JPH10286454A - Film forming device and film forming method of oxide - Google Patents

Film forming device and film forming method of oxide

Info

Publication number
JPH10286454A
JPH10286454A JP9778397A JP9778397A JPH10286454A JP H10286454 A JPH10286454 A JP H10286454A JP 9778397 A JP9778397 A JP 9778397A JP 9778397 A JP9778397 A JP 9778397A JP H10286454 A JPH10286454 A JP H10286454A
Authority
JP
Japan
Prior art keywords
film
substrate
plasma
film forming
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9778397A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoyama
拓 青山
Tadaaki Kuno
忠昭 久野
Satoru Miyashita
悟 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9778397A priority Critical patent/JPH10286454A/en
Publication of JPH10286454A publication Critical patent/JPH10286454A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an oxide film which satisfies objective performance (such as uniformity and physical properties) on a substrate simply and in a short time, by irradiating the film forming material with electromagnetic waves when the film is formed by thermal plasma method. SOLUTION: A platinum substrate 107 is arranged in a vacuum chamber 103. After a plasma torch 102 and the vacuum chamber 103 are enoughly evacuated, argon gas is introduced into the chamber to control the inner pressure to about 1 Torr. A high frequency voltage is applied on the plasma torch 102 to produce argon plasma and while increasing the argon gas pressure, oxygen gas is introduced to control the pressure in the vacuum chamber 103 to 100 Torr and to stabilize the plasma. A source material is prepared by dispersing a zirconia powder having about 20 μm average particle size in ethylalcohol, and the source material is atomized in a ultrasonic wave tank 110 and introduced into the vacuum chamber 103 to initiate the film forming process on the substrate 107. In this process, the film is formed while being irradiated with electromagnetic waves 104 such as UV rays and excimer laser light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱プラズマ中で被
成膜物質を含有する原料を蒸発、分解して基板上あるい
は構造材表面に酸化物を成膜する装置及びその装置を用
いた成膜方法に関する。得られた酸化物膜は、基板や構
造材の皮膜として利用されたり、酸化物の物性を利用し
た電子デバイス材料などとして用いられる。また、基板
上から剥離し、酸化物膜単体として構造材としても利用
される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for evaporating and decomposing a raw material containing a substance to be formed in a thermal plasma to form an oxide film on a substrate or a surface of a structural material, and a composition using the apparatus. It relates to a membrane method. The obtained oxide film is used as a film of a substrate or a structural material, or as an electronic device material utilizing the properties of an oxide. Further, it is peeled off from the substrate and used as a structural material as an oxide film alone.

【0002】[0002]

【従来の技術】熱プラズマを用いた基板上への成膜方法
としては、熱プラズマCVD法(特開平5−32091
6)、プラズマSPLAY−ICP法(Appl. Phis. Le
tt. 14(1990)1452)、プラズマフラッシュ蒸発法(特開
平5−311462)、プラズマ溶射法(特開平6−7
6986)等が知られている。
2. Description of the Related Art As a method for forming a film on a substrate using thermal plasma, a thermal plasma CVD method (Japanese Patent Laid-Open No. 5-32091) is known.
6), plasma spray-ICP method (Appl. Phis. Le
tt. 14 (1990) 1452), a plasma flash evaporation method (JP-A-5-31462), and a plasma spraying method (JP-A-6-7).
6986).

【0003】いずれも、被成膜物質を含む原料をプラズ
マ中に供給し、これを蒸発、分解あるいはプラズマ中で
反応させて、基板上に膜を形成するものである。
In each case, a raw material containing a substance to be film-formed is supplied into a plasma, which is evaporated, decomposed, or reacted in the plasma to form a film on a substrate.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
従来法では、供給原料がプラズマ中で十分反応せず、目
的とする構造の膜が基板上に得られなかったり、プラズ
マ反応領域(テールフレーム)の分布の制御が困難であ
るため、得られた膜も基板上で不均一であったり問題を
生じていた。
However, in the above-mentioned conventional method, the feed material does not sufficiently react in the plasma, and a film having a desired structure cannot be obtained on the substrate, or the plasma reaction region (tail frame) Since it is difficult to control the distribution of the particles, the resulting film is also non-uniform on the substrate or causes a problem.

