JPH10284911A - Coaxial waveguide converter - Google Patents

Coaxial waveguide converter

Info

Publication number
JPH10284911A
JPH10284911A JP9092364A JP9236497A JPH10284911A JP H10284911 A JPH10284911 A JP H10284911A JP 9092364 A JP9092364 A JP 9092364A JP 9236497 A JP9236497 A JP 9236497A JP H10284911 A JPH10284911 A JP H10284911A
Authority
JP
Japan
Prior art keywords
waveguide
coaxial
converter
electromagnetic wave
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9092364A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
浩 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9092364A priority Critical patent/JPH10284911A/en
Publication of JPH10284911A publication Critical patent/JPH10284911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coaxial waveguide converter in which an undesired reflecting component being a problem is minimized in the case of measuring a distance up to a reflecting face such as sand and earth. SOLUTION: One end of a matching stub 11 is connected to an inner wall of a waveguide 1 in an opposite direction from a waveguide short-circuit device 2 when viewing an exciting conductor 3, and the stub 11 is placed so that a component of an electromagnetic wave from the exciting conductor 3 in an opposite direction to a waveguide short-circuit device 2 that is reflected in the coaxial waveguide converter and restores in a direction of the exciting conductor 3 opposite to the waveguide short-circuit device 2 and a component of an electromagnetic wave from the exciting conductor 3 in an opposite direction to the waveguide short-circuit device 2 that is reflected in the matching stub 11 returns again in a direction of the exciting conductor 3 opposite to the waveguide short-circuit device 2 are cancelled together.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、主としてVHF
帯、UHF帯、およびマイクロ波帯で用いられる同軸導
波管変換器で、特に導波管内部を土砂や液体などの物体
が通過する構造の同軸導波管変換器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a coaxial waveguide converter used in a band, a UHF band, and a microwave band, and particularly to a coaxial waveguide converter having a structure in which an object such as earth and sand or a liquid passes through the inside of the waveguide.

【0002】[0002]

【従来の技術】通常同軸導波管変換器は導波管の一端が
短絡板で塞がれており、導波管内部に土砂や液体などの
物体を通過させることはできない。しかし、短絡器とプ
ローブの形状を工夫することにより、物体の通過は可能
となる。例えば1994年9月の電子情報通信学会秋季
全国大会の論文番号C108「折り返しプローブとY形
短絡器を用いた同軸線路一導波管変換器」では、短絡器
を従来の板でなく、Y字形の構造物にして、プローブを
導波管を伝搬する電磁波の約4分の1波長で折り曲げて
先端を導波管内の壁面に接続することによって物体の流
入を可能にしている。
2. Description of the Related Art In a coaxial waveguide converter, one end of a waveguide is usually closed by a short-circuit plate, and an object such as earth and sand or a liquid cannot pass through the waveguide. However, it is possible to pass an object by devising the shapes of the short circuiter and the probe. For example, in the paper No. C108 “Coaxial line-to-waveguide converter using a folded probe and a Y-type short-circuiter” of the IEICE Autumn National Convention in September 1994, the short-circuiter is not a conventional plate but a Y-shaped. In this structure, the probe is bent at about one-quarter wavelength of the electromagnetic wave propagating through the waveguide, and the tip is connected to the wall surface of the waveguide, thereby enabling the inflow of an object.

【0003】図5は、土砂や液体を通過させることので
きる従来の同軸導波管変換器の構成図であり、図5
(a)は導波管の中心軸上から見た断面図、図5(b)
は側面方向から見た断面図、図5(c)は同軸線路と導
波管変換器の整合部分を示した図である。図において、
1は円形の導波管、2はY形の導波管短絡器、3は折り
返し形の励振導体、4は誘電体基板、5はストリップ導
体、6は地導体、7は誘電体基板4、ストリップ導体
5、地導体6で構成されるマイクロストリップ線路、8
はインピーダンス整合用4分の1波長マイクロストリッ
プ線路変成器、9は変成器のカバー、10は同軸コネク
タである。
FIG. 5 is a block diagram of a conventional coaxial waveguide converter capable of passing earth and sand and liquid.
FIG. 5A is a cross-sectional view as viewed from the center axis of the waveguide, and FIG.
FIG. 5C is a cross-sectional view as viewed from the side, and FIG. 5C is a diagram illustrating a matching portion between the coaxial line and the waveguide converter. In the figure,
1 is a circular waveguide, 2 is a Y-shaped waveguide short circuit, 3 is a folded excitation conductor, 4 is a dielectric substrate, 5 is a strip conductor, 6 is a ground conductor, 7 is a dielectric substrate 4, A microstrip line composed of a strip conductor 5 and a ground conductor 6;
Is a quarter wavelength microstrip line transformer for impedance matching, 9 is a transformer cover, and 10 is a coaxial connector.

