JPH10285714A - Device for controlling dc shunt motor for industrial vehicle - Google Patents

Device for controlling dc shunt motor for industrial vehicle

Info

Publication number
JPH10285714A
JPH10285714A JP9102670A JP10267097A JPH10285714A JP H10285714 A JPH10285714 A JP H10285714A JP 9102670 A JP9102670 A JP 9102670A JP 10267097 A JP10267097 A JP 10267097A JP H10285714 A JPH10285714 A JP H10285714A
Authority
JP
Japan
Prior art keywords
armature
current
control
value
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9102670A
Other languages
Japanese (ja)
Inventor
Ryohei Fujita
良平 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP9102670A priority Critical patent/JPH10285714A/en
Publication of JPH10285714A publication Critical patent/JPH10285714A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a DC shunt motor controlling device of a simple structure without a rotation sensor, capable of achieving smooth and efficient control. SOLUTION: This device is provided with an armature voltage detecting means 11, current-detecting means 12, 13 of the armature and field system, an accelerator sensor 14, an armature-adjusting means capable of adjusting the size and direction of the voltage and current of the armature, a field current adjusting means 30 and a controlling means 40. The controlling means 40 adjusts the field current and the armature voltage to obtain a given revolutions in power running. When the accelerator is operated to return, regenerative control is performed with a constant braking torque Tb. In regenerative running, field current value Ifs is set, so that the armature voltage value Vd at the time of zero load torque in the power running can be made almost equal to the armature voltage value Vb at the time of a changeover from the regenerative to power running.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,産業車両を駆動する直流電動機
の制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a DC motor driving an industrial vehicle.

【0002】[0002]

【従来技術】バッテリを電源として直流電動機によって
駆動される産業車両は,力行時には電力効率を良好に維
持しつつアクセルの操作量に対応する目標速度となるよ
う電動機を制御する。また,制動時には,電動機のエネ
ルギーをできるだけバッテリに回生し,電力消費量がで
きるだけ少なくなるよう制御される。
2. Description of the Related Art In an industrial vehicle driven by a DC motor using a battery as a power source, the motor is controlled at a target speed corresponding to an operation amount of an accelerator while maintaining good power efficiency during power running. At the time of braking, the energy of the electric motor is regenerated to the battery as much as possible, and the power consumption is controlled to be as small as possible.

【0003】即ち,図8に示すように,力行時には,回
転センサー91により電動機90の回転数を検出し,電
機子回路駆動トランジスタ921及び界磁回路駆動トラ
ンジスタ931〜934(931,933の組又は93
2,934の組)を所定の電流方向にチョッパー制御し
(回生トランジスタ922はオフ),電機子電流Iaお
よび界磁電流Ifを調整してアクセル操作量aに対応す
る目標回転数となるよう制御する。同図において,符号
991はバッテリ,符号992はアクセルの操作量を検
出するアクセルセンサー,符号901は界磁コイル,符
号94はチョッパー制御装置,符号925,935はト
ランジスタのドライブ回路,符号912,913は電機
子電流および界磁電流の電流センサーである。
That is, as shown in FIG. 8, during power running, the rotation speed of a motor 90 is detected by a rotation sensor 91, and an armature circuit driving transistor 921 and field circuit driving transistors 931 to 934 (a set of 931 and 933 or 93
2934) in a predetermined current direction (the regenerative transistor 922 is turned off), and the armature current Ia and the field current If are adjusted to achieve a target rotation speed corresponding to the accelerator operation amount a. I do. In the figure, reference numeral 991 denotes a battery, reference numeral 992 denotes an accelerator sensor for detecting an operation amount of an accelerator, reference numeral 901 denotes a field coil, reference numeral 94 denotes a chopper control device, reference numerals 925 and 935 denote transistor drive circuits, and reference numerals 912 and 913. Is a current sensor for armature current and field current.

【0004】また,ブレーキの操作時,ディレクション
スイッチの切り換え時(スイッチバック時),アクセル
ペダルの開放時,アクセルの戻し操作時(所謂アクセル
連動回生の条件成立時)には,電機子回路駆動トランジ
スタ921をオフすると共に回生トランジスタ922を
チョッパー制御して電動機90の発電電流をバッテリ9
91に回生する。
When the brake is operated, when the direction switch is switched (switchback), when the accelerator pedal is released, and when the accelerator is returned (when the so-called accelerator-linked regeneration condition is satisfied), the armature circuit drive transistor is turned on. 921 is turned off, and the regeneration current of the motor 90 is
Regenerates to 91.

【0005】そして,特に上記アクセル連動回生時に
は,回転センサー91により電動機90の回転数を検出
し,一定の制動トルクで制動しつつ回転数が新しいアク
セルの操作量に対応する負荷トルク零時の値になったこ
とを検知して,再び力行駆動制御に制御モードを切り換
える。なお,負荷トルクと回転数との関係を示す曲線
(関数)は,アクセルの操作量により一義的に定められ
ており(図4(a)参照),負荷トルクの値は電機子電
流と界磁電流の値から算定することができる。
In particular, at the time of the accelerator-linked regeneration, the rotation speed of the electric motor 90 is detected by the rotation sensor 91, and the rotation speed is a value at zero load torque corresponding to the new operation amount of the accelerator while braking with a constant braking torque. Is detected, and the control mode is switched again to the powering drive control. The curve (function) indicating the relationship between the load torque and the rotation speed is uniquely determined by the operation amount of the accelerator (see FIG. 4A), and the value of the load torque is determined by the armature current and the field force. It can be calculated from the value of the current.

【0006】[0006]

【解決しようとする課題】しかしながら,上記のように
アクセルの操作に連動した回生を行うためには,電動機
90の回転数が所定値になったことを検知するための回
転センサー91が必要であり,また回転センサー91の
入力回路として,バッファー回路や積算器等が制御装置
94に必要である。そのため,構成が複雑となりコスト
高となる。本発明は,かかる従来の問題点に鑑みてなさ
れたものであり,回転センサーが不要の簡素で安価な構
成を備え,スムースかつ効率的な制御を実現することが
できる産業車両用直流分巻電動機の制御装置を提供しよ
うとするものである。
However, in order to perform the regeneration in conjunction with the operation of the accelerator as described above, a rotation sensor 91 for detecting that the rotation speed of the electric motor 90 has reached a predetermined value is required. A buffer circuit, an integrator and the like are required for the control device 94 as an input circuit of the rotation sensor 91. Therefore, the configuration becomes complicated and the cost increases. The present invention has been made in view of such a conventional problem, and has a simple and inexpensive configuration that does not require a rotation sensor, and is capable of realizing smooth and efficient control. Is intended to be provided.

