態で、例
えば主系を構成する第1の宇宙機の二液式アポジエンジ
ン等の推進器が駆動制御されて、月周回軌道に軌道変換
される。そして、月周回軌道に軌道変換された状態にお
いて、第2の宇宙機は、第1の宇宙機から分離されて、
自らの推進器を駆動制御して月面に着陸し、月面でのミ
ッションを遂行する。
[0003] In such a spacecraft, for example, a first spacecraft constitutes a spacecraft that performs a desired mission in a lunar orbit, and another second spacecraft performs a desired mission on the moon. Make up a lunar lander. That is, when the first and second spacecraft reach the outer space, for example, the propulsion unit such as the two-liquid type apogee engine of the first spacecraft constituting the main system is driven and controlled, and the lunar orbit is orbited. The orbit is converted to Then, in a state where the orbit is changed to a lunar orbit, the second spacecraft is separated from the first spacecraft,
Drive and control your own propulsion unit to land on the moon and perform missions on the moon.

【0004】ところが、上記宇宙航行体では、月周回軌
道に到達するまで、第1の宇宙機の推進器で軌道変換
し、その後、第2の宇宙機が自らの推進器で月面に着陸
する構成のために、第1の宇宙機の推進器が故障した場
合、第1の宇宙機のミッションの遂行は無論のこと、第
2の宇宙機のミッション遂行も困難となるという問題を
有する。
[0004] However, in the above spacecraft, the orbit is changed by the propulsion unit of the first spacecraft until it reaches the lunar orbit, and then the second spacecraft lands on the moon with its own propulsion unit. Due to the configuration, when the propulsion unit of the first spacecraft breaks down, there is a problem that the mission of the first spacecraft is of course difficult to perform, and the mission of the second spacecraft is also difficult to perform.

【0005】[0005]

【発明が解決しようとする課題】以上述べたように、従
来の宇宙航行体では、複数の宇宙機のうち軌道変換用の
推進器が故障すると、全てのミッションの遂行が困難と
なるとい問題を有する。この発明は上記の事情に鑑みて
なされたもので、構成簡易にして、汎用性の向上を図
り、確実にミッション遂行を実現し得るようにした宇宙
航行体を提供することを目的とする。
As described above, the conventional spacecraft has a problem that if a propulsion unit for orbit conversion among a plurality of spacecrafts fails, it becomes difficult to perform all missions. Have. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a spacecraft with a simplified configuration, improved versatility, and capable of reliably performing a mission.

【0006】[0006]

【課題を解決するための手段】この発明は、推進器が搭
載された複数の宇宙機と、この複数の宇宙機を各推進器
が独立して駆動可能な状態で分離自在に結合する分離結
合手段と、前記複数の宇宙機の推進器を選択的に駆動制
御して推力を発生する推進系制御手段とを備えて宇宙航
行体を構成したものである。
SUMMARY OF THE INVENTION According to the present invention, there are provided a plurality of spacecraft on which propulsors are mounted, and a separable connection in which the plurality of spacecrafts are separably connected such that each propulsion unit can be driven independently. Means and a propulsion system control means for selectively driving and controlling the propulsors of the plurality of spacecraft to generate thrust, thereby constituting a spacecraft.

【0007】上記構成によれば、複数の宇宙機の推進器
が互いに冗長系を構成することにより、一つの宇宙機の
推進器が故障して正常な動作が困難となった場合には、
他の宇宙機の推進器を駆動制御して、所望のミッション
遂行可能な軌道まで航行する。従って、複数の宇宙機の
推進器の一つが故障しても、他の推進器を駆動制御して
推進系を構成することが可能となるため、全てのミッシ
ョン遂行が困難となることがなくなり、最低限のミッシ
ョン達成が可能となる。
According to the above configuration, since the propulsors of a plurality of spacecrafts constitute a redundant system with each other, when the propulsion of one spacecraft fails and normal operation becomes difficult,
The propulsion unit of another spacecraft is driven and controlled to travel to an orbit capable of performing a desired mission. Therefore, even if one of the propulsion units of a plurality of spacecrafts fails, it becomes possible to drive and control the other propulsion units to form a propulsion system, so that it is not difficult to perform all missions, It is possible to achieve the minimum mission.