【0004】次に、従来の同軸導波管変換器の動作につ
いて説明する。図5において、同軸コネクタ10より電
磁波を入射すると、マイクロストリップ線路7を介して
励振導体3に電磁波が伝搬され、同軸モードから導波管
1内の導波管モードへ電磁波が変換される。導波管モー
ドへ変換された電磁波は励振導体3から導波管1の軸の
両方向へ伝搬するが、導波管短絡器2側に伝搬した電磁
波は、導波管短絡器2により反射され、導波管短絡器2
側とは反対方向へ伝搬した電磁波と重畳し、結局、導波
管1の一方向へのみ伝搬する。
Next, the operation of the conventional coaxial waveguide converter will be described. In FIG. 5, when an electromagnetic wave is incident from the coaxial connector 10, the electromagnetic wave propagates to the excitation conductor 3 via the microstrip line 7, and the electromagnetic wave is converted from the coaxial mode to the waveguide mode in the waveguide 1. The electromagnetic wave converted into the waveguide mode propagates from the excitation conductor 3 in both directions of the axis of the waveguide 1, but the electromagnetic wave propagated to the waveguide short circuit 2 is reflected by the waveguide short circuit 2, Waveguide short circuit 2
It is superimposed on the electromagnetic wave propagating in the direction opposite to the side, and eventually propagates only in one direction of the waveguide 1.

【0005】ここで、励振導体3と導波管短絡器2との
間隔を調整することにより、同軸導波管変換器のリアク
タンス分を0にすることができたとしても、抵抗分が接
続する同軸線路の特性インピーダンスと整合しない場合
がある。この場合に、同軸導波管変換器の抵抗分をR、
同軸線路の特性インピーダンスをZとすると、4分の1
波長マイクロストリップ線路変成器8の特性インピーダ
ンスを(R・Z)1/2とすればよい。
Here, even if the reactance of the coaxial waveguide converter can be reduced to zero by adjusting the distance between the excitation conductor 3 and the waveguide short-circuit device 2, the resistance is connected. It may not match the characteristic impedance of the coaxial line. In this case, the resistance of the coaxial waveguide converter is represented by R,
Assuming that the characteristic impedance of the coaxial line is Z, a quarter
The characteristic impedance of the wavelength microstrip line transformer 8 may be set to (R · Z) 1/2 .

【0006】[0006]

【発明が解決しようとする課題】従来の同軸導波管変換
器は以上のように入力の同軸コネクタと励振導体の間に
整合用の4分の1波長マイクロストリップ線路変成器が
構成されているので同軸コネクタ側から見た場合に整合
がとれているが、導波管側から見た整合はとれていな
い。そのため、導波管内の測定したい反射面での反射と
同軸導波管変換器の導波管側から見た反射が多重反射を
起こし、不要な反射成分が測定誤差となる。
As described above, the conventional coaxial waveguide converter has a matching quarter-wavelength microstrip line transformer between the input coaxial connector and the excitation conductor. Therefore, the matching is obtained when viewed from the coaxial connector side, but the matching is not obtained when viewed from the waveguide side. Therefore, the reflection on the reflection surface to be measured in the waveguide and the reflection viewed from the waveguide side of the coaxial waveguide converter cause multiple reflections, and unnecessary reflection components cause measurement errors.