【0007】[0007]

【課題の解決手段】本発明は,産業車両を駆動する直流
分巻電動機の電機子電圧を検知する電圧検出手段と,上
記直流電動機の電機子電流及び界磁電流を検知する電流
検出手段と,アクセルの操作量またはディレクションス
イッチのニュートラル状態を検知するアクセルセンサー
と,電機子電流の方向が切り換え可能であると共に電機
子の電圧,電流の大きさを調整することができる電機子
調整手段と,界磁電流調整手段と,電機子電流の値と界
磁電流の値とから現在の負荷トルクを算定し上記アクセ
ルセンサーの検知信号と上記負荷トルクとに対応した所
定の回転数となるよう上記電機子調整手段及び界磁電流
調整手段を操作するに上記電動機を制御する制御手段と
を有しており,上記制御手段は,アクセルが踏み込まれ
ている力行時においては,上記負荷トルクとアクセル操
作量a1とに対応する所定の回転数となるように,上記
電機子電流を所定値以下に制限しつつ界磁電流と電機子
電圧を調整し,一方,アクセルの操作量が相対的に大き
い上記操作量a1から少ない操作量a2に戻し操作され
た場合には,新しいアクセル操作量a2に対応した負荷
トルクと回転数の関係に移行するよう上記直流電動機の
電力を電源側に回生しつつ所定の一定の制動トルクTb
で制動し,上記回生制動時においては,新しいアクセル
操作量a2に対応した力行時の負荷トルクと回転数との
関係において負荷トルク零時の回転数Nd2に対する電
機子電圧の値Vdと,上記一定の制動トルクTbで制動
して上記回転数Nd2となった場合における電機子電圧
Vbの値とが,ほぼ等しい値となるように予め界磁電流
の値Ifsを設定し,界磁電流の値を上記Ifsの一定
に保ちつつ,上記一定の制動トルクTbに対応する電機
子電流Iasとなるように電機子電流を制御し,回転数
と共に低下する電機子電圧が上記Vbとなった時点で,
上記アクセル操作量a2に対応する力行制御に再び移行
するよう電動機を制御することを特徴とする産業車両用
直流分巻電動機の制御装置にある。
The present invention provides a voltage detecting means for detecting an armature voltage of a DC shunt motor driving an industrial vehicle, a current detecting means for detecting an armature current and a field current of the DC motor, An accelerator sensor for detecting an operation amount of an accelerator or a neutral state of a direction switch; an armature adjusting means capable of switching a direction of an armature current and adjusting a magnitude of a voltage and a current of the armature; A magnetic current adjusting means for calculating a current load torque from the armature current value and the field current value, so that the armature has a predetermined rotational speed corresponding to the detection signal of the accelerator sensor and the load torque; Control means for controlling the electric motor to operate the adjustment means and the field current adjustment means, and the control means is provided when the accelerator is depressed during power running. In other words, the field current and the armature voltage are adjusted while restricting the armature current to a predetermined value or less so as to achieve a predetermined rotation speed corresponding to the load torque and the accelerator operation amount a1. When the operation amount is relatively returned from the operation amount a1 that is relatively large to the operation amount a2 that is small, the power of the DC motor is changed so as to shift to the relationship between the load torque and the rotation speed corresponding to the new accelerator operation amount a2. A predetermined constant braking torque Tb while regenerating
During the regenerative braking, the armature voltage value Vd with respect to the rotation speed Nd2 when the load torque is zero and the constant value in the relationship between the load torque and the rotation speed during power running corresponding to the new accelerator operation amount a2. The value of the field current Ifs is set in advance so that the value of the armature voltage Vb when the rotation speed Nd2 is obtained by braking with the braking torque Tb of FIG. While maintaining the Ifs constant, the armature current is controlled so that the armature current Ias corresponds to the constant braking torque Tb. When the armature voltage that decreases with the rotation speed reaches the Vb,
The control device for a DC shunt motor for an industrial vehicle is characterized in that the motor is controlled so as to return to the powering control corresponding to the accelerator operation amount a2.

【0008】本発明において特に注目すべきことの第一
点は,電機子電流の値と界磁電流の値とから現在の負荷
トルクを算定すると共に界磁電流を一定に制御すること
により電機子電圧から電動機の回転数を算定し,上記負
荷トルクとアクセル操作量とに対応した所定の回転数に
電機子電圧(電動機)を制御することである。即ち,速
度センサーを用いることなくアクセルセンサーに対応し
た状態(負荷に対応する回転数)に電動機を制御するこ
とができる。
The first point of particular interest in the present invention is that the current load torque is calculated from the value of the armature current and the value of the field current, and the field current is controlled to be constant. The motor speed is calculated from the voltage, and the armature voltage (motor) is controlled to a predetermined speed corresponding to the load torque and the accelerator operation amount. That is, the motor can be controlled to a state corresponding to the accelerator sensor (the number of rotations corresponding to the load) without using the speed sensor.

【0009】例えば,力行時においては,界磁電流と電
機子電圧を調整し,負荷トルクとアクセル操作量a1と
に対応する所定の回転数となるように制御する。即ち,
現在のアクセル操作量に対応する負荷トルクと回転数と
の関係式に基づいて,現在の負荷トルクから目標となる
回転数を設定する。そして,界磁電流を所定値に設定し
た場合には,図4(b)に示すように回転数と電機子電
圧との関係は一義的に定まるから,電圧検出手段を介し
て電機子電圧を検知することにより回転数を知ることが
でき,上記の目標回転数に対応した電機子電圧となるよ
う前記電機子調整手段を操作する。
For example, at the time of power running, the field current and the armature voltage are adjusted, and control is performed so that a predetermined rotational speed corresponding to the load torque and the accelerator operation amount a1 is obtained. That is,
A target rotation speed is set from the current load torque based on a relational expression between the load torque and the rotation speed corresponding to the current accelerator operation amount. When the field current is set to a predetermined value, the relationship between the rotation speed and the armature voltage is uniquely determined as shown in FIG. 4 (b). The rotation speed can be known by the detection, and the armature adjusting means is operated so that the armature voltage corresponds to the target rotation speed.

