JPH10285819A - Charger - Google Patents

Charger

Info

Publication number
JPH10285819A
JPH10285819A JP9080014A JP8001497A JPH10285819A JP H10285819 A JPH10285819 A JP H10285819A JP 9080014 A JP9080014 A JP 9080014A JP 8001497 A JP8001497 A JP 8001497A JP H10285819 A JPH10285819 A JP H10285819A
Authority
JP
Japan
Prior art keywords
voltage
power
maximum value
value
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9080014A
Other languages
Japanese (ja)
Other versions
JP3282655B2 (en
Inventor
Fumiaki Ihara
文明 伊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Telecom Networks Ltd
Original Assignee
Fujitsu Telecom Networks Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Telecom Networks Ltd filed Critical Fujitsu Telecom Networks Ltd
Priority to JP08001497A priority Critical patent/JP3282655B2/en
Publication of JPH10285819A publication Critical patent/JPH10285819A/en
Application granted granted Critical
Publication of JP3282655B2 publication Critical patent/JP3282655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PROBLEM TO BE SOLVED: To provide a charger flexibly adapted to the ratings of wiring accessories such as a plug socket without making many modifications to the conventional structure, in a charger which is mounted on an electric vehicle together with a battery for charging the battery. SOLUTION: This system is provided with a voltage converter 11 which converts the voltage of the power input from outside, generates DC power of a desired voltage, and then supplies the generated DC power to a battery, a voltage characteristic setting means 12 which sets the voltage characteristic so that the DC power supplied to the battery may be the specified maximum value or below, and a maximum value supplying means 13 which receives an instruction from outside and supplies the preliminarily determined maximum value to the voltage characteristic setting means 12 according to the instruction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車に蓄電
池と共に搭載され、その蓄電池を充電する充電装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging device mounted on an electric vehicle together with a storage battery and charging the storage battery.

【0002】[0002]

【従来の技術】電気自動車に搭載された蓄電池の充電
は、家庭用電気機器と比べて大きなエネルギーを要する
ので、現在は主に工場やビルなどに敷設され、200V
の電圧が配電されるコンセント(以下、「200V系の
コンセント」という。)から電力を取り込むことによっ
て行われる。
2. Description of the Related Art Charging of a storage battery mounted on an electric vehicle requires a large amount of energy as compared with home electric equipment.
This is performed by taking in power from an outlet (hereinafter, referred to as a "200 V outlet") to which the voltage is distributed.

【0003】図4は、従来の電気自動車に搭載される充
電装置の構成例を示す図である。図において、整流回路
42の出力は、電圧変換回路41の入力に接続され、電
圧変換回路41の二つの出力は、一方が図示されない蓄
電池の一端に接続され、他方が抵抗器44を介してその
蓄電池の他端に接続される。抵抗器44の電圧変換回路
41に直結された一方の端子は、抵抗器45を介して差
動増幅器46の反転入力に接続され、その抵抗器44の
他方の端子は抵抗器47を介して差動増幅器46の非反
転入力に接続される。差動増幅器46の出力は差動増幅
器48の非反転入力に接続され、その差動増幅器48の
出力は電圧変換回路41の制御入力に接続される。ま
た、差動増幅器48の反転入力は基準電圧源49の陽極
に接続され、その基準電圧源49の陰極は接地される。
FIG. 4 is a diagram showing a configuration example of a charging device mounted on a conventional electric vehicle. In the figure, an output of a rectifier circuit 42 is connected to an input of a voltage conversion circuit 41, and one of two outputs of the voltage conversion circuit 41 is connected to one end of a storage battery (not shown), and the other is connected through a resistor 44 to the other end. Connected to the other end of the storage battery. One terminal of the resistor 44 directly connected to the voltage conversion circuit 41 is connected via a resistor 45 to the inverting input of a differential amplifier 46, and the other terminal of the resistor 44 is connected via a resistor 47 to a differential terminal. It is connected to the non-inverting input of the operational amplifier 46. The output of the differential amplifier 46 is connected to the non-inverting input of the differential amplifier 48, and the output of the differential amplifier 48 is connected to the control input of the voltage conversion circuit 41. The inverting input of the differential amplifier 48 is connected to the anode of a reference voltage source 49, and the cathode of the reference voltage source 49 is grounded.

【0004】なお、電圧変換回路41の構成は公知であ
るので、詳しい説明は省略する。上記の構成の従来例で
は、蓄電池の充電が行われる際には、整流回路42が2
00V系のコンセントに接続される。整流回路42は商
用電源から与えられる交流電力を直流電力に変換し、電
圧変換回路41は、制御端子に後述するように差動増幅
器48から入力される制御信号に応じてPWM制御を行
い、整流回路42から与えれられる直流電力を蓄電池に
適応した電圧の直流電力に電圧変換することによって蓄
電池の充電を行う。
[0004] Since the configuration of the voltage conversion circuit 41 is known, a detailed description thereof will be omitted. In the conventional example of the above configuration, when the storage battery is charged, the rectifier circuit 42
Connected to a 00V outlet. The rectification circuit 42 converts AC power supplied from a commercial power supply into DC power, and the voltage conversion circuit 41 performs PWM control in accordance with a control signal input from a differential amplifier 48 to a control terminal, as described later, to perform rectification. The storage battery is charged by converting the DC power supplied from the circuit 42 into DC power having a voltage suitable for the storage battery.