【0007】図6は、導波管内の土砂までの距離を測定
する系を示したものであり、14は同軸導波管変換器、
15は土砂、16はネットワークアナライザ、17は同
軸ケーブルである。ネットワークアナライザ16から電
磁波を発射し、同軸ケーブル17を介して同軸導波管変
換器14を励振し、導波管内へ電磁波を伝搬させる。電
磁波は導波管内を伝搬して土砂15の表面で反射し、再
び同軸導波管変換器14に戻り、反射波がネットワーク
アナライザ16に戻り、ネットワークアナライザ16で
測定される。ネットワークアナライザ16はタイムドメ
イン機能を有しており、反射の状況を時間軸で分解する
ことができる。その様子を図7に示す。時間軸は距離軸
と等価と考えられるので、同軸導波管変換器14での反
射と土砂15での反射が分離できることになる。さら
に、ネットワークアナライザのゲート機能を用いること
によって必要な部分だけの反射成分を取り出すことがで
きる。ここで、同軸導波管変換器14の反射は位置が不
変なので切り離すことができるが、土砂15の表面は移
動するため土砂15の反射成分の位置は変動する。ま
た、土砂15と同軸導波管変換器14の間の多重反射に
ついても同様に変動する。そのため、不要な多重反射成
分を削除することができないと言う問題があった。
FIG. 6 shows a system for measuring the distance to earth and sand in a waveguide, wherein 14 is a coaxial waveguide converter,
Reference numeral 15 denotes earth and sand, 16 denotes a network analyzer, and 17 denotes a coaxial cable. An electromagnetic wave is emitted from the network analyzer 16 to excite the coaxial waveguide converter 14 via the coaxial cable 17 to propagate the electromagnetic wave into the waveguide. The electromagnetic wave propagates in the waveguide, is reflected on the surface of the earth and sand 15, returns to the coaxial waveguide converter 14, returns the reflected wave to the network analyzer 16, and is measured by the network analyzer 16. The network analyzer 16 has a time-domain function, and can resolve the state of reflection on the time axis. This is shown in FIG. Since the time axis is considered to be equivalent to the distance axis, the reflection at the coaxial waveguide converter 14 and the reflection at the earth and sand 15 can be separated. Further, by using the gate function of the network analyzer, it is possible to extract the reflection component of only a necessary portion. Here, the reflection of the coaxial waveguide converter 14 can be separated because the position is invariable, but the position of the reflection component of the soil 15 fluctuates because the surface of the earth 15 moves. Also, the multiple reflection between the earth and sand 15 and the coaxial waveguide converter 14 fluctuates similarly. Therefore, there is a problem that unnecessary multiple reflection components cannot be deleted.

【0008】この発明は上記のような問題点を解決する
ためになされたもので、土砂等の反射面までの距離を測
定する際に問題となる不要な反射成分を極力小さくする
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to minimize unnecessary reflection components which are problematic when measuring the distance to a reflection surface such as earth and sand. I do.

【0009】[0009]

【課題を解決するための手段】第1の発明による同軸導
波管変換器は、励振導体から見て導波管短絡器と反対方
向に整合スタブの一端を導波管内壁に接続したものであ
り、励振導体の導波管短絡器と反対方向からの電磁波が
同軸導波管変換器に反射して再び励振導体の導波管短絡
器と反対方向に戻る成分と励振導体の導波管短絡器と反
対方向からの電磁波が整合スタブに反射して再び励振導
体の導波管短絡器と反対方向に戻る成分とが打ち消し合
うような間隔で配置したものである。
According to a first aspect of the present invention, there is provided a coaxial waveguide converter in which one end of a matching stub is connected to an inner wall of a waveguide in a direction opposite to a waveguide short circuit when viewed from an excitation conductor. There is a component that the electromagnetic wave from the direction opposite to the waveguide short circuit of the excitation conductor is reflected by the coaxial waveguide converter and returns again in the opposite direction to the waveguide short circuit of the excitation conductor and the waveguide short circuit of the excitation conductor. The spacing is such that the electromagnetic wave from the opposite direction to the waveguide is reflected by the matching stub and the component of the waveguide conductor of the excitation conductor and the component returning in the opposite direction cancel each other.