【0008】[0008]

【発明の実施の形態】以下、この発明の実施の形態につ
いて、図面を参照して詳細に説明する。図1は、この発
明の一実施の形態に係る宇宙航行体を示すもので、第1
の宇宙機10は、月探査機の主系を構成し、二液式アポ
ジエンジン等の推進器11が搭載される。そして、この
第1の宇宙機10には、所望の月周回軌道から月を探査
する各種のミッション機器が搭載される。第1の宇宙機
10には、図示しないスラスタ等で構成される姿勢制御
系が搭載され、この姿勢制御系を介して宇宙空間におい
て、例えば3軸回りが姿勢制御される。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a spacecraft according to an embodiment of the present invention.
The spacecraft 10 constitutes the main system of the lunar explorer, and is equipped with a propulsion device 11 such as a two-component apogee engine. The first spacecraft 10 is equipped with various mission devices for exploring the moon from a desired lunar orbit. The first spacecraft 10 is equipped with an attitude control system including a thruster (not shown) and the like, and attitude control is performed, for example, around three axes in space through the attitude control system.

【0009】また、第1の宇宙機10には、例えば月面
着陸機を構成する第2の宇宙機12が分離結合機構13
を介して分離自在に結合される。第2の宇宙機12は、
冗長推進系を構成する二液式アポジエンジン等の推進器
14が、例えば第1の宇宙機10の推進器11と略逆向
きに搭載される。すなわち、第2の宇宙機12の推進器
14は、該第2の宇宙機12が第1の宇宙機10に分離
結合機構13を介して結合された状態において駆動可能
に、例えば第1の宇宙機10の推進器11と逆向きに取
付け配置される。
Further, the first spacecraft 10 is provided with, for example, a second spacecraft 12 constituting a lunar landing machine by a separation coupling mechanism 13.
Are releasably connected via a. The second spacecraft 12
A propulsion device 14 such as a two-liquid apogee engine that forms a redundant propulsion system is mounted, for example, in a direction substantially opposite to the propulsion device 11 of the first spacecraft 10. That is, the propulsion unit 14 of the second spacecraft 12 can be driven in a state where the second spacecraft 12 is coupled to the first spacecraft 10 via the separation coupling mechanism 13, for example, the first spacecraft It is attached and arranged in the direction opposite to the propulsion unit 11 of the machine 10.

【0010】上記第1及び第2の宇宙機10,12の推
進器11,14には、各消費推薬量がWs 及びWl とす
ると、搭載する全消費推薬量Wt が Wt =Wl +Ws となる。この消費推薬量Ws 及びWl は、運用形態とし
て、例えば図2に示す月探査を考慮した場合、月周回軌
道を(100×100[km])とすると、Wsとして
800[kg]の消費推薬を必要とし、月周回軌道から
月面着陸までの消費推薬量Wl として200[kg]の
消費推薬を必要とする。
Assuming that the propellants 11 and 14 of the first and second spacecrafts 10 and 12 respectively have propellant amounts Ws and Wl, the total propellant amount Wt to be mounted is Wt = Wl + Ws. Become. The consumed propellant amounts Ws and Wl are, as operation modes, for example, considering the lunar exploration shown in FIG. 2, when the lunar orbit is (100 × 100 [km]), the consumption propellant of 800 [kg] as Ws is obtained. A drug is required, and a consumption propellant of 200 [kg] is required as a consumption propellant amount Wl from the lunar orbit to the lunar landing.

【0011】ここで、仮に第1の宇宙機10の推進器1
1に消費推薬量Ws (800[kg])を搭載し、第2
の宇宙機12の推進器14に消費推薬量Wl (200
[kg])を搭載すると、第1の宇宙機10の推進器1
1が故障して正常に動作しなくなった場合には、例えば
図3中において(a)で示す超楕円軌道(34300×
100[km])にしか投入することが困難となる。
Here, suppose that the propulsion unit 1 of the first spacecraft 10 is
No. 1 is equipped with propellant consumption Ws (800 [kg])
Of the propellant consumed Wl (200
[Kg]), the propulsion unit 1 of the first spacecraft 10
In the case where the device 1 fails and does not operate normally, for example, a hyperelliptic orbit (34300 ×
100 [km]).

【0012】そこで、第1の宇宙機10の推進器11に
は、消費推薬量Wl として図3中において(b)で示す
月周回軌道に投入するのに必要とする500[kg]を
搭載し、第2の宇宙機12の推進器14には、消費推薬
量WS として、500[kg]を搭載する。これによ
り、第1及び第2の宇宙機10,12は、第1の宇宙機
10の推進器11が駆動して地球周回軌道から月周回軌
道への軌道変換途中において、推進系が第1の宇宙機1
0の推進器11から第2の宇宙機12の推進器14へと
切換えられて軌道変換を終了する。
Therefore, the propulsion unit 11 of the first spacecraft 10 is loaded with 500 kg required as a propellant consumption Wl to be injected into the lunar orbit shown in FIG. Then, 500 [kg] is mounted on the propulsion device 14 of the second spacecraft 12 as the consumed propellant amount WS. As a result, the first and second spacecrafts 10 and 12 are driven by the propulsion system 11 while the propulsion unit 11 of the first spacecraft 10 is driven to change the orbit from the Earth orbit to the lunar orbit. Spacecraft 1
The propulsion unit 11 is switched to the propulsion unit 14 of the second spacecraft 12 to complete the orbit conversion.