【0010】同様に,回生制御時においては,制動トル
ク一定の制御を行うから,界磁電流を一定に設定した場
合には,図5に示すように回転数と電機子電圧との関係
は界磁電流に対応して一義的に定まり,同様に電機子電
圧を検知して回転数を知ることができる。そして,新た
なアクセル操作量a2に対応した目標回転数の電機子電
圧となるまで電機子調整手段を操作する。その結果,本
発明では,回転センサーが不要となり,代わって必要と
なる電圧検出手段は回転センサーよりも安価かつ簡素に
構成することができるから,装置は簡素で安価となる。
Similarly, during the regenerative control, the braking torque is controlled to be constant, so that when the field current is set to be constant, the relationship between the rotational speed and the armature voltage is limited as shown in FIG. It is uniquely determined according to the magnetic current, and similarly, the armature voltage can be detected to determine the rotation speed. Then, the armature adjusting means is operated until the armature voltage at the target rotation speed corresponding to the new accelerator operation amount a2 is reached. As a result, according to the present invention, the rotation sensor is not required, and the voltage detecting means which is required instead can be configured cheaper and simpler than the rotation sensor, so that the device is simple and inexpensive.

【0011】本発明において特に注目すべきことの第二
点は,アクセル連動回生において,回生制御から力行制
御への移行を次のように制御することである。即ち,新
しいアクセル操作量a2に対応した前記力行制御特性の
負荷トルクが零となる時の回転数Nd2に対する電機子
電圧の値Vdと,前記回生制御特性における上記回転数
Nd2における電機子電圧Vbの値とがほぼ等しい値と
なるように予め界磁電流の値Ifsを設定し,界磁電流
の値を上記Ifsの一定に保ちつつ,上記一定の制動ト
ルクTbに対応する電機子電流Iasとなるように電機
子電流を制御し,回転数と共に低下する電機子電圧が上
記Vbとなった時点で,力行制御に再び移行する。
A second point of particular interest in the present invention is to control the transition from the regenerative control to the powering control in the accelerator-linked regeneration as follows. That is, the armature voltage value Vd with respect to the rotation speed Nd2 when the load torque of the powering control characteristic corresponding to the new accelerator operation amount a2 becomes zero, and the armature voltage Vb at the rotation speed Nd2 in the regeneration control characteristic. The value Ifs of the field current is set in advance so that the value becomes substantially equal to the value, and the armature current Ias corresponding to the constant braking torque Tb is obtained while keeping the value of the field current constant. The armature current is controlled as described above, and when the armature voltage that decreases with the rotation speed reaches the above-described Vb, the process returns to powering control.

【0012】その結果,速度センサーを用いて速度を検
知しないにもかかわらず,スムースに回生制御から力行
制御へ移行することができる。即ち,回生制御から力行
制御に移行した場合に,回生制御に基づく切換直前の電
機子電圧Vbと力行制御移行時の制御目標値Vdとの差
が小さいから,両制御モード間の移行が極めてスムース
となる。それは,力行時のメイン操作量である電機子電
圧の移行の瞬間における制御偏差が極めて小さいからで
ある。そして,上記切換時における速度のオーバーシュ
ートなど,遠回りで無駄な過渡的な制御が発生しなくな
る。
As a result, it is possible to smoothly shift from the regenerative control to the power running control even though the speed is not detected using the speed sensor. That is, when the transition from the regenerative control to the power running control is performed, the difference between the armature voltage Vb immediately before switching based on the regenerative control and the control target value Vd at the time of the transition to the power running control is small, so that the transition between the two control modes is extremely smooth. Becomes This is because the control deviation at the moment of transition of the armature voltage, which is the main operation amount during power running, is extremely small. In addition, useless transient control such as overshoot of the speed at the time of the above-mentioned switching does not occur.

【0013】そして,上記電機子調整手段は,例えば請
求項2記載のように,直流電動機の電機子と並列に接続
され回生時に作動する第2スイッチング素子と,上記電
機子及び上記第2スイッチング素子と直列に接続され力
行時に作動する第1スイッチング素子と,上記第1,第
2スイッチング素子と並列に逆極性に配置された整流素
子とにより構成することができる。そして,制御手段
は,力行制御時においては,上記第2スイッチング素子
をオフ状態とすると共に第1スイッチング素子をチョッ
パー制御し,回生制御時においては,上記第1スイッチ
ング素子をオフ状態とすると共に第2スイッチング素子
をチョッパー制御することにより上記の制御を実現する
ことができる(図2,図3参照)。
[0013] The armature adjusting means may be, for example, a second switching element connected in parallel with the armature of the DC motor and operated during regeneration, and the armature and the second switching element. And a rectifying element arranged in series with the first and second switching elements and operated in the reverse polarity in parallel with the first and second switching elements. The control means controls the second switching element to be in an off state and the first switching element in chopper control during power running control, and sets the first switching element in an off state during regenerative control. The above control can be realized by chopper controlling the two switching elements (see FIGS. 2 and 3).

【0014】即ち,図2に示すように,第2スイッチン
グ素子をオフ状態とすると共に第1スイッチング素子を
チョッパー制御することにより,電源側から電力を電動
機に供給し力行駆動することができる。そして,第1ス
イッチング素子のチョッパー制御量に対応して電動機は
作動する。一方,図3に示すように,第1スイッチング
素子をオフ状態とすると共に第2スイッチング素子をチ
ョッパー制御し,第1スイッチング素子に並列に挿入し
たダイオードのルートを介して,電動機のエネルギーを
電源側に回生することができる。そして,上記回生量電
力は,第2スイッチング素子のチョッパー制御量を調整
することにより制御することができる。
That is, as shown in FIG. 2, by turning off the second switching element and performing chopper control on the first switching element, electric power can be supplied from the power supply side to the electric motor to perform power running driving. Then, the motor operates according to the chopper control amount of the first switching element. On the other hand, as shown in FIG. 3, the first switching element is turned off, the second switching element is chopper-controlled, and the energy of the motor is transferred to the power supply side through a diode route inserted in parallel with the first switching element. Can be regenerated. Further, the regenerative amount power can be controlled by adjusting the chopper control amount of the second switching element.