【0010】また、第2の発明による同軸導波管変換器
は、励振導体から見て導波管短絡器と反対方向の導波管
壁にネジ穴を切り、導波管の外側からネジ式の整合スタ
ブを貫入したものであり、励振導体の導波管短絡器と反
対方向からの電磁波が同軸導波管変換器に反射して再び
励振導体の導波管短絡器と反対方向に戻る成分と励振導
体の導波管短絡器と反対方向からの電磁波がネジ式整合
スタブに反射して再び励振導体の導波管短絡器と反対方
向に戻る成分とが打ち消し合うような間隔で配置したも
のである。
In the coaxial waveguide converter according to the second aspect of the present invention, a threaded hole is formed in a waveguide wall in a direction opposite to the waveguide short-circuiter as viewed from the excitation conductor, and a threaded hole is formed from outside the waveguide. The electromagnetic wave from the direction opposite to the waveguide short circuit of the excitation conductor is reflected by the coaxial waveguide converter and returns to the direction opposite to the waveguide short circuit of the excitation conductor again. The electromagnetic wave from the direction opposite to the waveguide short circuit of the excitation conductor is reflected by the screw type matching stub, and is arranged at such a distance that the component returning to the direction opposite to the waveguide short circuit of the excitation conductor again cancels out. It is.

【0011】また、第3の発明による同軸導波管変換器
は、励振導体から見て導波管短絡器と反対方向の導波管
壁に導波管の管軸方向に沿って導波管を伝搬する電磁波
の約4分の1波長の間隔を空けて3個のネジ穴を切り、
各々のネジ穴に導波管の外側からネジを貫入したもので
あり、励振導体の導波管短絡器と反対方向からの電磁波
が同軸導波管変換器に反射して再び励振導体の導波管短
絡器と反対方向に戻る成分と励振導体の導波管短絡器と
反対方向からの電磁波が3本のネジ式整合スタブに反射
して再び励振導体の導波管短絡器と反対方向に戻る成分
とが打ち消し合うものである。
Further, the coaxial waveguide converter according to the third aspect of the present invention provides a waveguide waveguide on a waveguide wall in a direction opposite to a waveguide short-circuiter as viewed from an excitation conductor, along a waveguide axis direction of the waveguide. Cut three screw holes at intervals of about a quarter wavelength of the electromagnetic wave propagating through
A screw penetrates from the outside of the waveguide into each screw hole.Electromagnetic waves from the direction opposite to the waveguide short circuit of the excitation conductor are reflected on the coaxial waveguide converter and guided again by the excitation conductor. The component returning in the direction opposite to the tube short circuit and the electromagnetic wave from the direction opposite to the waveguide short circuit of the excitation conductor are reflected by the three screw type matching stubs and return to the direction opposite to the waveguide short circuit of the excitation conductor again. The components cancel each other out.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1はこの発明の実施の形態1を示す構
成図であり、図において1は円形の導波管、2はY形の
導波管短絡器、3は折り返し形の励振導体、4は誘電体
基板、5はストリップ導体、6は地導体、7は誘電体基
板4、ストリップ導体5、地導体6で構成されるマイク
ロストリップ線路、8はインピーダンス整合用4分の1
波長マイクロストリップ線路変成器、9は変成器のカバ
ー、10は同軸コネクタ、11は励振導体3から見て導
波管短絡器2と反対側の導波管1の内壁に取付けられた
金属製の整合スタブである。ここで、整合スタブ11の
取付け位置は、励振導体3の導波管短絡器2と反対方向
からの電磁波が同軸導波管変換器に反射して再び励振導
体3の導波管短絡器2と反対方向に戻る成分と、励振導
体3の導波管短絡器2と反対方向からの電磁波が整合ス
タブ11に反射して再び励振導体3の導波管短絡器2と
反対方向に戻る成分の振幅同士がほぼ同じで、各々の成
分の位相が逆相即ち位相差が180度になるように選ば
れる。具体的には、励振導体3と整合スタブ11の間隔
を導波管を伝搬する電磁波の約4分の1波長とし、整合
スタブ11の長さを導波管1を伝搬する電磁波の4分の
1波長以下とする。
Embodiment 1 FIG. FIG. 1 is a block diagram showing a first embodiment of the present invention, in which 1 is a circular waveguide, 2 is a Y-shaped waveguide short circuit, 3 is a folded excitation conductor, and 4 is a dielectric. Substrate, 5 is a strip conductor, 6 is a ground conductor, 7 is a microstrip line composed of dielectric substrate 4, strip conductor 5, and ground conductor 6, 8 is a quarter for impedance matching
A wavelength microstrip line transformer, 9 is a transformer cover, 10 is a coaxial connector, and 11 is a metal-made metal attached to the inner wall of the waveguide 1 opposite to the waveguide short-circuiter 2 when viewed from the excitation conductor 3. It is a matching stub. Here, the mounting position of the matching stub 11 is such that the electromagnetic wave from the direction opposite to the waveguide short-circuit device 2 of the excitation conductor 3 is reflected on the coaxial waveguide converter and is again brought into contact with the waveguide short-circuit device 2 of the excitation conductor 3. The amplitude of the component returning in the opposite direction and the component of the excitation conductor 3 returning from the direction opposite to the waveguide short circuit 2 after being reflected by the matching stub 11 from the direction opposite to the waveguide short circuit 2. Are selected so that they are almost the same, and the phases of the respective components are opposite phases, that is, the phase difference is 180 degrees. Specifically, the distance between the excitation conductor 3 and the matching stub 11 is set to about a quarter of the wavelength of the electromagnetic wave propagating in the waveguide, and the length of the matching stub 11 is set to a quarter of the electromagnetic wave propagating in the waveguide 1. One wavelength or less.