【0005】この充電の期間には、電圧変換回路41の
電圧特性が下記の手順で設定される。抵抗器44、4
5、47および差動増幅器46は、蓄電池に流れる充電
電流Iの値を電圧に変換する。差動増幅器48は、その
電圧から基準電圧源49により与えられる基準電圧VRE
F1を減じた値を、電圧変換回路41に入力すべき制御信
号とする。
[0005] During this charging period, the voltage characteristics of the voltage conversion circuit 41 are set in the following procedure. Resistors 44, 4
5, 47 and the differential amplifier 46 convert the value of the charging current I flowing through the storage battery into a voltage. The differential amplifier 48 converts the voltage to a reference voltage VRE provided by a reference voltage source 49.
The value obtained by subtracting F1 is used as a control signal to be input to the voltage conversion circuit 41.

【0006】図5は、制御信号に応じて電圧変換回路4
1に設定される電圧特性を示す図である。電圧変換回路
41では、制御信号が負の値であるときには、充電電流
Iが基準電圧VREF1に相当するしきい値Isを下回ると
みなして充電電圧Vの値をVmに保持し(図5
(1))、制御信号が正の値であるときには、充電電流
Iがそのしきい値Isを上回るとみなして充電電流Iに
対して充電電圧Vを急峻に減少させる(図5(2))。
すなわち、電圧変換回路41が蓄電池に供給する直流電
力(V*I)は、常に(Vm*Is)で示される最大値
以下に抑えられる(以下では、このように、電圧変換回
路41が蓄電池に供給する直流電力(V*I)を、単に
「充電電力」という。)。
FIG. 5 shows a voltage conversion circuit 4 according to a control signal.
FIG. 3 is a diagram illustrating a voltage characteristic set to 1. When the control signal has a negative value, the voltage conversion circuit 41 holds the value of the charging voltage V at Vm, assuming that the charging current I falls below the threshold value Is corresponding to the reference voltage VREF1 (FIG. 5).
(1)), when the control signal is a positive value, the charging current I is considered to exceed the threshold value Is, and the charging voltage V is sharply reduced with respect to the charging current I (FIG. 5 (2)). .
That is, the DC power (V * I) supplied to the storage battery by the voltage conversion circuit 41 is always suppressed to the maximum value represented by (Vm * Is) (hereinafter, the voltage conversion circuit 41 is connected to the storage battery as described above). The supplied DC power (V * I) is simply referred to as “charging power”.)

【0007】したがって、充電電力と、整流回路42お
よび電圧変換回路41が行う変換の効率との双方によっ
て決定する充電装置の入力電力の最大値(以下、「最大
入力電力」という。)は、充電装置に固有の値となる。
一般に、電気自動車に搭載された充電装置の最大入力電
力は、例えば4KVAというように大きな値である。こ
のような充電装置が200V系のコンセントに接続され
ると、整流回路42の入力端a点には最大で20Aの電
流が流れるが、200V系のコンセントに日本国内の規
格が定める定格電流の値は30Aであるので、十分に安
全な充電が行われる。
Therefore, the maximum value of the input power of the charging device (hereinafter, referred to as “maximum input power”) determined by both the charging power and the efficiency of the conversion performed by the rectifier circuit 42 and the voltage conversion circuit 41 is charged. This value is unique to the device.
Generally, the maximum input power of a charging device mounted on an electric vehicle is a large value such as 4 KVA. When such a charging device is connected to a 200 V outlet, a maximum current of 20 A flows through the input terminal a of the rectifier circuit 42, but the rated current value specified by the Japanese standard is applied to the 200 V outlet. Is 30 A, so that sufficiently safe charging is performed.

【0008】[0008]

【発明が解決しようとする課題】ところで、仮に、電気
自動車が200V系のコンセントが設置されない地域を
走行している最中に蓄電池の残量が少なくなった場合に
は、一般の家庭に設置され、100Vの電圧が配電され
るコンセント(以下、「100V系のコンセント」とい
う。)から電力を取り込んで充電を行う必要が生じる。
If the remaining amount of the storage battery becomes low while the electric vehicle is traveling in an area where a 200 V outlet is not installed, the electric vehicle is installed in a general household. , 100 V voltage is distributed to the outlet (hereinafter, referred to as “100 V outlet”).

【0009】従来の充電装置が100V系のコンセント
に接続されると、同じ電力を取り込むためにa点には最
大で40Aの電流が流される。しかし、100V系のコ
ンセントの定格電流は15A程度であるので、この充電
は大変危険であり、実際には行われない。したがって、
電気自動車の走行範囲は、200V系のコンセントが普
及した地域に限定されていた。
When a conventional charging device is connected to a 100 V outlet, a current of at most 40 A flows through point a to take in the same power. However, since the rated current of the 100 V outlet is about 15 A, this charging is very dangerous and is not actually performed. Therefore,
The traveling range of the electric vehicle was limited to an area where 200 V outlets were widespread.