【0015】一方,界磁電流調整手段は,例えば請求項
3に記載のように,対向するブリッジ端子の橋絡部に直
流電動機の界磁コイルを接続してなるスイッチング素子
のブリッジ接続回路により構成することができる。そし
て,制御手段は,上記ブリッジ回路において互いに対向
する辺の一対のスイッチング素子の二つの組のいずれか
一方の組を回転方向に対応してチョッパー制御すると共
に他方の組をオフ状態とすることにより界磁電流の大き
さ及び方向を制御することができる(図2,図3参
照)。即ち,チョッパー制御するスイッチング素子の対
を選択することにより,界磁電流の極性(方向)が決ま
り,チョッパー制御量により電流の大きさを変化させる
ことができる。
On the other hand, the field current adjusting means is constituted by, for example, a bridge connection circuit of a switching element in which a field coil of a DC motor is connected to a bridge portion of an opposite bridge terminal. can do. The control means controls one of the two sets of the pair of switching elements on the sides facing each other in the bridge circuit by chopper control in accordance with the rotational direction and sets the other set to the off state. The magnitude and direction of the field current can be controlled (see FIGS. 2 and 3). That is, by selecting a pair of switching elements to be chopper-controlled, the polarity (direction) of the field current is determined, and the magnitude of the current can be changed by the chopper control amount.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例 本例は,図1に示すように,産業車両を駆動する直流分
巻電動機81の電機子電圧Vaを検知する電圧検出手段
11と,直流電動機81の電機子電流Ia及び界磁電流
Ifを検知する電流検出手段12,13と,アクセルの
操作量及びディレクションスイッチのニュートラル状態
を検知するアクセルセンサー14と,電機子電流Iaの
方向が切り換え可能であると共に電機子の電圧Va,電
流Iaの大きさを調整することができる詳細を後述する
電機子調整手段と,詳細を後述する界磁電流調整手段3
0と,電機子電流の値と界磁電流の値とから現在の負荷
トルクTを算定しアクセルセンサー14の検知信号と上
記負荷トルクとに対応した所定の回転数となるよう上記
電機子調整手段及び界磁電流調整手段30を操作するに
制御手段40とを有する産業車両用直流分巻電動機81
の制御装置1である。
Embodiment This embodiment is, as shown in FIG. 1, a voltage detecting means 11 for detecting an armature voltage Va of a DC shunt motor 81 for driving an industrial vehicle, an armature current Ia and a field current of the DC motor 81. Current detecting means 12 and 13 for detecting If, an accelerator sensor 14 for detecting an operation amount of an accelerator and a neutral state of a direction switch, a direction of an armature current Ia can be switched, and a voltage Va and a current Ia of an armature are provided. The armature adjusting means, which will be described in detail later, which can adjust the size of
0, the current load torque T is calculated from the value of the armature current and the value of the field current, and the armature adjusting means is adjusted to a predetermined rotational speed corresponding to the detection signal of the accelerator sensor 14 and the load torque. DC shunt motor 81 for industrial vehicles having a control means 40 for operating the field current adjusting means 30
Of the control device 1.

【0017】制御手段40は,アクセルが踏み込まれて
いる力行時においては,上記負荷トルクTとアクセル操
作量a1とに対応する所定の回転数となるように,電機
子電流Iaを所定値以下に制限しつつ界磁電流Ifと電
機子電圧Vaを調整する。一方,アクセルの操作量が相
対的に大きい上記操作量a1から少ない操作量a2に戻
し操作された場合には,新しいアクセル操作量a2に対
応した負荷トルクと回転数の関係に移行するよう直流電
動機81の電力を電源側85に回生しつつ所定の一定の
制動トルクTb(図6)で制動する。
When the accelerator is depressed, the control means 40 sets the armature current Ia to a predetermined value or less so that the rotation speed becomes a predetermined rotation speed corresponding to the load torque T and the accelerator operation amount a1. The field current If and the armature voltage Va are adjusted while limiting. On the other hand, when the operation amount of the accelerator is returned from the operation amount a1 that is relatively large to the operation amount a2 that is small, the DC motor is shifted to the relationship between the load torque and the rotation speed corresponding to the new accelerator operation amount a2. While the electric power of 81 is regenerated to the power supply side 85, braking is performed with a predetermined constant braking torque Tb (FIG. 6).

【0018】そして,上記回生制動時においては,制御
手段40は,新しいアクセル操作量a2に対応した力行
時の負荷トルクと回転数との関係において負荷トルク零
時の回転数Nd2に対する電機子電圧Vdの値と,上記
一定の制動トルクTbで制動して上記回転数Nd2とな
った場合における電機子電圧Vbの値とが,ほぼ等しい
値となるように予め界磁電流の値Ifsを設定し,界磁
電流の値を上記Ifsの一定に保ちつつ,上記一定の制
動トルクTbに対応する電機子電流Iasとなるように
電機子電流を制御し,回転数と共に低下する電機子電圧
が上記Vbとなった時点で,上記アクセル操作量a2に
対応する力行制御に再び移行する。
At the time of the regenerative braking, the control means 40 determines the armature voltage Vd with respect to the rotational speed Nd2 when the load torque is zero in the relationship between the load torque and the rotational speed during power running corresponding to the new accelerator operation amount a2. And the value of the field current Ifs is set in advance so that the value of the armature voltage Vb when the value of the armature voltage Vb when the rotation speed Nd2 is obtained by braking with the constant braking torque Tb becomes substantially the same value. The armature current is controlled so that the armature current Ias corresponding to the constant braking torque Tb is maintained while maintaining the value of the field current at the constant Ifs. At this point, the process returns to the powering control corresponding to the accelerator operation amount a2.