【0005】基板上に得られる膜の緻密度を向上させた
り、結晶性膜の場合は結晶性を向上させたりする目的と
して、必要に応じて成膜時に基板を加熱したり、あるい
は成膜後の膜を加熱焼成処理したりする従来技術もあ
る。しかし、基板加熱によって、基板とその上層の膜と
の熱膨張率の違いで応力が発生し、これにより基板全体
が反ってしまったり、膜に亀裂(クラック)が発生した
り、剥離が起きるといった問題があった。また、成膜後
の加熱焼成処理でも同様な熱歪みの問題や、工程数増加
によるコストアップ、製造時間の遅延といった量産面で
のデメリットがある。
[0005] For the purpose of improving the density of the film obtained on the substrate and, in the case of a crystalline film, improving the crystallinity, the substrate is heated at the time of film formation as necessary, or There is also a conventional technique in which a film is heated and baked. However, when the substrate is heated, stress is generated due to the difference in the coefficient of thermal expansion between the substrate and the film on the substrate, which causes the entire substrate to warp, cracks in the film, and peeling. There was a problem. Further, even in the heating and firing treatment after film formation, there are disadvantages in mass production, such as a problem of thermal distortion, an increase in cost due to an increase in the number of steps, and a delay in manufacturing time.

【0006】そこで、本発明はこのような従来の種々の
問題点を解決するもので、その目的とするところは、簡
便かつ短時間で目的とする性能(均一性や物性)を満足
する膜を基板上に作製するプラズマ成膜装置及びその装
置を利用した成膜方法を提供するところにある。
Accordingly, the present invention is to solve such various problems of the prior art, and an object thereof is to provide a film which satisfies the desired performance (uniformity and physical properties) simply and in a short time. An object of the present invention is to provide a plasma film forming apparatus formed on a substrate and a film forming method using the apparatus.

【0007】[0007]

【課題を解決するための手段】本発明の酸化物の成膜装
置は、被成膜物質を含有する原料をプラズマ発生部に導
入し、これを蒸発、分解させてプラズマ下流に設置した
基板上あるいは構造材表面に堆積させることのできる酸
化物の成膜装置において、該基板部に電磁波を照射でき
る構造もしくは電磁波照射装置を具備することを特徴と
する。また、本発明の酸化物の成膜装置は、前記電磁波
が紫外線もしくは前記電磁波照射装置が紫外線発生装置
であることを特徴とする。また、本発明の酸化物の成膜
装置は、前記電磁波がエキシマレーザーもしくは前記電
磁波照射装置がエキシマレーザー発生装置であることを
特徴とする。
The oxide film forming apparatus of the present invention introduces a raw material containing a substance to be formed into a plasma generating section, evaporates and decomposes the raw material and installs the raw material on a substrate provided downstream of the plasma. Alternatively, an oxide film formation apparatus that can be deposited on a surface of a structural material is characterized by including a structure capable of irradiating the substrate portion with an electromagnetic wave or an electromagnetic wave irradiation apparatus. Further, the oxide film forming apparatus of the present invention is characterized in that the electromagnetic wave is ultraviolet light or the electromagnetic wave irradiation device is an ultraviolet light generating device. Further, the oxide film forming apparatus of the present invention is characterized in that the electromagnetic wave is an excimer laser or the electromagnetic wave irradiation device is an excimer laser generator.

【0008】本発明の酸化物の成膜方法は、被成膜物質
を含有する原料をプラズマ発生部に導入し、これを蒸
発、分解させてプラズマ下流に設置した基板上あるいは
構造材表面に堆積させる酸化物成膜方法において、被成
膜物質の基板上への堆積時に基板部またはその近傍の被
成膜物質に電磁波を照射することを特徴とする。また、
本発明の酸化物の成膜方法は、前記電磁波が紫外線であ
ることを特徴とする。また、本発明の酸化物の成膜方法
は、前記電磁波がエキシマレーザーであることを特徴と
する。
According to the method of forming an oxide film of the present invention, a raw material containing a substance to be formed is introduced into a plasma generating section, and the material is evaporated and decomposed to deposit on a substrate or a structural material surface installed downstream of the plasma. In the oxide film formation method to be performed, an electromagnetic wave is applied to the film formation material at or near the substrate portion when the film formation material is deposited on the substrate. Also,
The method for forming an oxide film according to the present invention is characterized in that the electromagnetic waves are ultraviolet rays. In the method for forming an oxide film according to the present invention, the electromagnetic wave is an excimer laser.