【0010】本発明は、従来の構成に大幅な変更をきた
すことなく、コンセントなどの配線器具の定格に柔軟に
適応することができる充電装置を提供することを目的と
する。
[0010] It is an object of the present invention to provide a charging apparatus that can flexibly adapt to the rating of a wiring device such as an outlet without significantly changing a conventional configuration.

【0011】[0011]

【課題を解決するための手段】図1は、請求項1、2に
記載の発明の原理ブロック図である。
FIG. 1 is a block diagram showing the principle of the first and second aspects of the present invention.

【0012】請求項1に記載の発明は、外部から入力さ
れる入力電力に電圧変換の処理を施すことによって所望
の電圧の直流電力を生成し、生成された直流電力を蓄電
池に供給する電圧変換手段11と、電圧変換手段11
に、蓄電池に供給される直流電力が与えられた最大値以
下となる電圧特性を設定する電圧特性設定手段12と、
外部から与えられる指示をうけて、その指示に対応付け
て予め決められた最大値を電圧特性設定手段12に与え
る最大値付与手段13とを備えたことを特徴とする。
According to the first aspect of the present invention, voltage conversion processing is performed on input power input from the outside to generate DC power of a desired voltage, and the generated DC power is supplied to a storage battery. Means 11 and voltage conversion means 11
A voltage characteristic setting means 12 for setting a voltage characteristic such that the DC power supplied to the storage battery is equal to or less than a given maximum value;
A maximum value assigning means for receiving a command given from the outside and for giving a predetermined maximum value to the voltage characteristic setting means in correspondence with the command is provided.

【0013】請求項2に記載の発明は、外部から入力さ
れる入力電力に電圧変換の処理を施すことによって所望
の電圧の直流電力を生成し、生成された直流電力を蓄電
池に供給する電圧変換手段11と、電圧変換手段11
に、蓄電池に供給される直流電力が与えられた最大値以
下となる電圧特性を設定する電圧特性設定手段12と、
電圧変換手段11の入力端子の電圧を監視し、監視され
た電圧の予め決められた関数を最大値として電圧特性設
定手段12に与える最大値付与手段14とを備えたこと
を特徴とする。
According to a second aspect of the present invention, a DC conversion of a desired voltage is generated by applying a voltage conversion process to input power input from the outside, and the generated DC power is supplied to a storage battery. Means 11 and voltage conversion means 11
A voltage characteristic setting means 12 for setting a voltage characteristic such that the DC power supplied to the storage battery is equal to or less than a given maximum value;
And a maximum value assigning means for monitoring a voltage of an input terminal of the voltage converting means and applying a predetermined function of the monitored voltage as a maximum value to the voltage characteristic setting means.

【0014】(作用)請求項1に記載の発明にかかわる
充電装置では、電圧変換手段11は、外部から入力され
る入力電力に電圧変換の処理を施すことによって所望の
電圧の直流電力を生成し、その直流電力を蓄電池に供給
するので、その蓄電池には充電が施される。電圧特性設
定手段12は、電圧変換手段11に、その蓄電池に供給
される直流電力が与えられた最大値以下となる電圧特性
を設定するので、充電の際に電圧変換手段11が蓄電池
に供給すべき直流電力には上限が設けられる。さらに、
最大値付与手段13は、電圧特性設定手段12に適用さ
れる最大値を、外部から与えられる指示に応じて予め決
められた値に設定するので、その直流電力の上限を可変
することが可能となる。
(Operation) In the charging device according to the first aspect of the present invention, the voltage conversion means 11 generates DC power of a desired voltage by performing voltage conversion processing on input power input from the outside. Since the DC power is supplied to the storage battery, the storage battery is charged. The voltage characteristic setting means 12 sets, in the voltage conversion means 11, a voltage characteristic in which the DC power supplied to the storage battery is equal to or less than the given maximum value. An upper limit is set for power DC power. further,
Since the maximum value applying means 13 sets the maximum value applied to the voltage characteristic setting means 12 to a predetermined value according to an instruction given from the outside, it is possible to change the upper limit of the DC power. Become.

【0015】ここに、電圧変換手段11に入力される入
力電力の値は、この直流電力の値に応じて変化する。し
たがって、予め、最大値付与手段13が直流電力の上限
として設定すべき値を、指示の内容に対応付けて決める
ことによって、入力電力の上限を所望の値に設定するこ
とが可能となる。請求項2に記載の発明にかかわる充電
装置では、請求項1に記載の発明にかかわる充電装置に
おいて、最大値付与手段13に代えて、最大値付与手段
14が備えられる。最大値付与手段14は、電圧変換手
段11の入力端子の電圧を監視し、電圧特性設定手段1
2に与える最大値をその電圧の関数とする。
Here, the value of the input power input to the voltage conversion means 11 changes according to the value of the DC power. Therefore, it is possible to set the upper limit of the input power to a desired value by determining in advance the value to be set as the upper limit of the DC power by the maximum value applying means 13 in association with the content of the instruction. In the charging device according to the second aspect of the present invention, a maximum value providing unit is provided instead of the maximum value providing unit in the charging device according to the first aspect. The maximum value providing means 14 monitors the voltage of the input terminal of the voltage converting means 11 and
The maximum value given to 2 is a function of that voltage.