【0019】そして,上記電機子調整手段は,直流電動
機81の電機子82と並列に接続され回生時に作動する
第2スイッチング素子22と,電機子82及び第2スイ
ッチング素子22と直列に接続され力行時に作動する第
1スイッチング素子21と,第1,第2スイッチング素
子21,22と並列に逆極性に配置された整流素子2
3,24とを備えている。そして,制御手段40は,力
行制御時においては,第2スイッチング素子22をオフ
状態とすると共に第1スイッチング素子21をチョッパ
ー制御し,回生制御時においては,第1スイッチング素
子21をオフ状態とすると共に第2スイッチング素子2
2をチョッパー制御する。
The armature adjusting means includes a second switching element 22 connected in parallel with the armature 82 of the DC motor 81 and operating during regeneration, and a power running connected in series with the armature 82 and the second switching element 22. And a rectifying element 2 arranged in reverse polarity in parallel with the first and second switching elements 21 and 22.
3, 24. The control means 40 turns off the second switching element 22 during the powering control and controls the first switching element 21 by chopper control, and turns off the first switching element 21 during the regenerative control. Together with the second switching element 2
2 is chopper-controlled.

【0020】また,界磁電流調整手段30は,対向する
ブリッジ端子301,302の橋絡部に直流電動機81
の界磁コイル83を接続してなるスイッチング素子31
1〜314のブリッジ接続回路を備えており,制御手段
40は,上記ブリッジ回路において互いに対向する辺の
一対のスイッチング素子(311と313)又は(31
2と314)の二つの組のいずれか一方の組を電動機8
1の回転方向に対応してチョッパー制御すると共に他方
の組をオフ状態とすることにより界磁電流Ifの大きさ
及び方向を制御する。
The field current adjusting means 30 includes a DC motor 81 at the bridge between the bridge terminals 301 and 302 facing each other.
Switching element 31 connected to the field coil 83 of FIG.
The control means 40 comprises a pair of switching elements (311 and 313) or (311) on opposite sides of the bridge circuit.
2 and 314), one of the two sets
The magnitude and direction of the field current If are controlled by performing chopper control corresponding to one rotation direction and turning off the other set.

【0021】同図において,符号25は制御手段40の
指令に基づいて第1,第2スイッチング素子21,22
を駆動するドライバー回路,符号33は制御手段40の
指令に基づいて界磁用スイッチング素子311〜314
を駆動するドライバー回路,符号321〜324は界磁
用スイッチング素子の保護ダイオードである。
In the figure, reference numeral 25 denotes first and second switching elements 21 and 22 based on a command from a control means 40.
A driver circuit 33 drives the field switching elements 311 to 314 based on a command from the control means 40.
321 to 324 are protection diodes for the field switching elements.

【0022】以下,それぞれについて説明を補足する。
始めにアクセルの操作量aiに対応して制御されるべき
負荷トルクと回転数(車両速度)との関係は,図4
(a)に示すような関係にある。即ち,例えば同図
(a)の符号611〜613の曲線に示すように,低速
時のトルク(従って電機子電流)の大きさを制限しつつ
負荷トルクに反比例的に回転数(速度)の値を制御す
る。
The following is a supplementary explanation for each.
First, the relationship between the load torque to be controlled corresponding to the accelerator operation amount ai and the rotation speed (vehicle speed) is shown in FIG.
The relationship is as shown in FIG. That is, for example, as shown by curves 611 to 613 in FIG. 9A, the value of the rotation speed (speed) is inversely proportional to the load torque while limiting the magnitude of the torque at low speed (accordingly, the armature current). Control.

【0023】そして,通常の力行制御時には,基本的に
界磁電流と電機子電圧を操作することにより,上記曲線
611〜613に従うように制御する。そして,アクセ
ル操作量が減少して新たな関係に移行する過渡期(例え
ば曲線613から曲線611に移行する過渡期),所謂
アクセル連動回生を行う時には制動トルク一定の減速制
御を行い,再び回生制御から力行制御へ移行する制御
は,詳細を後述するようにアンダーシュートが生じず且
つ制御遅れが生じないように,制御の不連続性を最小と
する適正な制御を実現させる。
At the time of ordinary power running control, control is performed in accordance with the curves 611 to 613 by basically operating the field current and the armature voltage. Then, when the accelerator operation amount decreases and a new relationship is entered (for example, a transition from the curve 613 to the curve 611), that is, when so-called accelerator-linked regeneration is performed, deceleration control with a constant braking torque is performed, and regeneration control is performed again. The control that shifts from the control to the powering control realizes appropriate control that minimizes control discontinuity so that undershoot does not occur and control delay does not occur, as described in detail later.

【0024】始めに,力行運転時の制御方法について述
べる。この場合には,電機子電流を一定値以下に電流制
限をかけながら,界磁電流と電機子電圧を制御するが,
始めに現在の電機子電流Iaの値と界磁電流Ifの値か
ら,現在の負荷トルクTを算定する。そして,上記負荷
トルクの値Tに基づいて,始めに適正な界磁電流の指令
値Ifoを,例えば上記(T−Ifo)の関係を決める
テーブル又は演算器等に基づいて決定する。
First, a control method during the power running operation will be described. In this case, the field current and the armature voltage are controlled while limiting the armature current to a certain value or less.
First, the current load torque T is calculated from the current value of the armature current Ia and the value of the field current If. Then, based on the value T of the load torque, first, an appropriate field current command value Ifo is determined based on, for example, a table that determines the relationship of (T-Ifo) or a calculator.

【0025】一方,前記のようにアクセル操作量aiに
対応するトルク速度曲線(図4(a)の曲線611〜6
13)から,上記負荷トルクTに対する電動機の回転数
Nは決定される。例えば,アクセル操作量がa3で負荷
トルクがT1である場合には,図4(a)曲線613と
T1との交点から速度N1が求められる。そして,この
ときの界磁電流一定の場合の電機子電圧Vaと回転数N
の関係は,界磁電流の値If1〜If3に対応して同図
(b)の曲線621〜623のような関係となり,上記
界磁電流の指令値Ifoに対応する電機子電圧−速度カ
ーブ(同図では曲線622)と速度N1とから電機子電
圧の指令値Vdが決定される。
On the other hand, as described above, the torque speed curve corresponding to the accelerator operation amount ai (curves 611-6 in FIG.
From 13), the rotation speed N of the electric motor with respect to the load torque T is determined. For example, when the accelerator operation amount is a3 and the load torque is T1, the speed N1 is obtained from the intersection of the curve 613 and T1 in FIG. The armature voltage Va and the rotation speed N when the field current is constant at this time are
(B) corresponding to the field current values If1 to If3, and the armature voltage-speed curve (corresponding to the field current command value Ifo). In the figure, the command value Vd of the armature voltage is determined from the curve 622) and the speed N1.