【0013】図2はこの発明の実施の形態1で土砂の表
面までの距離を測定した様子を示したものであり、測定
条件は図6と同じである。
FIG. 2 shows how the distance to the surface of earth and sand is measured in the first embodiment of the present invention, under the same measurement conditions as in FIG.

【0014】実施の形態2.図3はこの発明の実施の形
態2を示す構成図であり、図において1は円形の導波
管、2はY形の導波管短絡器、3は折り返し形の励振導
体、4は誘電体基板、5はストリップ導体、6は地導
体、7は誘電体基板4、ストリップ導体5、地導体6で
構成されるマイクロストリップ線路、8はインピーダン
ス整合用4分の1波長マイクロストリップ線路変成器、
9は変成器のカバー、10は同軸コネクタ、12は整合
スタブ11をネジ式にして導波管内への貫入長を可変す
ることのできるネジ式整合スタブである。具体的な励振
導体3とネジ式整合スタブ12の間隔は導波管を伝搬す
る電磁波の約4分の1波長とする。
Embodiment 2 FIG. FIG. 3 is a block diagram showing a second embodiment of the present invention. In the drawing, 1 is a circular waveguide, 2 is a Y-shaped waveguide short circuit, 3 is a folded excitation conductor, and 4 is a dielectric. A substrate 5, a strip conductor, 6 a ground conductor, 7 a microstrip line composed of a dielectric substrate 4, a strip conductor 5, and a ground conductor 6, a quarter-wave microstrip line transformer 8 for impedance matching,
Reference numeral 9 denotes a transformer cover, reference numeral 10 denotes a coaxial connector, and reference numeral 12 denotes a screw-type matching stub that can change the penetration length into the waveguide by using the matching stub 11 as a screw type. A specific distance between the excitation conductor 3 and the screw-type matching stub 12 is set to about a quarter wavelength of the electromagnetic wave propagating through the waveguide.