【0013】上記構成において、宇宙空間に打ち上げら
れて地球周回軌道に投入された状態で、図2に示すよう
に第1の宇宙機10の推進器11が駆動されて、月周回
軌道に投入され、所望の月周回軌道(例えば図3中にお
いて(a)で示す超楕円軌道(34300×100[k
m])に投入されたた後、同図中において(b)で示す
月周回軌道(1400×100[km]))に軌道変換
される。この軌道変換時、例えば第1の宇宙機10の推
進器11及び第2の宇宙機12の推進器14を駆動制御
して、先ず、航行方向が変換される。
In the above configuration, the propulsion unit 11 of the first spacecraft 10 is driven into the lunar orbit while being launched into the outer space and put into the orbit around the earth as shown in FIG. , A desired lunar orbit (for example, a hyperelliptical orbit (34300 × 100 [k
m]), the orbit is converted to a lunar orbit (1400 × 100 [km]) shown in FIG. At the time of this orbit change, for example, the driving direction of the propulsion unit 11 of the first spacecraft 10 and the propulsion unit 14 of the second spacecraft 12 are controlled to convert the navigation direction first.

【0014】次に、第2の宇宙機12の推進器14を駆
動して月周回軌道に軌道変換し、所望の月周回軌道、例
えば図3中において(b)で示す月周回軌道に到達した
状態で、分離結合機構13が駆動されて、第1の宇宙機
10と第2の宇宙機12が解放分離される。
Next, the propulsion unit 14 of the second spacecraft 12 is driven to convert the orbit into a lunar orbit, and reaches a desired lunar orbit, for example, a lunar orbit shown in FIG. 3B. In this state, the separating and coupling mechanism 13 is driven, and the first spacecraft 10 and the second spacecraft 12 are released and separated.

【0015】ここで、第1の宇宙機10は、月周回軌道
を航行しながらミッション機器を動作制御して所望のミ
ッションを遂行する。他方、第2の宇宙機12は、推進
器14を駆動して独自で航行し、月面に着陸してミッシ
ョン機器を動作制御して所望のミッションを遂行する。
Here, the first spacecraft 10 performs a desired mission by controlling the operation of mission equipment while traveling in a lunar orbit. On the other hand, the second spacecraft 12 drives the propulsion device 14 to independently travel, lands on the moon, and controls the operation of mission equipment to perform a desired mission.

【0016】上記第1及び第2の宇宙機10,12は、
分離するまでの結合状態において、例えば第1の宇宙機
10の姿勢制御系を介して姿勢が制御され、分離状態で
は、独自の姿勢制御系で姿勢制御がそれぞれ行われる。
The first and second spacecrafts 10, 12 are:
In the coupled state until the separation, the attitude is controlled, for example, via the attitude control system of the first spacecraft 10. In the separated state, the attitude control is performed by the original attitude control system.

【0017】このように、上記宇宙航行体は、第1及び
第2の宇宙機10,12にそれぞれ推進器11,14を
搭載して、この第1及び第2の宇宙機10,12を、そ
の推進器11,14が独立に駆動可能な状態で分離自在
に結合して、宇宙空間に打ち上げて、第1及び第2の宇
宙機10,12の双方の推進器11,14を用いて軌道
変換を実現し得るように構成した。
As described above, the spacecraft has the propulsors 11 and 14 mounted on the first and second spacecrafts 10 and 12, respectively, and connects the first and second spacecrafts 10 and 12 with each other. The propulsors 11 and 14 are detachably connected in a state where they can be driven independently, are launched into outer space, and are orbited using the propulsors 11 and 14 of both the first and second spacecrafts 10 and 12. It is configured so that conversion can be realized.