【0026】そして,上記指令値Ifo,Vdに基づい
て,界磁電流と電機子電圧が上記値となるように,図2
に示すように,第1スイッチング素子21および界磁ス
イッチング素子(312と314)又は(311と31
3)をチョッパー制御する(界磁スイッチング素子(3
12と314)又は(311と313)の選定は正逆の
回転方向によって決める)。なお,このとき,電機子電
流の大きさは一定値以下となるように制限する。
Then, based on the command values Ifo and Vd, the field current and the armature voltage are set to the above-mentioned values so that the values shown in FIG.
As shown in (1), the first switching element 21 and the field switching elements (312 and 314) or (311 and 31)
3) chopper control (field switching element (3
12 and 314) or (311 and 313) is determined by the forward and reverse rotation directions). At this time, the magnitude of the armature current is limited so as to be less than a certain value.

【0027】次に,アクセル連動回生時の制御方法につ
いて述べる。この場合は,図6に示すように,アクセル
操作量aがa3からa1に減少し,トルク−速度曲線が
同図の曲線613から611に変化するような場合であ
る。そして,現在の負荷に対応する曲線613上の点A
から曲線611上の点Bに移行させる制御を実施する。
そして,同図の曲線611のB’点からB点に制御上逆
戻りする所謂アンダーシュート現象が生じず,且つ回生
から力行への切換が早すぎることによる制御遅れが生じ
ないように,曲線611のトルク零のx点で回生から力
行への制御モードの切換を行うことを制御の目標とす
る。
Next, a description will be given of a control method at the time of accelerator-linked regeneration. In this case, as shown in FIG. 6, the accelerator operation amount a decreases from a3 to a1, and the torque-speed curve changes from the curve 613 to 611 in FIG. Then, a point A on the curve 613 corresponding to the current load
From the control to the point B on the curve 611.
The so-called undershoot phenomenon in which the control is reversed from the point B 'to the point B in the curve 611 in the figure does not occur, and the control delay of the curve 611 does not occur because the switching from the regeneration to the power running is too fast. The control target is to switch the control mode from the regeneration to the power running at the point x where the torque is zero.

【0028】そして,力行への移行前の回生制御時にお
いては,図6に示すように制動トルクが一定値Tbとな
るようにトルク一定制御を行いながら,図3に示すよう
に電機子電流Iaの方向を反転させ電動機81のエネル
ギーを電源85に回生する。なお,このようなトルク一
定の回生制御時においては,界磁電流を一定とした場合
の速度(回転数N)と電機子電圧Vaの関係は,前記界
磁電流の値If1〜If3に対応して図5の曲線631
〜633に示すように,ほぼ直線関係となる。
In the regenerative control before the shift to the power running, while performing the torque constant control so that the braking torque becomes a constant value Tb as shown in FIG. 6, the armature current Ia as shown in FIG. And the energy of the electric motor 81 is regenerated to the power supply 85. In such regenerative control with constant torque, the relationship between the speed (rotational speed N) and the armature voltage Va when the field current is constant corresponds to the field current values If1 to If3. And the curve 631 in FIG.
As indicated by 〜633, a substantially linear relationship is obtained.

【0029】図7(b)は界磁電流の値If1〜If3
に対応する力行時の電機子電圧−回転数曲線621〜6
23と,界磁電流の値If1〜If3に対応する回生時
の電機子電圧−回転数曲線631〜633とを同一図上
に表示した図である。その結果,同図から分かるよう
に,同一速度に対応する力行時の電機子電圧(例えば図
4のVd)と回生時の電機子電圧(例えば図5のVb)
とのの間には,界磁電流の値If1〜If3によって変
化するギャップΔVaが存在する。
FIG. 7B shows field current values If1 to If3.
Armature voltage-rotation speed curves 621-6 during powering corresponding to
FIG. 23 is a diagram showing the armature voltage-revolution speed curves 631 to 633 during regeneration corresponding to field current values If1 to If3 on the same diagram. As a result, as can be seen from the figure, the armature voltage during power running (for example, Vd in FIG. 4) and the armature voltage during regeneration (for example, Vb in FIG. 5) corresponding to the same speed.
And a gap ΔVa that varies depending on the values of the field currents If1 to If3.

【0030】そして,本例では,図6に示す回生−力行
切換時の回転数Nxにおける上記電機子電圧のギャップ
ΔVaがミニマムとなるように界磁電流の指令値を設定
する(図7ではΔVa=ΔVa1の時すなわち界磁電流
がIf1の時)。その結果,上記回転数Nxで図6のs
点に示す回生制御からx点で示す力行制御に移行した場
合には,界磁電流を一定にした状態のまま電機子電圧に
対する指令値の変化ΔVaが極めて少なくなり,アンダ
ーシュートが生じず且つ制御遅れ及び回生効率低下が生
じず回生から力行制御に移行することができる。上記の
ように,本例によれば,回転センサーを用いないで電機
子電圧を検知することにより速度制御が可能であると共
に,回生から力行へのスムースな移行が可能な産業車両
用直流分巻電動機の制御装置を得ることができる。
In the present embodiment, the command value of the field current is set so that the gap ΔVa of the armature voltage at the rotation speed Nx at the time of the regenerative-powering switching shown in FIG. 6 becomes a minimum (ΔVa in FIG. 7). = ΔVa1, ie, when the field current is If1). As a result, s in FIG.
When the regenerative control indicated by the point is shifted to the powering control indicated by the point x, the change ΔVa of the command value with respect to the armature voltage while the field current is kept constant is extremely small, and no undershoot occurs and the control is not performed. It is possible to shift from regeneration to power running control without delay and reduction in regeneration efficiency. As described above, according to this embodiment, the speed can be controlled by detecting the armature voltage without using the rotation sensor, and the DC shunt for the industrial vehicle can be smoothly shifted from the regeneration to the powering. An electric motor control device can be obtained.