【0015】実施の形態3.図4はこの発明の実施の形
態3を示す構成図であり、図において1は円形の導波
管、2はY形の導波管短絡器、3は折り返し形の励振導
体、4は誘電体基板、5はストリップ導体、6は地導
体、7は誘電体基板4、ストリップ導体5、地導体6で
構成されるマイクロストリップ線路、8はインピーダン
ス整合用4分の1波長マイクロストリップ線路変成器、
9は変成器のカバー、10は同軸コネクタ、12はネジ
式整合スタブ、13はネジ式整合スタブ3本を導波管を
伝搬する電磁波の約4分の1波長の間隔を空けて構成し
た3連チューナである。具体的には、励振導体3と励振
導体寄りのネジ式整合スタブ12の間隔を導波管を伝搬
する電磁波の約4分の1波長とする。
Embodiment 3 FIG. 4 is a block diagram showing a third embodiment of the present invention, in which 1 is a circular waveguide, 2 is a Y-shaped waveguide short circuit, 3 is a folded excitation conductor, and 4 is a dielectric. A substrate 5, a strip conductor, 6 a ground conductor, 7 a microstrip line composed of a dielectric substrate 4, a strip conductor 5, and a ground conductor 6, a quarter-wave microstrip line transformer 8 for impedance matching,
9 is a transformer cover, 10 is a coaxial connector, 12 is a screw-type matching stub, and 13 is a three screw-type matching stub with an interval of about a quarter wavelength of an electromagnetic wave propagating through the waveguide. It is a continuous tuner. Specifically, the distance between the excitation conductor 3 and the screw-type matching stub 12 close to the excitation conductor is set to about a quarter wavelength of the electromagnetic wave propagating through the waveguide.

【0016】[0016]

【発明の効果】第1の発明によれば、導波管内の同軸導
波管変換器と被測定面との間の多重反射を極力小さくで
き、被測定面までの距離測定誤差を小さくできる効果が
ある。
According to the first invention, the multiple reflection between the coaxial waveguide converter in the waveguide and the surface to be measured can be minimized, and the error in measuring the distance to the surface to be measured can be reduced. There is.

【0017】第2の発明によれば、導波管内の同軸導波
管変換器の励振導体および導波管短絡器の状態が変化し
た際に、導波管側から見た同軸導波管変換器の反射が小
さくなるようにある程度調整できるという効果がある。
According to the second invention, when the state of the excitation conductor of the coaxial waveguide converter in the waveguide and the state of the waveguide short circuit change, the coaxial waveguide converter viewed from the waveguide side changes. There is an effect that it can be adjusted to some extent so that the reflection of the vessel becomes small.

【0018】第3の発明によれば、同軸導波管変換器の
個々の特性に関係なく導波管側から見た同軸導波管変換
器の反射が小さくなるように調整でき、導波管内の同軸
導波管変換器の励振導体および導波管短絡器の状態が変
化した際にもほぼ完璧に調整できるという効果がある。
According to the third aspect of the present invention, the reflection of the coaxial waveguide converter viewed from the waveguide side can be adjusted to be small irrespective of the individual characteristics of the coaxial waveguide converter. There is an effect that the adjustment can be made almost perfectly even when the state of the excitation conductor and the waveguide short circuit of the coaxial waveguide converter changes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による同軸導波管変換器の実施の形
態1を示す構成図である。
FIG. 1 is a configuration diagram showing a first embodiment of a coaxial waveguide converter according to the present invention.

【図2】 この発明による同軸導波管変換器の実施の形
態1を用いての測定時のタイムドメイン波形を示す図で
ある。
FIG. 2 is a diagram showing a time domain waveform at the time of measurement using the coaxial waveguide converter according to the first embodiment of the present invention.

【図3】 この発明による同軸導波管変換器の実施の形
態2を示す構成図である。
FIG. 3 is a configuration diagram showing Embodiment 2 of a coaxial waveguide converter according to the present invention.

【図4】 この発明による同軸導波管変換器の実施の形
態3を示す構成図である。
FIG. 4 is a configuration diagram showing Embodiment 3 of a coaxial waveguide converter according to the present invention.

【図5】 従来の同軸導波管変換器を示す構成図であ
る。
FIG. 5 is a configuration diagram showing a conventional coaxial waveguide converter.

【図6】 従来の同軸導波管変換器を用いた距離測定系
を示した図である。
FIG. 6 is a diagram showing a distance measurement system using a conventional coaxial waveguide converter.

【図7】 従来の同軸導波管変換器を用いての測定時の
タイムドメイン波形を示す図である。
FIG. 7 is a diagram showing a time domain waveform at the time of measurement using a conventional coaxial waveguide converter.