【0018】これによれば、軌道変換の推進系が冗長推
進系を持つ二重構造を採っていることにより、例えば第
1の宇宙機10の推進器11が故障して正常な動作が困
難となった場合においても、他方の第2の宇宙機12の
推進器14を駆動制御して、第1の宇宙機10を所望の
軌道位置まで航行することが可能となるため、最悪でも
第1の宇宙機10のミッション遂行が可能な月周回軌道
まで航行することが実現される。従って、第1の宇宙機
10の推進器11が故障しても、冗長推進系を構成する
ことができることにより、全てのミッション遂行が困難
となることがなくなり、最低限のミッション達成が実現
されるため、ミッション達成の確実化が図れる。
According to this, since the orbit conversion propulsion system adopts a double structure having a redundant propulsion system, for example, the propulsion unit 11 of the first spacecraft 10 fails and normal operation is difficult. Even in the case where the first spacecraft 12 is driven, the propulsion unit 14 of the other second spacecraft 12 can be driven and controlled to navigate the first spacecraft 10 to a desired orbital position. It is realized that the spacecraft 10 sails to a lunar orbit where the mission can be performed. Therefore, even if the propulsion unit 11 of the first spacecraft 10 fails, the redundant propulsion system can be configured, so that it is not difficult to perform all missions, and the minimum mission can be achieved. Therefore, it is possible to ensure mission achievement.

【0019】なお、上記実施の形態では、月周回衛星及
び月面着陸機を構成する第1及び第2の宇宙機10,1
2の2機を用いて構成した場合で説明したが、この数の
宇宙機に限ることなく、2機以上の宇宙機を用いても構
成することも可能である。
In the above embodiment, the first and second spacecrafts 10 and 1 constituting the lunar orbiting satellite and the lunar lander are described.
Although the description has been made of the case of using two of the two spacecraft, the present invention is not limited to this number of spacecraft, and it is also possible to use two or more spacecraft.

【0020】そして、運用形態としては、月の探査に限
ることなく、その他の惑星探査等においても適用可能で
ある。この運用形態における使用状況としては、推進器
11,14に搭載する消費推進薬量の適宜設定により、
各種の冗長推進系を構成することが可能となる。
The operation mode is not limited to lunar exploration, but can be applied to other planetary explorations and the like. The usage status in this operation mode is determined by appropriately setting the amount of propellant consumed to be mounted on the propulsion units 11 and 14.
Various redundant propulsion systems can be configured.

【0021】また、上記実施の形態では、第1及び第2
の宇宙機10,12の推進器11,14を略逆向きに取
付け配置して相互を結合配置し、冗長推進系を構成する
ようにした場合で説明したが、これら推進器11,14
の配置構成としては、これに限ることなく、各種の配置
構成が可能である。よって、この発明は、上記実施の形
態に限ることなく、その他、この発明の要旨を逸脱しな
い範囲で種々の変形を実施し得ることは勿論のことであ
る。
In the above embodiment, the first and second
Of the spacecrafts 10 and 12 are mounted in substantially opposite directions and connected to each other to form a redundant propulsion system.
The arrangement is not limited to this, and various arrangements are possible. Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0022】[0022]

【発明の効果】以上詳述したように、この発明によれ
ば、構成簡易にして、汎用性の向上を図り、確実にミッ
ション遂行を実現し得るようにした宇宙航行体を提供す
ることができる。
As described in detail above, according to the present invention, it is possible to provide a spacecraft with a simplified configuration, improved versatility, and capable of reliably performing a mission. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態に係る宇宙航行体を示
した図。
FIG. 1 is a diagram showing a spacecraft according to an embodiment of the present invention.

【図2】図1の軌道変換動作を説明するために示した
図。
FIG. 2 is a view shown for explaining the trajectory conversion operation of FIG. 1;

【図3】図1の消費推薬量とアポルン高度(Hap)の
関係を示した図。
FIG. 3 is a diagram showing a relationship between the consumed propellant amount and the Apollon altitude (Hap) in FIG. 1;

【符号の説明】[Explanation of symbols]