【0031】[0031]

【発明の効果】上記のように,本発明によれば,回転セ
ンサーが不要で,スムースかつ効率的なな回生,力行制
御を行うことのできる直流分巻電動機の制御装置を得る
ことができる。
As described above, according to the present invention, it is possible to obtain a DC shunt motor control device which does not require a rotation sensor and can perform smooth and efficient regeneration and power running control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例の電動機制御装置の接続図。FIG. 1 is a connection diagram of a motor control device according to an embodiment.

【図2】図1において力行制御時の電機子電流及び界磁
電流の流れとスイッチング素子の動作状態を示す図。
FIG. 2 is a diagram illustrating the flow of an armature current and a field current during power running control in FIG. 1 and an operation state of a switching element.

【図3】図1において回生制御時の電機子電流及び界磁
電流の流れとスイッチング素子の動作状態を示す図。
FIG. 3 is a diagram showing the flow of an armature current and a field current during regenerative control in FIG. 1 and an operation state of a switching element.

【図4】力行制御時においてアクセルの操作量を一定と
した時のトルクと回転数の関係を示す図(a)と界磁電
流を一定とした時の電機子電圧と回転数の関係を示す図
(b)。
FIG. 4A is a diagram showing the relationship between the torque and the rotation speed when the operation amount of the accelerator is constant during power running control, and FIG. 4B is a diagram showing the relationship between the armature voltage and the rotation speed when the field current is constant. Figure (b).

【図5】トルク一定制御により回生制御を行いかつ界磁
電流を一定とした時の電機子電圧と回転数の関係を示す
図。
FIG. 5 is a diagram showing a relationship between an armature voltage and a rotation speed when regenerative control is performed by constant torque control and a field current is fixed.

【図6】実施形態例の制御装置において,アクセル連動
回生時の回生−力行移行時の回転数とトルクの変化の推
移を示す図。
FIG. 6 is a diagram showing changes in the rotation speed and the change in torque at the transition from regeneration to power running during accelerator-linked regeneration in the control device of the embodiment.

【図7】実施形態例の制御装置において,アクセル連動
回生時の回生制御から力行制御へ移行する場合の電機子
電圧の指令値の変化ΔVaを示す説明図。
FIG. 7 is an explanatory diagram showing a change ΔVa in a command value of an armature voltage when the control device of the embodiment shifts from regenerative control at the time of accelerator-linked regeneration to power running control.

【図8】従来の電動機制御装置の接続図。FIG. 8 is a connection diagram of a conventional motor control device.

【符号の説明】[Explanation of symbols]