【0009】[0009]

【発明の実施の形態】上述に示したように、成膜時にエ
キシマレーザー等を照射することによって、プラズマ中
で反応が不充分であったり不均一であっても、照射エネ
ルギーのアシストにより基板上で被成膜物質が再配列あ
るいは結晶化が完結しながら堆積していくため、良好な
膜が基板上に得られる。過度な基板加熱がないので、基
板への熱的ダメージや基板−膜間の熱膨張率の差に由来
する反り、剥離、クラックといった問題も生じない。ま
た、後処理等も不要である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, irradiation with an excimer laser or the like during film formation allows the substrate to be formed on the substrate with the assistance of irradiation energy even if the reaction is insufficient or uneven in the plasma. Thus, a substance to be deposited is deposited while rearrangement or crystallization is completed, so that a favorable film can be obtained on the substrate. Since there is no excessive substrate heating, problems such as warpage, peeling, and cracks due to thermal damage to the substrate and differences in the coefficient of thermal expansion between the substrate and the film do not occur. Further, no post-processing is required.

【0010】以上作用、効果について簡単に述べたが、
以下実施例に基づき、本発明を更に詳細に説明する。
The operation and effects have been briefly described above.
Hereinafter, the present invention will be described in more detail based on examples.

【0011】(実施例1)本発明の成膜装置の概略を図
1に示す。真空チャンバー103内に白金基板を設置し
た後、プラズマトーチ部102及びチャンバー103内
を十分真空に引いた後、アルゴンガスを導入して1to
rrとした。トーチ部に高周波を印加しアルゴンプラズ
マを発生させ、アルゴンガス圧を上昇させながら同時に
酸素ガスを導入し、アルゴンと酸素の流量比が10対1
になるように保ちながら、チャンバー103内の圧力を
100torrとしプラズマを安定化させた。
(Embodiment 1) An outline of a film forming apparatus of the present invention is shown in FIG. After the platinum substrate is set in the vacuum chamber 103, the inside of the plasma torch unit 102 and the chamber 103 is sufficiently evacuated, and argon gas is introduced thereinto for 1 ton.
rr. A high frequency was applied to the torch to generate argon plasma, and oxygen gas was simultaneously introduced while increasing the argon gas pressure, so that the flow ratio of argon to oxygen was 10: 1.
, The pressure in the chamber 103 was set to 100 torr to stabilize the plasma.

【0012】一方、平均粒径約20μmのジルコニア粉
体をエチルアルコールに分散させて原料とし、これを超
音波印加(110)によりミスト化してプラズマチャン
バー内に導入し、基板上に成膜を開始した。この時、エ
キシマレーザー(KrF、波長248nm)104を照
射密度20mJ/cm2 で照射しながら10分間成膜を
行った(試料1)。一方比較のため、エキシマレーザー
を照射せずに同条件で成膜したものも用意した(比較例
1)。
On the other hand, a zirconia powder having an average particle size of about 20 μm is dispersed in ethyl alcohol to obtain a raw material, which is mist-formed by applying an ultrasonic wave (110), introduced into a plasma chamber, and a film is formed on a substrate. did. At this time, a film was formed for 10 minutes while irradiating an excimer laser (KrF, wavelength: 248 nm) 104 at an irradiation density of 20 mJ / cm 2 (Sample 1). On the other hand, for comparison, a film formed under the same conditions without excimer laser irradiation was also prepared (Comparative Example 1).

【0013】以上のようにして得られた基板上の膜は、
試料1、比較例1共厚みが約0.2μmであった。構造
を調べるため、両者のX線回折測定を行ったところ、試
料1では立方晶のジルコニア結晶膜であったが、比較例
1では、回折ピークが認められず、非晶質膜であること
が判明した。基板から膜を剥離したところ、比較例1の
非晶質膜は、粉状に崩れてしまい膜として得ることがで
きなかったが、試料1の結晶膜は、成膜時の厚さ0.2
μmを保持した状態できれいに剥離することができ、分
析の結果、高密度、高剛性のジルコニア膜であることが
判明した。
The film on the substrate obtained as described above is
Both Sample 1 and Comparative Example 1 had a thickness of about 0.2 μm. In order to examine the structure, X-ray diffraction measurement of the two was carried out. As a result, the sample 1 was a cubic zirconia crystal film, but in Comparative Example 1, no diffraction peak was observed, indicating that the film was an amorphous film. found. When the film was peeled from the substrate, the amorphous film of Comparative Example 1 collapsed into a powder state and could not be obtained as a film, but the crystalline film of Sample 1 had a thickness of 0.2% at the time of film formation.
The film could be peeled cleanly while maintaining the thickness of μm, and as a result of analysis, it was found that the zirconia film had high density and high rigidity.