【0016】したがって、予めその関数を決めることに
よって、直流電力に応じて変化する入力電力の上限を、
その電圧に対応した所望の値に自動的に設定することが
可能となる。
Therefore, by determining the function in advance, the upper limit of the input power that changes according to the DC power is
It is possible to automatically set a desired value corresponding to the voltage.

【0017】[0017]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態について詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図2は、第一および第二の実施形態の構成
を示す図である。図において、図4に示す従来例と機能
および構成が同じものについては、同じ符号を付して示
し、ここではその説明を省略する。第一の実施形態と従
来例との相違点は、差動増幅器48の反転入力が単極双
投のスイッチ31の共通接点に接続され、そのスイッチ
31の双方の接点がそれぞれ基準電圧源49、32を介
して接地された点にある。
FIG. 2 is a diagram showing the configuration of the first and second embodiments. In the figure, components having the same functions and configurations as those of the conventional example shown in FIG. 4 are denoted by the same reference numerals, and description thereof is omitted here. The difference between the first embodiment and the conventional example is that the inverting input of the differential amplifier 48 is connected to the common contact of the single-pole / double-throw switch 31, and both contacts of the switch 31 are connected to the reference voltage source 49, respectively. 32 at a point grounded.

【0019】なお、本実施形態は図1に示す請求項1に
対応し、電圧変換回路41は電圧変換手段11に対応
し、電圧変換回路41と、抵抗器44、45、47、差
動増幅器46、48の全体とは電圧特性設定手段12に
対応し、スイッチ31、基準電圧源32、49の全体は
最大値付与手段13に対応する。図3は、本実施形態に
おいて電圧変換回路41に設定される電圧特性を示す図
である。
This embodiment corresponds to claim 1 shown in FIG. 1, and the voltage conversion circuit 41 corresponds to the voltage conversion means 11, and includes the voltage conversion circuit 41, the resistors 44, 45, 47, and the differential amplifier. The whole of 46 and 48 corresponds to the voltage characteristic setting means 12, and the whole of the switch 31 and the reference voltage sources 32 and 49 correspond to the maximum value giving means 13. FIG. 3 is a diagram illustrating voltage characteristics set in the voltage conversion circuit 41 in the present embodiment.

【0020】以下、図2および図3を参照して本実施形
態の動作を説明する。本実施形態では、電気自動車の運
転者によってコンセントの識別が行われ、そのコンセン
トが200V系であることが確認されると、スイッチ3
1の共通接点を基準電圧源49に接続した後に、整流回
路42の入力端子をコンセントに接続することによって
従来例と同様の電圧特性(図3(1))で充電を行うこ
とができる。
The operation of this embodiment will be described below with reference to FIGS. In the present embodiment, the outlet of the electric vehicle is identified by the driver of the electric vehicle, and when it is confirmed that the outlet is of the 200 V type, the switch 3 is turned on.
By connecting the input terminal of the rectifier circuit 42 to an outlet after connecting one common contact to the reference voltage source 49, charging can be performed with the same voltage characteristics as the conventional example (FIG. 3 (1)).

【0021】一方、そのコンセントが100V系である
ことが確認されると、スイッチ31の基準接点位を基準
電圧源32に接続することによって、従来例とは異なる
しきい値Itによる電圧特性(図3(2))を設定する
ことができる。以下、基準電圧源32が与える電圧、基
準電圧VREF2について説明する。一般に、入力電力Pに
対する充電電力(V*I)は、整流回路42および電圧
変換回路41の相互が行う変換の効率μによって、 P=μ*(V*I) ・・・(1) の式で与えられる。式(1)において、充電電力が最大
となる時における入力電力が最大入力電力Pmであるの
で、 Pm=μ*(Vm*It) ・・・(2) の式が成り立つ。
On the other hand, when it is confirmed that the outlet is of the 100 V type, the reference contact point of the switch 31 is connected to the reference voltage source 32, so that the voltage characteristics with the threshold value It different from the conventional example (FIG. 3 (2)) can be set. Hereinafter, the voltage provided by the reference voltage source 32 and the reference voltage VREF2 will be described. In general, the charging power (V * I) with respect to the input power P is represented by the following equation: P = μ * (V * I) (1), depending on the conversion efficiency μ between the rectifier circuit 42 and the voltage conversion circuit 41. Given by In the equation (1), the input power when the charging power is the maximum is the maximum input power Pm, so that the following equation holds: Pm = μ * (Vm * It) (2)

【0022】また、基準電圧VREF2により設定される充
電電流のしきい値Itは、抵抗器44、45、47によ
り定められる差動増幅器46の利得Gによって、 VREF2=G*It ・・・(3) の式で与えられる。
Further, the threshold value It of the charging current set by the reference voltage VREF2 is determined by the gain G of the differential amplifier 46 determined by the resistors 44, 45 and 47, VREF2 = G * It (3) ).