11...電機子電圧検出手段, 12,13...電流検出手段, 14...アクセルセンサー, 30...界磁電流調整手段, 40...制御手段, 11. . . Armature voltage detecting means, 12, 13. . . 13. current detection means; . . Accelerator sensor, 30. . . 40. field current adjusting means . . Control means,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 産業車両を駆動する直流分巻電動機の電
機子電圧を検知する電圧検出手段と,上記直流電動機の
電機子電流及び界磁電流を検知する電流検出手段と,ア
クセルの操作量またはディレクションスイッチのニュー
トラル状態を検知するアクセルセンサーと,電機子電流
の方向が切り換え可能であると共に電機子の電圧,電流
の大きさを調整することができる電機子調整手段と,界
磁電流調整手段と,電機子電流の値と界磁電流の値とか
ら現在の負荷トルクを算定し上記アクセルセンサーの検
知信号と上記負荷トルクとに対応した所定の回転数とな
るよう上記電機子調整手段及び界磁電流調整手段を操作
する制御手段とを有しており,上記制御手段は,アクセ
ルが踏み込まれている力行時においては,上記負荷トル
クとアクセル操作量a1とに対応する所定の回転数とな
るように,上記電機子電流を所定値以下に制限しつつ界
磁電流と電機子電圧を調整し,一方,アクセルの操作量
が相対的に大きい上記操作量a1から少ない操作量a2
に戻し操作された場合には,新しいアクセル操作量a2
に対応した負荷トルクと回転数の関係に移行するよう上
記直流電動機の電力を電源側に回生しつつ所定の一定の
制動トルクTbで制動し,上記回生制動時においては,
新しいアクセル操作量a2に対応した力行時の負荷トル
クと回転数との関係において負荷トルク零時の回転数N
d2に対する電機子電圧の値Vdと,上記一定の制動ト
ルクTbで制動して上記回転数Nd2となった場合にお
ける電機子電圧Vbの値とが,ほぼ等しい値となるよう
に予め界磁電流の値Ifsを設定し,界磁電流の値を上
記Ifsの一定に保ちつつ,上記一定の制動トルクTb
に対応する電機子電流Iasとなるように電機子電流を
制御し,回転数と共に低下する電機子電圧が上記Vbと
なった時点で,上記アクセル操作量a2に対応する力行
制御に再び移行するよう電動機を制御することを特徴と
する産業車両用直流分巻電動機の制御装置。
A voltage detecting means for detecting an armature voltage of a DC shunt motor driving an industrial vehicle; a current detecting means for detecting an armature current and a field current of the DC motor; An accelerator sensor for detecting a neutral state of the direction switch, an armature adjusting means capable of switching the direction of the armature current and adjusting the magnitude of the armature voltage and current, and a field current adjusting means. Calculating the current load torque from the value of the armature current and the value of the field current, and setting the armature adjusting means and the field motor so as to attain a predetermined rotational speed corresponding to the detection signal of the accelerator sensor and the load torque. And control means for operating the current adjusting means, wherein the control means controls the load torque and the accelerator operation amount when the accelerator is depressed. a1 while adjusting the field current and the armature voltage while limiting the armature current to a predetermined value or less so as to achieve a predetermined rotation speed corresponding to a1. A small operation amount a2 from the amount a1
When the operation is returned to, the new accelerator operation amount a2
In order to shift to the relationship between the load torque and the rotation speed corresponding to the above, the electric power of the DC motor is regenerated to the power supply side while being braked at a predetermined constant braking torque Tb.
In the relationship between the load torque during power running and the rotational speed corresponding to the new accelerator operation amount a2, the rotational speed N at zero load torque
The value of the field current is determined in advance so that the value Vd of the armature voltage with respect to d2 and the value of the armature voltage Vb when the rotation speed Nd2 is obtained by braking with the constant braking torque Tb are substantially equal. The value Ifs is set, and the constant braking torque Tb is maintained while the value of the field current is kept constant.
The armature current is controlled so as to become the armature current Ias corresponding to the above. When the armature voltage that decreases with the rotation speed becomes the above-mentioned Vb, the operation is again shifted to the power running control corresponding to the above-mentioned accelerator operation amount a2. A control device for a DC shunt motor for industrial vehicles, which controls the motor.
【請求項2】 請求項1において,前記電機子調整手段
は,直流電動機の電機子と並列に接続され回生時に作動
する第2スイッチング素子と,上記電機子及び上記第2
スイッチング素子と直列に接続され力行時に作動する第
1スイッチング素子と,上記第1,第2スイッチング素
子と並列に逆極性に配置された整流素子とを備えてお
り,前記制御手段は,力行制御時においては,上記第2
スイッチング素子をオフ状態とすると共に第1スイッチ
ング素子をチョッパー制御し,回生制御時においては,
上記第1スイッチング素子をオフ状態とすると共に第2
スイッチング素子をチョッパー制御することを特徴とす
る産業車両用直流分巻電動機の制御装置。
2. The armature adjusting means according to claim 1, wherein the armature adjusting means is connected in parallel with the armature of the DC motor and is operated at the time of regeneration.
A first switching element connected in series with the switching element and operating during power running; and a rectifying element disposed in parallel with the first and second switching elements with opposite polarities. In the above, the second
The switching element is turned off and the first switching element is chopper-controlled.
The first switching element is turned off and the second switching element is turned off.
A control device for a DC shunt motor for industrial vehicles, wherein chopper control is performed on a switching element.
【請求項3】 請求項1又は請求項2において,前記界
磁電流調整手段は,対向するブリッジ端子の橋絡部に直
流電動機の界磁コイルを接続してなるスイッチング素子
のブリッジ接続回路を備えており,前記制御手段は,上
記ブリッジ回路において互いに対向する辺の一対のスイ
ッチング素子の二つの組のいずれか一方の組を回転方向
に対応してチョッパー制御すると共に他方の組をオフ状
態とすることにより界磁電流の大きさ及び方向を制御す
ることを特徴とする産業車両用直流分巻電動機の制御装
置。
3. The field current adjusting means according to claim 1, wherein the field current adjusting means comprises a bridge connection circuit of a switching element formed by connecting a field coil of a DC motor to a bridge portion of an opposite bridge terminal. The control means controls the chopper of one of the two sets of the pair of switching elements on the side opposite to each other in the bridge circuit in accordance with the rotational direction and sets the other set to the off state. A control device for a DC shunt motor for an industrial vehicle, characterized by controlling the magnitude and direction of a field current.
JP9102670A 1997-04-04 1997-04-04 Device for controlling dc shunt motor for industrial vehicle Pending JPH10285714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9102670A JPH10285714A (en) 1997-04-04 1997-04-04 Device for controlling dc shunt motor for industrial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9102670A JPH10285714A (en) 1997-04-04 1997-04-04 Device for controlling dc shunt motor for industrial vehicle

Publications (1)

Publication Number Publication Date
JPH10285714A true JPH10285714A (en) 1998-10-23

Family

ID=14333677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9102670A Pending JPH10285714A (en) 1997-04-04 1997-04-04 Device for controlling dc shunt motor for industrial vehicle

Country Status (1)

Country Link
JP (1) JPH10285714A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271675A (en) * 2007-04-18 2008-11-06 Okudaya Giken:Kk Small carrier
JP2017184574A (en) * 2016-03-31 2017-10-05 株式会社豊田自動織機 Device for controlling vehicle travelling motor
CN114244200A (en) * 2021-12-13 2022-03-25 陕西航空电气有限责任公司 High-power universal rectifying device and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008271675A (en) * 2007-04-18 2008-11-06 Okudaya Giken:Kk Small carrier
JP2017184574A (en) * 2016-03-31 2017-10-05 株式会社豊田自動織機 Device for controlling vehicle travelling motor
CN114244200A (en) * 2021-12-13 2022-03-25 陕西航空电气有限责任公司 High-power universal rectifying device and control method thereof

Similar Documents

Publication Publication Date Title
US5764009A (en) Motor control device in electric motor-operated vehicle
JP3463267B2 (en) Electric vehicle
JPH1066383A (en) Drive controller for permanent magnet synchronous motor
JPH08322106A (en) Control of motor
JPH10285714A (en) Device for controlling dc shunt motor for industrial vehicle
JP2002101693A (en) Controller of electric motor
JP3651183B2 (en) Regenerative control device for DC motor for industrial vehicles
JP3754319B2 (en) Electric vehicle control method and apparatus
JPH058729Y2 (en)
JPH0975398A (en) Control equipment for motor-driven wheelchair
JP3635865B2 (en) Control device for DC shunt motor for industrial vehicles
JP3149600B2 (en) Control device for permanent magnet motor for electric vehicle
JPH0993726A (en) Method for controlling electric rolling stock
JPS6318903A (en) Regenerative braking device for electric rolling stock
JP3345915B2 (en) Travel control device for battery car
JP2591830Y2 (en) Field weakening control circuit for electric forklift
JPH0811536B2 (en) Current controller for motor drive
JPH08186902A (en) Controller of motor for vehicle
JPH10310398A (en) Regenerative braking device for battery vehicle
KR100752114B1 (en) Apparatus for controlling a braking system of an electromotive forklift truck and method thereof
JPH05115105A (en) Brake system for motor loading/unloading vehicle
JPH0787622A (en) Running controller for battery vehicle
JP2580478Y2 (en) Regenerative brake control device for electric vehicles
JPH09117200A (en) Controller for induction motor
JP2005278293A (en) Hybrid vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405