【0014】このように、プラズマ成膜時に、レーザー
を照射することにより、基板高温加熱をすることなくそ
の場で結晶化膜を得ることができ、その効果が示され
た。また、照射する光源として、XeCl、ArF、A
r2、Kr2、Xe2 等の他のエキシマレーザーや水銀ラ
ンプ等の紫外線光源も試したところ、条件を選べば本実
施例と同様な照射効果が得られることが判明した。
As described above, by irradiating a laser at the time of plasma film formation, a crystallized film can be obtained in situ without heating the substrate at a high temperature, and the effect has been shown. XeCl, ArF, A
Other excimer lasers such as r2, Kr2, and Xe2, and ultraviolet light sources such as a mercury lamp were also tested, and it was found that the same irradiation effect as in this embodiment could be obtained if the conditions were selected.

【0015】(実施例2)図1において、真空チャンバ
ー103内に白金付きシリコン基板を設置した後、プラ
ズマトーチ部102及びチャンバー103内を十分真空
に引いた後、アルゴンガスを導入して1torrとし
た。トーチ部に高周波を印加しアルゴンプラズマを発生
させ、アルゴンガス圧を上昇させながら同時に酸素ガス
を導入し、アルゴンと酸素の流量比が10対1になるよ
うに保ちながら、チャンバー103内の圧力を100t
orrとしプラズマを安定化させた。
(Embodiment 2) In FIG. 1, after a silicon substrate with platinum is placed in a vacuum chamber 103, the inside of the plasma torch section 102 and the chamber 103 is sufficiently evacuated, and argon gas is introduced to reduce the pressure to 1 torr. did. A high frequency is applied to the torch to generate argon plasma, and oxygen gas is simultaneously introduced while increasing the argon gas pressure, and the pressure in the chamber 103 is reduced while maintaining the flow ratio of argon to oxygen at 10: 1. 100t
The plasma was stabilized at orr.

【0016】一方、酢酸鉛とチタニウムテトライソプロ
ポキシドを所定濃度含有するゾル液を原料として用意
し、これを超音波印加(110)によりミスト化してプ
ラズマチャンバー内に導入し、基板上に成膜を開始し
た。この時、エキシマレーザー(KrF、波長248n
m)104を照射密度20mJ/cm2 で照射しながら
20分間成膜を行った(試料1)。一方比較のため、エ
キシマレーザーを照射せずに同条件で成膜したものも用
意した(比較例1)。
On the other hand, a sol solution containing a predetermined concentration of lead acetate and titanium tetraisopropoxide is prepared as a raw material, which is mist-formed by applying an ultrasonic wave (110), introduced into a plasma chamber, and formed into a film on a substrate. Started. At this time, an excimer laser (KrF, wavelength 248 n
m) A film was formed for 20 minutes while irradiating 104 at an irradiation density of 20 mJ / cm 2 (Sample 1). On the other hand, for comparison, a film formed under the same conditions without excimer laser irradiation was also prepared (Comparative Example 1).

【0017】以上のようにして得られた基板上の膜は、
試料1、比較例1共厚みが約1.0μmであった。構造
を調べるため、両者のX線回折測定を行ったところ、試
料1では正方晶のペロブスカイト型チタン酸鉛(PbT
iO3)が基板上に成膜されていることが判明した。一
方、比較例1では明瞭な回折ピークが認められず、非晶
質膜であることが判明した。
The film on the substrate obtained as described above is
Sample 1 and Comparative Example 1 had a thickness of about 1.0 μm. In order to examine the structure, X-ray diffraction measurement was performed on both of them. In Sample 1, tetragonal perovskite-type lead titanate (PbT
iO3) was found to be deposited on the substrate. On the other hand, in Comparative Example 1, no clear diffraction peak was observed, and it was found that the film was an amorphous film.