【0023】したがって、基準電圧VREF2は、式(3)
および式(2)から、予め決められた電圧変換効率μ、
利得G、充電電圧Vmを用いた最大入力電力Pmの関
数、 VREF2=(μ*G/Vm)*Pm ・・・(4) の式で与えられる。そこで、基準電圧VREF2の値を、1
00V系のコンセントの定格(定格電流の値は15A)
に適応するために、式(4)に基づいて最大入力電力P
mが1.5KVA以下となるよう予め設定する。
Therefore, the reference voltage VREF2 is given by the equation (3)
From equation (2), a predetermined voltage conversion efficiency μ,
A function of the maximum input power Pm using the gain G and the charging voltage Vm, VREF2 = (μ * G / Vm) * Pm (4) Therefore, the value of the reference voltage VREF2 is set to 1
Rating of 00V outlet (rated current value is 15A)
To accommodate the maximum input power P based on equation (4).
It is set in advance so that m becomes 1.5 KVA or less.

【0024】すなわち、コンセントが100V系である
場合に上記の基準電圧VREF2が適用されれば、最大入力
電力Pmは1.5KVA以下に抑えられるので、整流回
路42の入力端a点に流れる電流はコンセントの定格の
値以下となる。したがって、本実施形態では、電力の供
給を介するコンセントが100V系であるか200V系
であるかによらず、スイッチ31の切り替えによって充
電の安全性は確保される。
That is, if the above reference voltage VREF2 is applied when the outlet is a 100 V system, the maximum input power Pm can be suppressed to 1.5 KVA or less, so that the current flowing to the input terminal a of the rectifier circuit 42 is It will be less than the rated value of the outlet. Therefore, in the present embodiment, the safety of charging is ensured by switching the switch 31 irrespective of whether the outlet via the power supply is a 100 V system or a 200 V system.

【0025】また、第二の実施形態では、上述した第一
の実施形態において、整流回路42の出力端とスイッチ
31との間に識別回路33が備えられる。なお、本実施
形態は、請求項2に対応し、識別回路33、スイッチ3
1、基準電圧源49、32の全体は、最大値付与手段1
4に対応する。本実施形態と第一の実施形態との相違点
は、スイッチ31の切り替えが識別回路33によって行
われる点にある。
In the second embodiment, the identification circuit 33 is provided between the output terminal of the rectifier circuit 42 and the switch 31 in the first embodiment. This embodiment corresponds to claim 2, wherein the identification circuit 33 and the switch 3
1. The entirety of the reference voltage sources 49 and 32 is
Corresponds to 4. The difference between this embodiment and the first embodiment is that the switching of the switch 31 is performed by the identification circuit 33.

【0026】電気自動車がコンセントに接続されると、
整流回路42の出力端子の電圧はコンセントに配電され
る電圧値に応じた値をとる。識別回路33は、その出力
端子の電圧を監視し、その値が予め100Vと200V
との間の値に設定された基準値を上回るか否かの識別を
行う。識別回路33は、その値が基準値を上回る場合に
はそのコンセントが200V系であると判断し、スイッ
チ31の共通接点を基準電圧源49に接続する。
When the electric vehicle is connected to the outlet,
The voltage at the output terminal of the rectifier circuit 42 takes a value corresponding to the voltage value distributed to the outlet. The identification circuit 33 monitors the voltage of the output terminal, and if the value is 100 V or 200 V in advance.
It is determined whether the value exceeds a reference value set to a value between. When the value exceeds the reference value, the identification circuit 33 determines that the outlet is a 200 V system, and connects the common contact of the switch 31 to the reference voltage source 49.

【0027】また、識別回路33は、識別の結果、基準
値を下回る場合にはそのコンセントが100V系である
と判断し、スイッチ31の共通接点を基準電圧源32に
接続する。したがって、本実施形態では、コンセントに
適応した安全な充電が、自動的に行われることとなる。
If the identification circuit 33 determines that the outlet is lower than the reference value, the identification circuit 33 determines that the outlet is a 100 V system, and connects the common contact of the switch 31 to the reference voltage source 32. Therefore, in this embodiment, safe charging adapted to the outlet is automatically performed.