【符号の説明】[Explanation of symbols]

1 導波管、2 導波管短絡器、3 励振導体、4 誘
電体基板、5 ストリップ線路、6 地導体、7 マイ
クロストリップ線路、8 4分の1波長マイクロストリ
ップ線路変成器、9 カバー、10 同軸コネクタ、1
1 整合スタブ、12 ネジ式整合スタブ、13 3連
チューナ、14 同軸導波管変換器、15 土砂、16
ネットワークアナライザ、17 同軸ケーブル。
REFERENCE SIGNS LIST 1 waveguide, 2 waveguide short circuit, 3 excitation conductor, 4 dielectric substrate, 5 strip line, 6 ground conductor, 7 microstrip line, 8 quarter wavelength microstrip line transformer, 9 cover, 10 Coaxial connector, 1
Reference Signs List 1 matching stub, 12 screw type matching stub, 13 triple tuner, 14 coaxial waveguide converter, 15 earth and sand, 16
Network analyzer, 17 coaxial cable.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導波管内に管軸と略平行に導波管断面の
中央部から放射状に配置され、上記中央部側の一端が相
互に電気的に接続され、他端がそれぞれ上記導波管の内
壁に電気的に接続され、所定の長さに亙って導波管断面
を電気的に分断する板状導体を備えた導波管短絡器と、
上記導波管の壁面に設けた穴を通して導波管内部の中心
に向けた中心導体を延長して導波管を伝搬する電磁波の
約4分の1波長の長さで折り返して上記導波管内壁に接
続した励振導体と、上記励振導体に接続した導波管外部
に設けたインピーダンス整合回路とを具備し、上記励振
導体で励振され導波管内を上記導波管短絡器の方向へ伝
搬して反射された電磁波と上記導波管短絡器と反対方向
へ伝搬する電磁波とを強め合う位相で合成する同軸導波
管変換器において、上記励振導体から見て上記導波管短
絡器と反対方向から伝搬される電磁波が上記導波管変換
器で反射して再び上記導波管短絡器と反対方向へ伝搬す
る反射波と打ち消し合う位相で合成する反射波を発生さ
せるように、一端が上記導波管内壁に接続され他端が導
波管断面の中心に向かっている反射体を備えたことを特
徴とする同軸導波管変換器。
1. A waveguide is disposed radially in a waveguide substantially parallel to a tube axis from a central portion of a waveguide section, one end of the central portion is electrically connected to each other, and the other end is respectively connected to the waveguide. A waveguide short-circuiter having a plate-shaped conductor electrically connected to an inner wall of the tube and electrically dividing a waveguide section over a predetermined length;
The center conductor extending toward the center of the inside of the waveguide is extended through a hole formed in the wall surface of the waveguide, and is folded back at a length of about a quarter wavelength of the electromagnetic wave propagating through the waveguide. An excitation conductor connected to a wall, and an impedance matching circuit provided outside the waveguide connected to the excitation conductor, the excitation conductor being excited by the excitation conductor and propagating in the waveguide toward the waveguide short circuiter. Coaxial waveguide converter that combines the reflected electromagnetic wave and the electromagnetic wave propagating in the opposite direction to the waveguide short circuit in a phase that reinforces the coaxial waveguide converter, in a direction opposite to the waveguide short circuit when viewed from the excitation conductor. One end of the waveguide converter is generated such that the electromagnetic wave propagated from the waveguide converter is reflected by the waveguide converter and again generates a reflected wave synthesized with a phase that cancels the reflected wave propagating in the opposite direction to the waveguide short circuit. The other end is connected to the inner wall of the waveguide Coaxial waveguide converter, characterized in that it comprises a reflector which is bought.
【請求項2】 導波管壁にネジ穴を切り、導波管の外側
からネジを貫入して導波管内壁から導波管断面の中心に
向かう反射体としたことを特徴とする請求項1記載の同
軸導波管変換器。
2. A reflector formed by cutting a threaded hole in a waveguide wall and penetrating a screw from the outside of the waveguide toward the center of the waveguide cross section from the inner wall of the waveguide. 2. The coaxial waveguide converter according to 1.
【請求項3】 導波管の管軸方向に沿って導波管を伝搬
する電磁波の約4分の1波長の間隔を空けて導波管壁に
3個のネジ穴を切り、各々のネジ穴に導波管の外側から
ネジを貫入して導波管内壁から導波管断面の中心に向か
う反射体としたことを特徴とする請求項1記載の同軸導
波管変換器。
3. A waveguide wall is provided with three screw holes at intervals of about one-quarter wavelength of an electromagnetic wave propagating in the waveguide along the tube axis direction of the waveguide. 2. The coaxial waveguide converter according to claim 1, wherein a screw penetrates the hole from outside the waveguide to form a reflector extending from the inner wall of the waveguide toward the center of the cross section of the waveguide.
JP9092364A 1997-04-10 1997-04-10 Coaxial waveguide converter Pending JPH10284911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9092364A JPH10284911A (en) 1997-04-10 1997-04-10 Coaxial waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9092364A JPH10284911A (en) 1997-04-10 1997-04-10 Coaxial waveguide converter