【0018】試料1、比較例1共、得られた膜の上部に
アルミニウムを蒸着し、基板上の白金との間の電流−電
圧特性を測定した結果、試料1では強誘電性を示したの
に対し、比較例1では強誘電性は示さなかった。
In both Sample 1 and Comparative Example 1, aluminum was deposited on the obtained film, and the current-voltage characteristics between the film and platinum on the substrate were measured. As a result, Sample 1 showed ferroelectricity. In contrast, Comparative Example 1 did not show ferroelectricity.

【0019】このように、プラズマ成膜時に、レーザー
を照射することにより、基板高温加熱をすることなくそ
の場で結晶化膜を得ることができ、その効果が示され
た。また、照射する光源として、XeCl、ArF、A
r2、Kr2、Xe2 等の他のエキシマレーザーや水銀ラ
ンプ等の紫外線光源も試したところ、条件を選べば本実
施例と同様な照射効果が得られることが判明した。
As described above, by irradiating a laser at the time of plasma film formation, a crystallized film can be obtained in situ without heating the substrate at a high temperature, and the effect has been demonstrated. XeCl, ArF, A
Other excimer lasers such as r2, Kr2, and Xe2, and ultraviolet light sources such as a mercury lamp were also tested, and it was found that the same irradiation effect as in this embodiment could be obtained if the conditions were selected.

【0020】(実施例3)図1において、真空チャンバ
ー103内に白金付きシリコン基板を設置した後、プラ
ズマトーチ部102及びチャンバー103内を十分真空
に引いた後、アルゴンガスを導入して1torrとし
た。トーチ部に高周波を印加しアルゴンプラズマを発生
させ、アルゴンガス圧を上昇させながら同時に酸素ガス
を導入し、アルゴンと酸素の流量比が10対1になるよ
うに保ちながら、チャンバー103内の圧力を100t
orrとしプラズマを安定化させた。
(Embodiment 3) In FIG. 1, after a silicon substrate with platinum is placed in a vacuum chamber 103, the inside of the plasma torch unit 102 and the chamber 103 is sufficiently evacuated, and argon gas is introduced to reduce the pressure to 1 torr. did. A high frequency is applied to the torch to generate argon plasma, and oxygen gas is simultaneously introduced while increasing the argon gas pressure, and the pressure in the chamber 103 is reduced while maintaining the flow ratio of argon to oxygen at 10: 1. 100t
The plasma was stabilized at orr.

【0021】一方、バリウムとチタンのアルコキシドを
所定濃度含有するゾル液を原料として用意し、これを超
音波印加(110)によりミスト化してプラズマチャン
バー内に導入し、基板上に成膜を開始した。この時、エ
キシマレーザー(KrF、波長248nm)104を照
射密度20mJ/cm2 で照射しながら10分間成膜を
行った(試料1)。一方比較のため、エキシマレーザー
を照射せずに同条件で成膜したものも用意した(比較例
1)。
On the other hand, a sol solution containing barium and titanium alkoxides in a predetermined concentration was prepared as a raw material, and this was converted into a mist by applying an ultrasonic wave (110) and introduced into a plasma chamber to start film formation on a substrate. . At this time, a film was formed for 10 minutes while irradiating an excimer laser (KrF, wavelength: 248 nm) 104 at an irradiation density of 20 mJ / cm 2 (Sample 1). On the other hand, for comparison, a film formed under the same conditions without excimer laser irradiation was also prepared (Comparative Example 1).

【0022】以上のようにして得られた基板上の膜は、
試料1、比較例1共厚みが約0.8μmであった。構造
を調べるため、両者のX線回折測定を行ったところ、試
料1では正方晶のペロブスカイト型チタン酸バリウム
(BaTiO3)が基板上に成膜されていることが判明
した。一方、比較例1では明瞭な回折ピークが認められ
ず、非晶質膜であることが判明した。
The film on the substrate obtained as described above is
Both Sample 1 and Comparative Example 1 had a thickness of about 0.8 μm. In order to examine the structure, X-ray diffraction measurement was performed on both of them. As a result, it was found that tetragonal perovskite-type barium titanate (BaTiO3) was formed on the substrate in Sample 1. On the other hand, in Comparative Example 1, no clear diffraction peak was observed, and it was found that the film was an amorphous film.

【0023】試料1、比較例1共、得られた膜の上部に
アルミニウムを蒸着し、基板上の白金との間の起電力測
定を行ったところ、試料1では圧電性を示したのに対
し、比較例1では圧電性を示さなかった。
In both Sample 1 and Comparative Example 1, aluminum was vapor-deposited on the obtained film, and an electromotive force was measured between the film and platinum on the substrate. In Comparative Example 1, no piezoelectricity was exhibited.