【0028】なお、上述した第一の実施形態では、スイ
ッチ31が備えられるが、そのスイッチ31は、外部か
らの入力に応じて同様の切り替えが行われるのであれば
如何なるマンマシンインタフェースに代えられてもよ
い。上述した第二の実施形態において、識別回路33、
スイッチ31、基準電圧源49、32に代えて、整流回
路42の出力端子の電圧値を求めてその電圧値の関数と
して与えられる値を演算増幅器の反転入力に直接印加す
る回路を形成してもよい。一般に、コンセントの定格の
電力は配電される電圧値の二乗に比例した値となるの
で、装置の最大入力電力が定格の値以下となるように、
その関数を比例定数と上式(4)とに基づいて設定する
ことによって、多様なコンセントに適応した充電を行う
ことが可能となる。
In the above-described first embodiment, the switch 31 is provided. The switch 31 may be replaced with any man-machine interface as long as the same switching is performed according to an external input. Is also good. In the second embodiment described above, the identification circuit 33,
Instead of the switch 31 and the reference voltage sources 49 and 32, a circuit may be formed that obtains the voltage value of the output terminal of the rectifier circuit 42 and directly applies a value given as a function of the voltage value to the inverting input of the operational amplifier. Good. In general, the rated power of the outlet is a value proportional to the square of the voltage to be distributed, so that the maximum input power of the device is less than the rated value.
By setting the function based on the proportionality constant and the above equation (4), charging suitable for various outlets can be performed.

【0029】上述した各実施形態では、充電電力が最大
となる状態の検出を、充電電流の監視によって行うが、
充電電圧と充電電流との積の監視によって行ってもよ
い。上述した各実施形態では、定格電流が異なる2つの
コンセントに適応するために、異なる二つの基準電圧源
を備えたが、定格電流が異なる多数のコンセントを利用
する可能性がある場合には、そのような基準電圧源は3
つ以上の複数備えられてもよい。
In each of the above-described embodiments, the state where the charging power is maximized is detected by monitoring the charging current.
The monitoring may be performed by monitoring the product of the charging voltage and the charging current. In each of the above-described embodiments, two different reference voltage sources are provided to accommodate two outlets having different rated currents. However, when there is a possibility that a large number of outlets having different rated currents may be used, Reference voltage source is 3
More than one may be provided.

【0030】上述した各実施形態では、基準電圧の可変
がスイッチ31、基準電圧源49、32の組合せによっ
て行われるが、例えば、設定すべき基準電圧の値を入力
される値に対応付けて記憶するメモリを備えたプロセッ
サによって実現してもよい。上述した各実施形態では、
充電電圧Vの値の補償は電圧変換回路41によって行わ
れるが、その補償は、整流回路42が行う整流の方法を
印加される電圧に応じて代えることによって図ってもよ
い。また、そのような場合には、入力される電圧の変化
に対して整流回路42の出力端子の電圧に表れる変化が
少なくなるので、その少ない変化分を検出できる程度に
高い精度で電圧の監視を行ったり、電圧の監視の対象と
なる点を整流回路42の入力端子に代えてもよい。
In each of the above-described embodiments, the reference voltage is varied by the combination of the switch 31 and the reference voltage sources 49 and 32. For example, the value of the reference voltage to be set is stored in association with the input value. It may be realized by a processor having a memory that performs the processing. In each of the embodiments described above,
Although the compensation of the value of the charging voltage V is performed by the voltage conversion circuit 41, the compensation may be performed by changing the rectification method performed by the rectification circuit 42 according to the applied voltage. In such a case, the change in the voltage at the output terminal of the rectifier circuit 42 is small with respect to the change in the input voltage, so that the voltage monitoring should be performed with sufficient accuracy to detect the small change. Alternatively, the point to be monitored or the voltage to be monitored may be replaced with the input terminal of the rectifier circuit 42.

【0031】上述した各実施形態では、配線器具として
一定の電圧が配電されるコンセントを説明したが、その
配線器具は、例えば、電線やプラグなど電力の供給路を
形成するものであれば如何なるものでもよい。また、上
述した各実施形態では、充電装置の電圧特性は垂下特性
に設定されるが、その電圧特性は、制御信号によって電
力の最大値が定まる特性であれば、如何なる特性に設定
してもよい。
In each of the above embodiments, an outlet to which a constant voltage is distributed has been described as a wiring device. However, the wiring device may be any device that forms a power supply path such as an electric wire or a plug. May be. Further, in each of the above-described embodiments, the voltage characteristic of the charging device is set to the drooping characteristic, but the voltage characteristic may be set to any characteristic as long as the maximum value of the power is determined by the control signal. .

【0032】[0032]

【発明の効果】上述したように請求項1に記載の発明で
は、蓄電池に与えられる充電電力の最大値が外部から与
えられる指示に応じて予め決められた値に設定されるの
で、充電のために入力される入力電力の上限を、所望の
値に設定することが可能となる。請求項2に記載の発明
では、蓄電池に与えられる充電電力の最大値を入力され
る電圧の関数に設定するので、充電のために入力される
入力電力の上限をその電圧に対応した所望の値に自動的
に設定することが可能となる。
As described above, according to the first aspect of the present invention, the maximum value of the charging power given to the storage battery is set to a predetermined value in accordance with an externally given instruction. Can be set to a desired value. According to the second aspect of the present invention, since the maximum value of the charging power supplied to the storage battery is set as a function of the input voltage, the upper limit of the input power input for charging is set to a desired value corresponding to the voltage. Can be set automatically.