Publications (1)

Publication Number Publication Date
JPH10284911A true JPH10284911A (en) 1998-10-23

Family

ID=14052368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9092364A Pending JPH10284911A (en) 1997-04-10 1997-04-10 Coaxial waveguide converter

Country Status (1)

Country Link
JP (1) JPH10284911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351301B1 (en) 1999-07-08 2002-02-26 Nec Corporation Smectic liquid crystal which enables grayscale display, and liquid crystal using the same
KR101055425B1 (en) * 2010-04-30 2011-08-08 삼성전기주식회사 Wideband transmission line-waveguide transition apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123813A (en) * 1985-11-25 1987-06-05 Yokowo Mfg Co Ltd Microwave amplifier
JPH06283906A (en) * 1993-01-28 1994-10-07 Mitsubishi Electric Corp Waveguide short-circuiting device and coaxial waveguide converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123813A (en) * 1985-11-25 1987-06-05 Yokowo Mfg Co Ltd Microwave amplifier
JPH06283906A (en) * 1993-01-28 1994-10-07 Mitsubishi Electric Corp Waveguide short-circuiting device and coaxial waveguide converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351301B1 (en) 1999-07-08 2002-02-26 Nec Corporation Smectic liquid crystal which enables grayscale display, and liquid crystal using the same
KR101055425B1 (en) * 2010-04-30 2011-08-08 삼성전기주식회사 Wideband transmission line-waveguide transition apparatus

Similar Documents

Publication Publication Date Title
Weller et al. High performance microshield line components
JP3045046B2 (en) Non-radiative dielectric line device
US4376921A (en) Microwave coupler with high isolation and high directivity
US4546311A (en) Arrangement for measuring moisture content
US4829233A (en) Microwave probe
Herscovici et al. Full-wave analysis of aperture-coupled microstrip lines
US5880698A (en) Arrangement for generating and transmitting microwaves, in particular for a filling level measuring device
JP2001510898A (en) Apparatus and method for measuring microwave reflectivity and microwave oven provided with the same
JPS606567B2 (en) suspended microstrip circuit
JP2007509343A (en) Probe test structure
US3958193A (en) Tapered septum waveguide transducer
US20070222668A1 (en) Wave Guide Adapter with Decoupling Member for Planar Wave Guide Couplings
US5726664A (en) End launched microstrip or stripline to waveguide transition with cavity backed slot fed by T-shaped microstrip line or stripline usable in a missile
JPH10284911A (en) Coaxial waveguide converter
US4231038A (en) Doppler radar device
US2636082A (en) Electric wave sampling device
EP0827269B1 (en) Balance-type mixer
US6535089B1 (en) High-frequency circuit device and communication apparatus using the same
FI121516B (en) directional Couplers
JP3659461B2 (en) High frequency measurement board
US6445256B1 (en) Oscillator and radio equipment
Zimmerman Crossed dipoles fed with a turnstile network
JPS6176964A (en) Measuring method of high frequency dielectric characteristic of thin film insulator
JP3743093B2 (en) Transceiver
Oguchi Circular electric mode directional coupler

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406