10…第1の宇宙機。 11,14…推進器。 12…第2の宇宙機。 13…分離結合機構。 10 First spacecraft. 11, 14 ... thrusters. 12 Second spacecraft. 13 ... Separation connection mechanism.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 推進器が搭載された複数の宇宙機と、 この複数の宇宙機を各推進器が独立して駆動可能な状態
で分離自在に結合する分離結合手段と、 前記複数の宇宙機の推進器を選択的に駆動制御して推力
を発生する推進系制御手段とを具備した宇宙航行体。
1. A plurality of spacecraft having a propulsion device mounted thereon, separation coupling means for separating the plurality of spacecrafts so that each propulsion device can be driven independently, and the plurality of spacecrafts. A spacecraft including propulsion system control means for selectively driving and controlling the propulsion device according to claim 1 to generate thrust.
【請求項2】 前記複数の宇宙機は、各推進器で独立に
航行可能であることを特徴とする請求項1記載の宇宙航
行体。
2. The spacecraft according to claim 1, wherein the plurality of spacecrafts are independently navigable by each propulsion device.
【請求項3】 前記複数の宇宙機は、独立したミッショ
ン機器が搭載されることを特徴とする請求項1又は2記
載の宇宙航行体。
3. The spacecraft according to claim 1, wherein the plurality of spacecrafts are equipped with independent mission devices.
【請求項4】 前記複数の宇宙機の推進器は、消費推薬
を燃焼させて推力を発生させ、該消費推薬量が複数の宇
宙機毎に異なることを特徴とする請求項1乃至3のいず
れかに記載の宇宙航行体。
4. The propulsion device of the plurality of spacecrafts generates a thrust by burning a consumed propellant, and the consumed propellant amount differs for each of the plurality of spacecrafts. A spacecraft according to any one of the above.
JP9101739A 1997-04-18 1997-04-18 Astronautical body Pending JPH10287298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9101739A JPH10287298A (en) 1997-04-18 1997-04-18 Astronautical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9101739A JPH10287298A (en) 1997-04-18 1997-04-18 Astronautical body

Publications (1)

Publication Number Publication Date
JPH10287298A true JPH10287298A (en) 1998-10-27

Family

ID=14308631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9101739A Pending JPH10287298A (en) 1997-04-18 1997-04-18 Astronautical body

Country Status (1)

Country Link
JP (1) JPH10287298A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702040B2 (en) 2010-05-14 2014-04-22 Japan Aerospace Exploration Agency Panel type artificial satellite and artificial satellite system therewith
WO2018029839A1 (en) * 2016-08-10 2018-02-15 株式会社ispace Transport method, transport ship and method for manufacturing transport ship
KR20180049665A (en) * 2016-11-03 2018-05-11 한국항공우주연구원 Flight Dynamics System for Planetary Exploration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702040B2 (en) 2010-05-14 2014-04-22 Japan Aerospace Exploration Agency Panel type artificial satellite and artificial satellite system therewith
WO2018029839A1 (en) * 2016-08-10 2018-02-15 株式会社ispace Transport method, transport ship and method for manufacturing transport ship
KR20180049665A (en) * 2016-11-03 2018-05-11 한국항공우주연구원 Flight Dynamics System for Planetary Exploration

Similar Documents

Publication Publication Date Title
US5143327A (en) Integrated launch and emergency vehicle system
US4471926A (en) Transfer vehicle for use in conjunction with a reusable space shuttle
EP0425664B1 (en) Multi-use launch system
US8763957B1 (en) Spacecraft transfer orbit techniques
JP7383666B2 (en) Operation system for earth-orbiting satellites with electric thrusters
JPH11321797A (en) Propulsion module permitting alteration
EP0958170A1 (en) Spacecraft attitude control system using low thrust thrusters
US5931419A (en) Reducing satellite weight and cost
JPH10287298A (en) Astronautical body
RU2730700C1 (en) Device for delivery of tourists from near-moon orbit to surface of moon and subsequent return to ground
US5826830A (en) Dual-half system, full torque reaction control thruster configuration for three-axis stabilized spacecraft
US11697513B2 (en) Method for orbit control and desaturation of a satellite by means of a single articulated arm carrying a propulsion unit
Brophy et al. 30-kW SEP spacecraft as secondary payloads for low-cost deep space science missions
Wertz Implementing autonomous orbit control
RU2744844C1 (en) Reusable space transportation system for one-way cargo delivery and mass delivery of tourists from long orbit to the lunar surface and following return to earth
AU2021302784B2 (en) Method for orbit control and desaturation of a satellite by means of articulated arms supporting propulsion units
Frisbee Interstellar mission propulsion studies- Status update
RU2741143C1 (en) Reusable spacecraft for delivering tourists from the lunar fueling station to the flight path of mars and subsequent return to that station
Hu et al. Orion GN&C overview and architecture
Aldrin Apollo and Beyond
Sackett et al. Flight control, dynamics, and structural interaction on the second Hubble Space Telescope servicing mission
Morita et al. Guidance, control and navigation of the LUNAR-A penetrator system
MINOVITCH Exploring the solar system with multiple-launched gravity-propelled miniaturised spacecraft
Smith et al. Advanced propulsion systems for geostationary spacecraft Study results
Borowski et al. Artificial gravity human exploration missions to Mars and near Earth asteroids using'bimodal'NTR propulsion