【0024】このように、プラズマ成膜時に、レーザー
を照射することにより、基板高温加熱をすることなくそ
の場で結晶化膜を得ることができ、その効果が示され
た。また、照射する光源として、XeCl、ArF、A
r2、Kr2、Xe2 等の他のエキシマレーザーや水銀ラ
ンプ等の紫外線光源も試したところ、条件を選べば本実
施例と同様な照射効果が得られることが判明した。
As described above, by irradiating a laser at the time of plasma film formation, a crystallized film can be obtained in situ without heating the substrate at a high temperature. XeCl, ArF, A
Other excimer lasers such as r2, Kr2, and Xe2, and ultraviolet light sources such as a mercury lamp were also tested, and it was found that the same irradiation effect as in this embodiment could be obtained if the conditions were selected.

【0025】[0025]

【発明の効果】 以上に示したように、成膜時にエキシ
マレーザー等を照射することによって、プラズマ中に導
入した原料の反応が不充分であったり不均一であって
も、照射エネルギーのアシストにより基板上で被成膜物
質が再配列あるいは結晶化が完結しながら堆積していく
ため、良好な膜が基板上に得られる。過度な基板加熱が
ないので、基板への熱的ダメージや基板−膜間の熱膨張
率の差に由来する反り、剥離、クラックといった問題も
生じない。また、後処理等も不要である。総じて従来法
に比べ、本発明の成膜装置を用いた成膜法は、迅速かつ
高歩留まりを特徴とする安定した成膜法である。よっ
て、特に量産時にその効果が大きく発揮される。
As described above, by irradiating an excimer laser or the like during film formation, even if the reaction of the raw material introduced into the plasma is insufficient or non-uniform, the irradiation energy assists the irradiation. Since a substance to be deposited is deposited on the substrate while rearrangement or crystallization is completed, a favorable film can be obtained on the substrate. Since there is no excessive substrate heating, problems such as warpage, peeling, and cracks due to thermal damage to the substrate and differences in the coefficient of thermal expansion between the substrate and the film do not occur. Further, no post-processing is required. In general, compared to the conventional method, the film forming method using the film forming apparatus of the present invention is a stable film forming method characterized by rapid and high yield. Therefore, the effect is greatly exhibited especially in mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の酸化物の成膜装置の概略図。FIG. 1 is a schematic view of an oxide film forming apparatus of the present invention.

【符号の説明】[Explanation of symbols]

図1では101・・・原料供給口 図1では102・・・プラズマトーチ部 図1では103・・・真空チャンバー 図1では104・・・レーザー等の光源装置 図1では105・・・窓 図1では106・・・プラズマテールフレーム部 図1では107・・・基板 図1では108・・・基板ホルダー 図1では109・・・排気口 図1では110・・・超音波槽 図1では111・・・供給原料 In FIG. 1, reference numeral 101 denotes a raw material supply port. In FIG. 1, reference numeral 102 denotes a plasma torch portion. In FIG. 1, reference numeral 103 denotes a vacuum chamber. In FIG. In FIG. 1, 106... Plasma tail frame portion 107 in FIG. 1, substrate in FIG. 1 108, substrate holder in FIG. 1 109, exhaust port in FIG. 1, 110 in FIG. ... Supply materials

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C23C 18/02 C23C 18/02 C30B 1/02 C30B 1/02 29/32 29/32 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C23C 18/02 C23C 18/02 C30B 1/02 C30B 1/02 29/32 29/32 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被成膜物質を含有する原料をプラズマ発
生部に導入し、これを蒸発、分解させてプラズマ下流に
設置した基板上あるいは構造材表面に堆積させることの
できる酸化物の成膜装置において、該基板部に電磁波を
照射できる構造もしくは電磁波照射装置を具備すること
を特徴とする酸化物の成膜装置。
1. An oxide film capable of introducing a raw material containing a substance to be deposited into a plasma generating section, evaporating and decomposing the raw material, and depositing the oxide on a substrate or a surface of a structural material provided downstream of the plasma. An oxide film formation apparatus, comprising: a structure capable of irradiating the substrate portion with an electromagnetic wave; or an electromagnetic wave irradiation device.
【請求項2】 電磁波が紫外線もしくは電磁波照射装置
が紫外線発生装置であることを特徴とする請求項1記載
の酸化物の成膜装置。
2. The oxide film forming apparatus according to claim 1, wherein the electromagnetic wave is ultraviolet light or the electromagnetic wave irradiating device is an ultraviolet light generating device.
【請求項3】 電磁波がエキシマレーザーもしくは電磁
波照射装置がエキシマレーザー発生装置であることを特
徴とする請求項1記載の酸化物の成膜装置。
3. The oxide film forming apparatus according to claim 1, wherein the electromagnetic wave is an excimer laser or the electromagnetic wave irradiation device is an excimer laser generating device.
【請求項4】 被成膜物質を含有する原料をプラズマ発
生部に導入し、これを蒸発、分解させてプラズマ下流に
設置した基板上あるいは構造材表面に堆積させる酸化物
成膜方法において、被成膜物質の基板上への堆積時に基
板部またはその近傍の被成膜物質に電磁波を照射するこ
とを特徴とする酸化物の成膜方法。
4. An oxide film forming method comprising: introducing a material containing a substance to be deposited into a plasma generating section; evaporating and decomposing the raw material; and depositing the material on a substrate or a surface of a structural material provided downstream of the plasma. A method for forming an oxide film, comprising: irradiating an electromagnetic wave to a film-forming substance at or near a substrate portion when the film-forming substance is deposited on the substrate.
【請求項5】 電磁波が紫外線であることを特徴とする
請求項4記載の酸化物の成膜方法。
5. The method according to claim 4, wherein the electromagnetic waves are ultraviolet rays.
【請求項6】 電磁波がエキシマレーザーであることを
特徴とする請求項4記載の酸化物の成膜方法。
6. The method according to claim 4, wherein the electromagnetic wave is an excimer laser.
JP9778397A 1997-04-15 1997-04-15 Film forming device and film forming method of oxide Withdrawn JPH10286454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9778397A JPH10286454A (en) 1997-04-15 1997-04-15 Film forming device and film forming method of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9778397A JPH10286454A (en) 1997-04-15 1997-04-15 Film forming device and film forming method of oxide

Publications (1)

Publication Number Publication Date
JPH10286454A true JPH10286454A (en) 1998-10-27

Family

ID=14201425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9778397A Withdrawn JPH10286454A (en) 1997-04-15 1997-04-15 Film forming device and film forming method of oxide

Country Status (1)

Country Link
JP (1) JPH10286454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699497A (en) * 2021-07-14 2021-11-26 信利光电股份有限公司 Composite antireflection film and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699497A (en) * 2021-07-14 2021-11-26 信利光电股份有限公司 Composite antireflection film and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3788627B2 (en) Method and apparatus for forming silicon dioxide and silicon glass layers in integrated circuits
JP2001503567A (en) Mist-like precursor deposition apparatus and method with improved mist and mist flow
CN1311897A (en) Misted precursor deposition apparatus and method with improved mist and mist flow
KR20080050356A (en) Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
JP3973051B2 (en) Method and apparatus for depositing materials using primers
JP4921091B2 (en) Composite structure manufacturing method, impurity removal treatment apparatus, film forming apparatus, and composite structure
JP3286002B2 (en) Thin film forming equipment
JPH10286454A (en) Film forming device and film forming method of oxide
JP2002110551A (en) Method and apparatus for forming semiconductor thin film
JP2001046884A (en) Production of photocatalytic titanium oxide film
JP2004249157A (en) Photocatalyst and its manufacturing method
JP2000087249A (en) Thin film forming device and method
JP4729704B2 (en) Method for producing metal oxide film
JP2525910B2 (en) Laser excited thin film formation method
JP2849852B2 (en) Method of forming semiconductor thin film
JPH0518799B2 (en)
JPS59208065A (en) Depositing method of metal by laser
RU2789692C1 (en) Method for synthesising nanocrystalline silicon carbide films on a silicon substrate
JPH11314999A (en) Production of oxide thin film
JPH064520B2 (en) Manufacturing method of oxide thin film
JP4782314B2 (en) Plasma source and compound thin film forming apparatus
JPH0959086A (en) Formation of thin film
JPH09324274A (en) Laser cvd device and production of thin film
JPH1180955A (en) Film forming method of oxide
JPH07294861A (en) Oxide dielectric thin film and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706