【0033】したがって、本発明では、充電の際に接続
されうる配線器具の定格が多様であっても、個々の定格
に適応した充電を行うことによって安全性が確保され
る。さらに、本発明が適用される電気自動車では、基本
的な構成を殆ど変更することなく、100V系のコンセ
ントしか設置されていない地域における充電が可能とな
る。したがって、電気自動車の走行範囲は、安価に拡大
される。
Therefore, according to the present invention, even if the ratings of the wiring devices that can be connected at the time of charging are various, safety can be ensured by performing charging according to each rating. Further, in the electric vehicle to which the present invention is applied, charging can be performed in an area where only a 100 V-type outlet is installed, with almost no change in the basic configuration. Therefore, the traveling range of the electric vehicle is expanded at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1、2に記載の発明の原理ブロック図で
ある。
FIG. 1 is a block diagram showing the principle of the present invention.

【図2】第一および第二の実施形態の構成を示す図であ
る。
FIG. 2 is a diagram illustrating a configuration of first and second embodiments.

【図3】本実施形態において電圧変換回路41に設定さ
れる電圧特性を示す図である。
FIG. 3 is a diagram illustrating voltage characteristics set in a voltage conversion circuit 41 in the present embodiment.

【図4】従来の電気自動車に搭載される充電装置の構成
例を示す図である。
FIG. 4 is a diagram illustrating a configuration example of a charging device mounted on a conventional electric vehicle.

【図5】制御信号に応じて電圧変換回路41に設定され
る電圧特性を示す図である。
FIG. 5 is a diagram showing voltage characteristics set in a voltage conversion circuit 41 according to a control signal.

【符号の説明】[Explanation of symbols]

11 電圧変換手段 12 電圧特性設定手段 13,14 最大値付与手段 46,48 差動増幅器 31 スイッチ 32,49 基準電圧源 33 識別回路 41 電圧変換回路 42 整流回路 44,45,47 抵抗器 DESCRIPTION OF SYMBOLS 11 Voltage conversion means 12 Voltage characteristic setting means 13, 14 Maximum value provision means 46, 48 Differential amplifier 31 Switch 32, 49 Reference voltage source 33 Identification circuit 41 Voltage conversion circuit 42 Rectification circuit 44, 45, 47 Resistor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外部から入力される入力電力に電圧変換
の処理を施すことによって所望の電圧の直流電力を生成
し、生成された直流電力を蓄電池に供給する電圧変換手
段と、 前記電圧変換手段に、前記蓄電池に供給される直流電力
が与えられた最大値以下となる電圧特性を設定する電圧
特性設定手段と、 外部から与えられる指示をうけて、その指示に対応付け
て予め決められた最大値を前記電圧特性設定手段に与え
る最大値付与手段とを備えたことを特徴とする充電装
置。
1. A voltage conversion means for generating DC power of a desired voltage by applying voltage conversion processing to input power input from the outside and supplying the generated DC power to a storage battery; A voltage characteristic setting means for setting a voltage characteristic such that the DC power supplied to the storage battery is equal to or less than a given maximum value; receiving a command given from the outside; And a maximum value providing means for providing a value to the voltage characteristic setting means.
【請求項2】 外部から入力される入力電力に電圧変換
の処理を施すことによって所望の電圧の直流電力を生成
し、生成された直流電力を蓄電池に供給する電圧変換手
段と、 前記電圧変換手段に、前記蓄電池に供給される直流電力
が与えられた最大値以下となる電圧特性を設定する電圧
特性設定手段と、 前記電圧変換手段の入力端子の電圧を監視し、監視され
た電圧の予め決められた関数を最大値として前記電圧特
性設定手段に与える最大値付与手段とを備えたことを特
徴とする充電装置。
2. A voltage conversion unit that generates DC power of a desired voltage by performing voltage conversion processing on input power input from the outside, and supplies the generated DC power to a storage battery, and the voltage conversion unit. A voltage characteristic setting means for setting a voltage characteristic at which the DC power supplied to the storage battery is equal to or less than a given maximum value; and monitoring a voltage at an input terminal of the voltage conversion means, and determining the monitored voltage in advance. And a maximum value providing means for providing the obtained function as a maximum value to the voltage characteristic setting means.
JP08001497A 1997-03-31 1997-03-31 Charging device Expired - Fee Related JP3282655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08001497A JP3282655B2 (en) 1997-03-31 1997-03-31 Charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08001497A JP3282655B2 (en) 1997-03-31 1997-03-31 Charging device

Publications (2)

Publication Number Publication Date
JPH10285819A true JPH10285819A (en) 1998-10-23
JP3282655B2 JP3282655B2 (en) 2002-05-20

Family

ID=13706470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08001497A Expired - Fee Related JP3282655B2 (en) 1997-03-31 1997-03-31 Charging device

Country Status (1)

Country Link
JP (1) JP3282655B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234541A (en) * 2006-03-03 2007-09-13 Sony Corp Battery pack
WO2009034918A1 (en) 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha Automobile and method for charging automobile
WO2009034877A1 (en) 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha Vehicle charger and method for charging vehicle
US7592780B2 (en) 2004-10-29 2009-09-22 Hitachi Koki Co., Ltd. Battery charging apparatus
JP2010518804A (en) * 2007-02-09 2010-05-27 エイ 123 システムズ,インク. Control system and hybrid vehicle having reconfigurable multi-function power converter
JP2010200530A (en) * 2009-02-26 2010-09-09 Omron Corp Charging controller and method, charger and method, and program
JP2011182538A (en) * 2010-03-01 2011-09-15 Murata Mfg Co Ltd Charger and charging system
JP2013110788A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Charger of vehicle
CN109804541A (en) * 2017-09-22 2019-05-24 Oppo广东移动通信有限公司 Power supply provides circuit, power supply provides equipment and control method
JP2020504589A (en) * 2017-09-22 2020-02-06 オッポ広東移動通信有限公司 Power supply circuit, power supply device and control method
US11133700B2 (en) 2017-04-25 2021-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply device and charging control method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592780B2 (en) 2004-10-29 2009-09-22 Hitachi Koki Co., Ltd. Battery charging apparatus
JP2007234541A (en) * 2006-03-03 2007-09-13 Sony Corp Battery pack
JP2013216318A (en) * 2007-02-09 2013-10-24 A123 Systems Inc Control system with reconfigurable multi-function power converter and hybrid vehicle
JP2010518804A (en) * 2007-02-09 2010-05-27 エイ 123 システムズ,インク. Control system and hybrid vehicle having reconfigurable multi-function power converter
JP2013144543A (en) * 2007-02-09 2013-07-25 A123 Systems Inc Control system with reconfigurable multi-function power converter, and hybrid vehicle
WO2009034918A1 (en) 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha Automobile and method for charging automobile
WO2009034877A1 (en) 2007-09-10 2009-03-19 Toyota Jidosha Kabushiki Kaisha Vehicle charger and method for charging vehicle
US9093724B2 (en) 2007-09-10 2015-07-28 Toyota Jidosha Kabushiki Kaisha Vehicle and method of charging vehicle
JP5170100B2 (en) * 2007-09-10 2013-03-27 トヨタ自動車株式会社 Vehicle charging device and vehicle charging method
US8937455B2 (en) 2007-09-10 2015-01-20 Toyota Jidosha Kabushiki Kaisha Charging apparatus for vehicle and method for charging vehicle
JP2010200530A (en) * 2009-02-26 2010-09-09 Omron Corp Charging controller and method, charger and method, and program
JP2011182538A (en) * 2010-03-01 2011-09-15 Murata Mfg Co Ltd Charger and charging system
JP2013110788A (en) * 2011-11-17 2013-06-06 Toyota Motor Corp Charger of vehicle
US11133700B2 (en) 2017-04-25 2021-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply device and charging control method
CN109804541A (en) * 2017-09-22 2019-05-24 Oppo广东移动通信有限公司 Power supply provides circuit, power supply provides equipment and control method
KR20190086563A (en) * 2017-09-22 2019-07-22 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 POWER SUPPLY CIRCUIT, POWER SUPPLY DEVICE AND CONTROL METHOD,
JP2020503827A (en) * 2017-09-22 2020-01-30 オッポ広東移動通信有限公司 Power supply circuit, power supply device and control method
JP2020504589A (en) * 2017-09-22 2020-02-06 オッポ広東移動通信有限公司 Power supply circuit, power supply device and control method
US10819246B2 (en) 2017-09-22 2020-10-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply circuit based on feedback signal, power supply device and control method
US10840815B2 (en) 2017-09-22 2020-11-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply circuit based on feedback signal, power supply device and control method
CN109804541B (en) * 2017-09-22 2021-05-18 Oppo广东移动通信有限公司 Power supply circuit, power supply device, and control method
US11469609B2 (en) 2017-09-22 2022-10-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Power supply circuit, power supply device and control method

Also Published As

Publication number Publication date
JP3282655B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP3282655B2 (en) Charging device
JPS61170678A (en) Battery state detector
JP2012090406A (en) Switching power supply apparatus
JPH08237880A (en) Charger
JP3706272B2 (en) Alarm system for vehicle alternator
KR200220599Y1 (en) Leakage Current Detection Device for Electric Vehicles
JP2673921B2 (en) Uninterruptible power system
US11632032B2 (en) Power converter with output misconnection determiner
JPH0984359A (en) Power converter
JPS6064773A (en) Arc welding machine
WO2022045155A1 (en) Power supply device
KR100256578B1 (en) Battery equivalancing apparatus of an electric vehicle
EP2963754A1 (en) Decentralized power supply system
JPS62250876A (en) Voltage type inverter unit
JP2002062319A (en) Ac voltage detection circuit
KR200153462Y1 (en) Extention supply apparatus of an auxiliary power supply for an electric car
JP2000125565A (en) Power supply device
JP2019122163A (en) Power storage controller
JPS58159699A (en) Exciter for electric machine
JP2520534Y2 (en) Regenerative braking device
JP3238024B2 (en) Control device for self-excited converter
JPH0887355A (en) Reset signal generator of microcomputer
KR0151785B1 (en) Voltage controller of permanent magnet type generator
CN111146774A (en) DC power supply system and control method thereof
JPH03173355A (en) Power source

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees