JPH10284080A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH10284080A
JPH10284080A JP10021952A JP2195298A JPH10284080A JP H10284080 A JPH10284080 A JP H10284080A JP 10021952 A JP10021952 A JP 10021952A JP 2195298 A JP2195298 A JP 2195298A JP H10284080 A JPH10284080 A JP H10284080A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium ion
ion secondary
carbonaceous material
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10021952A
Other languages
Japanese (ja)
Other versions
JP3633257B2 (en
Inventor
Hideji Sato
秀治 佐藤
Shoji Yamaguchi
祥司 山口
Keiko Nishioka
圭子 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP02195298A priority Critical patent/JP3633257B2/en
Publication of JPH10284080A publication Critical patent/JPH10284080A/en
Application granted granted Critical
Publication of JP3633257B2 publication Critical patent/JP3633257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high efficiency in a first cycle and keep high capacity in quick charge/discharge by convering the surface of a graphitized carbonaceous material with a carbonizable organic material, baking, and crushing to form an amorphous carbon-converging graphitized carbonaceous material, and treating the carbonaceous material with an acidic or alkaline solution, and using the treated carbonaceous material in a negative electrode. SOLUTION: A graphitized carbonaceous material is covered with a carbonizable organic material, they are baked to carbonize the carbonizable organic material, then the baked material is crushed to particles having a mean particle size of 5-50 μm (preferably 20-25 μm). The particle obtained are dispersed in an acidic solution or an alkaline solution, stirred, shaken at a temperature of 20-150 deg.C during 0.5 hr.-1 week or treated by superimposing ultrasonic waves, washed with pure water to wash out the acidic solution or the alkaline solution attached to the particles, and dried at temperature of 350 deg.C or lower. Property capable of absorbing/releasing lithium ions is developed, lithium undoing potential of 0.5 V or lower to Li/Li<+> is provided, and capacity exceeding the theoretical capacity of graphite is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高容量で、急速充
放電特性、充放電電位平坦性及びサイクル特性にも優れ
たリチウムイオン二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium ion secondary battery having a high capacity and excellent in rapid charge / discharge characteristics, charge / discharge potential flatness and cycle characteristics.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池の高容量化が望まれている。そのためニッケル
・カドミウム、ニッケル・水素電池に比べ、よりエネル
ギー密度の高いリチウムイオン二次電池が注目されてい
る。その負極材料としては、最初にリチウム金属を用い
ることが試みられたが、充放電を繰り返すうちにデンド
ライト状のリチウムが析出してセパレータを貫通して、
正極にまで達し、短絡して発火事故を起こす可能性があ
ることが判明した。そのため、現在では、充放電過程に
おける非水溶媒の出入りを層間で行ない、リチウム金属
の析出を防止できる炭素材料を負極材料として使用する
ことが注目されている。
2. Description of the Related Art In recent years, high-capacity secondary batteries have been desired to have higher capacities as electronic devices have become smaller. Therefore, lithium-ion secondary batteries having higher energy density than nickel-cadmium and nickel-metal hydride batteries have been attracting attention. As the negative electrode material, it was first attempted to use lithium metal, but while repeating charge and discharge, dendritic lithium was deposited and penetrated the separator,
It was found that the battery could reach the positive electrode and cause a short circuit and cause a fire accident. Therefore, at present, attention has been paid to use of a carbon material capable of preventing the deposition of lithium metal by allowing a non-aqueous solvent to enter and exit during a charge / discharge process between layers, as a negative electrode material.

【0003】この炭素材料としては、特開昭57−20
8079に、黒鉛材料を使用することが提案されてい
る。特に、結晶性のよい黒鉛をリチウム二次電池用の炭
素負極材料として用いると、黒鉛のリチウム吸蔵の理論
容量である372 mAh/gに近い容量が得られ、材料と
して好ましいことは知られていた。しかし、黒鉛材料
は、電解液に対し活性であるため、初回の充放電時に、
皮膜形成や副反応による数十mAh/g以上の不可逆容
量を示すのが一般的であった。
As this carbon material, Japanese Patent Application Laid-Open No. 57-20
8079 proposes the use of a graphite material. In particular, it has been known that when graphite having good crystallinity is used as a carbon anode material for a lithium secondary battery, a capacity close to 372 mAh / g, which is the theoretical capacity for absorbing lithium of graphite, is obtained, which is preferable as a material. . However, the graphite material is active with respect to the electrolyte, so at the time of the first charge and discharge,
It generally showed an irreversible capacity of several tens mAh / g or more due to film formation and side reactions.

【0004】一方、黒鉛の理論容量より大きな低温焼成
アモルファス炭素の容量は、カットオフ電位の設定によ
っては500 mAh/g程度と大きくすることも可能だ
が、この場合、リチウムイオン脱ドープ時の時の電位が
黒鉛のそれに比べて著しく高く、しかも充電時と放電時
の電位特性に大きなヒステリシスを有しているため、正
極との電位差がとりにくく、結果として大容量、大電力
の電池が得られないという問題があった。また、初回充
放電時に大きな容量損失を招くことも問題であった。更
に、急速充電時に著しい容量の低下を引き起こすことも
判明した。
On the other hand, the capacity of the low-temperature calcined amorphous carbon larger than the theoretical capacity of graphite can be increased to about 500 mAh / g depending on the setting of the cut-off potential. Since the potential is significantly higher than that of graphite, and has a large hysteresis in the potential characteristics during charging and discharging, it is difficult to obtain a potential difference from the positive electrode, and as a result, a large capacity, high power battery cannot be obtained. There was a problem. There is also a problem that a large capacity loss is caused at the time of initial charge / discharge. Further, it has been found that a rapid decrease in capacity causes a remarkable decrease in capacity.

【0005】また、特開平5−299074には炭素材
料に無機酸、または加温した水酸化ナトリウムで化学的
前処理を施した後、800℃以上の温度で真空加熱処理
を施す事で充放電サイクル効率を向上させることが可能
である事が開示されている。また、特開平6−2069
0には薬液酸化、電解酸化、または気相酸化により表面
を酸化しつつ非晶質化した炭素質材料を作り、負極容量
の増加を計る方法が開示されている。また、特開平6−
44959には炭素質材料に酸を添加し、加熱して黒鉛
の理論容量に近い容量(370mAh/g)を得る方法
が開示されている。しかしながら、黒鉛はリチウムイオ
ンの黒鉛結晶中へのインターカレーションを充放電の原
理として使用するため、常温、常圧下では最大リチウム
導入化合物のLiC6 から算出される372mAh/g
以上の容量が得られないという問題がある。従って、何
れの方法によっても黒鉛の理論容量である372mAh
/gを超える容量は得られていない。しかも、電解液と
の黒鉛材料の濡れ性の低さは、充放電初期のリチウム脱
ドープ容量が、本来黒鉛材料が発現できるはずの350
mAh/g以上の容量よりも低くなるという問題を持っ
ていた。
Japanese Patent Application Laid-Open No. H5-299074 discloses that a carbon material is subjected to a chemical pretreatment with an inorganic acid or heated sodium hydroxide and then subjected to a vacuum heating treatment at a temperature of 800 ° C. or more to charge and discharge. It is disclosed that the cycle efficiency can be improved. Also, JP-A-6-2069
No. 0 discloses a method of producing an amorphous carbonaceous material while oxidizing the surface by chemical solution oxidation, electrolytic oxidation, or gas phase oxidation, and measuring an increase in negative electrode capacity. In addition, Japanese Unexamined Patent Publication No.
No. 44959 discloses a method in which an acid is added to a carbonaceous material and heated to obtain a capacity (370 mAh / g) close to the theoretical capacity of graphite. However, since graphite uses the intercalation of lithium ions into graphite crystals as the principle of charge and discharge, 372 mAh / g calculated from the maximum lithium-introduced compound LiC6 at normal temperature and normal pressure.
There is a problem that the above capacity cannot be obtained. Therefore, 372 mAh, which is the theoretical capacity of graphite, is obtained by any method.
/ G is not obtained. In addition, the low wettability of the graphite material with the electrolytic solution is due to the fact that the lithium undoping capacity at the initial stage of charge / discharge can be reduced by 350%, at which the graphite material should be able to express.
There was a problem that the capacity was lower than mAh / g or more.

【0006】また、特開平7ー022037などには、
黒鉛性炭素質物の表面を炭素化可能な有機物で被覆、焼
成した炭素質物が開示されている。この材料は、充放電
時の電位が、黒鉛のそれと同様リチウム金属の酸化還元
電位に近く、しかも黒鉛性炭素質物より高容量を得られ
るという利点があるが、やはり黒鉛の理論容量である3
72mAh/gを超える容量は得られていない。
[0006] Japanese Patent Application Laid-Open No. 7-022037 and the like disclose:
A carbonaceous material in which the surface of a graphitic carbonaceous material is coated with a carbonizable organic material and fired is disclosed. This material has the advantage that the potential at the time of charging and discharging is close to the oxidation-reduction potential of lithium metal, similar to that of graphite, and can obtain a higher capacity than the graphitic carbonaceous material.
A capacity exceeding 72 mAh / g has not been obtained.

【0007】また、今後これまで正極活物質として広く
用いられてきたLiCoO2 に代わり、LiNiO2
容量、価格更に原料物質の埋蔵量の面でリチウム二次電
池用正極材として新たに期待されてきているが、この物
質はLiCoO2 よりもLi/Li+ に対する電位が低
く、負極との電位差が取りにくくなる。そこでLiNi
2 の利点を生かすためには、Li/Li+ に対しより
0Vに近い電位で高容量を発現できる負極材料が必要と
考えられている。さらに、リチウム二次電池の用途によ
っては、例えば、電気自動車積載用などの用途として急
速の再充電を必要とされる場合も十分に考えられ、これ
には耐レート特性に優れた電極材料を用いる必要が生じ
てきた。
In addition, LiNiO 2 is expected to be newly used as a positive electrode material for a lithium secondary battery in terms of capacity, price and reserves of raw materials, instead of LiCoO 2 which has been widely used as a positive electrode active material in the future. However, this substance has a lower potential with respect to Li / Li + than LiCoO 2, making it difficult to obtain a potential difference with the negative electrode. So LiNi
In order to take advantage of O 2 , it is considered necessary to use a negative electrode material that can exhibit high capacity at a potential closer to 0 V than Li / Li + . Further, depending on the use of the lithium secondary battery, for example, it may be sufficiently considered that rapid recharging is required as an application for loading on an electric vehicle or the like, and for this, an electrode material having excellent rate resistance characteristics is used. The need has arisen.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、黒鉛
系材料をリチウム二次電池用の負極材料として用いる場
合、黒鉛の理論容量を超えるような容量発現が可能で、
且つアモルファス炭素を用いた場合に比較して、リチウ
ムドープ、脱ドープ時の電位の変化が、黒鉛のようにL
i/Li+ の電位に近く、充放電による電位ヒステリシ
スを持たず、正極電位との差を取りやすく、初回の充放
電サイクルから高い効率を発現でき、大きな充放電容
量、小さな不可逆容量、大きい充放電電流密度に対する
耐レート特性及びサイクル特性に優れている高性能なリ
チウムイオン二次電池を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a graphite material having a capacity exceeding the theoretical capacity of graphite when used as a negative electrode material for a lithium secondary battery.
In addition, as compared with the case where amorphous carbon is used, the change in potential during lithium doping and
It is close to the potential of i / Li +, has no potential hysteresis due to charging and discharging, can easily take the difference from the positive electrode potential, can exhibit high efficiency from the first charging and discharging cycle, has a large charging and discharging capacity, a small irreversible capacity, and a large charging and discharging capacity. An object of the present invention is to provide a high-performance lithium ion secondary battery having excellent rate resistance characteristics and cycle characteristics with respect to discharge current density.

【0009】[0009]

【課題を解決するための手段】本発明者らは、前記課題
解決のため鋭意検討した結果、黒鉛性炭素質物の表面を
炭素化可能な有機物で被覆し、焼成し、粉砕した後、酸
性又はアルカリ性溶液で処理することにより、黒鉛の理
論容量を超えるような容量発現が可能で、且つアモルフ
ァス炭素を用いた場合に比較して、リチウムドープ、脱
ドープ時の電位の変化が、黒鉛のようにLi/Li+ の
電位に近く、充放電による電位ヒステリシスを持たず、
正極電位との差を取りやすく、初回の充放電サイクルか
ら高い効率を発現できる様な負極材料を作成できること
を発見し、本発明を完成するに至った。即ち、本発明
は、黒鉛性炭素質物の表面を炭素化可能な有機物で被覆
し、焼成し、粉砕した後、酸性又はアルカリ性溶液で処
理した炭素質物を負極として用いたことを特徴とするリ
チウムイオン二次電池に関するものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, the surface of a graphitic carbonaceous material was coated with a carbonizable organic material, fired, pulverized, and then acidified or pulverized. By treating with an alkaline solution, it is possible to develop a capacity that exceeds the theoretical capacity of graphite, and compared to the case of using amorphous carbon, the change in potential during lithium doping and undoping is similar to that of graphite. It is close to the Li / Li + potential and has no potential hysteresis due to charging and discharging.
The inventors have found that a negative electrode material that can easily obtain a difference from the positive electrode potential and can exhibit high efficiency from the first charge / discharge cycle can be produced, and the present invention has been completed. That is, the present invention is characterized in that the surface of the graphitic carbonaceous material is coated with a carbonizable organic material, fired, pulverized, and then the carbonaceous material treated with an acidic or alkaline solution is used as a negative electrode. It relates to a secondary battery.

【0010】[0010]

【発明の実施の形態】以下、発明の詳細を述べる。 「非晶質炭素被覆黒鉛系炭素質物」本発明で「非晶質炭
素被覆黒鉛系炭素質物」とは、黒鉛性炭素質物を炭素化
可能な有機物で被覆し、その被覆体を焼成することで炭
素化し、粉砕したものであり、リチウムイオンを吸蔵、
放出可能な性質を有する。具体的には、X線回折から求
められる炭素の結晶の層間距離であるd002 の値が、
3.35Å以上3.39Å以下の値を持ち、ラマンスペ
クトル分析において、上記R値が被覆前の黒鉛性炭素質
物のR値以上であり、より好ましくは0.15以上1.
0以下、更に好ましくは0.2以上0.5以下である炭
素質物の粒子を対象とする。「非晶質炭素被覆黒鉛系炭
素質物」は上記数値的範囲にある限り、特に限定される
ものではないが、上記材料を簡便に得るためには、例え
ば次のような材料を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below. `` Amorphous carbon-coated graphite-based carbonaceous material '' In the present invention, the term "amorphous carbon-coated graphite-based carbonaceous material" means that a graphitic carbonaceous material is coated with an organic material capable of being carbonized, and the coated body is fired. Carbonized and crushed, occludes lithium ions,
Has releasable properties. Specifically, the value of d002, which is the interlayer distance between carbon crystals determined by X-ray diffraction, is:
It has a value of not less than 3.35 ° and not more than 3.39 °, and in the Raman spectrum analysis, the above R value is not less than the R value of the graphitic carbonaceous material before coating, more preferably from 0.15 to 1.15.
The target is carbonaceous material particles having a particle size of 0 or less, more preferably 0.2 or more and 0.5 or less. The “amorphous carbon-coated graphite-based carbonaceous material” is not particularly limited as long as it is within the above numerical range, but in order to easily obtain the above material, for example, the following materials can be used. .

【0011】「非晶質炭素被覆黒鉛系炭素質物」作成の
ための黒鉛性炭素質物 本発明に使用する黒鉛性炭素質物の形状としては、球
状、板状、繊維状等各種形状のものが使用可能である
が、好ましいものとして、平均粒径が「非晶質炭素被覆
黒鉛系炭素質物」の粉砕粒径よりも小さいものが好まし
い。特に好ましくは、黒鉛材料の平均粒径または平均長
径が、「非晶質炭素被覆黒鉛系炭素質物」の平均粒径の
20〜99%の範囲である。黒鉛性炭素質物の好適な具
体例としては、アセチレンブラック、ケッチェンブラッ
ク等の導電性カーボンブラックの黒鉛化品、人造黒鉛、
天然黒鉛等の黒鉛粉末及びその精製品、気相成長炭素繊
維等の炭素繊維が挙げられる。このような黒鉛性炭素質
物ならどれでもよいが、下記の特定の粒径と比表面積の
関係やラマンR値、半値幅を有する黒鉛粉体がより好ま
しい。
Graphitic carbonaceous material for producing "amorphous carbon-coated graphite-based carbonaceous material" As the shape of the graphitic carbonaceous material used in the present invention, various shapes such as spherical, plate-like and fibrous shapes are used. Although possible, it is preferable that the average particle size is smaller than the crushed particle size of the “amorphous carbon-coated graphite-based carbonaceous material”. Particularly preferably, the average particle diameter or the average major axis of the graphite material is in the range of 20 to 99% of the average particle diameter of the “amorphous carbon-coated graphite-based carbonaceous material”. Preferred specific examples of the graphitic carbonaceous material include acetylene black, graphitized conductive carbon black such as Ketjen black, artificial graphite, and the like.
Examples include graphite powder such as natural graphite and purified products thereof, and carbon fibers such as vapor-grown carbon fibers. Any of such graphitic carbonaceous materials may be used, but graphite powder having the following relationship between specific particle size and specific surface area, Raman R value, and half width is more preferable.

【0012】1)BET法で測定された比表面積の値を
y(m2 /g)、粉体の粒径(μm)の値をxとした場
合、4≦x≦40、0.1≦y≦25、且つy≦a
b 、(但しa=52、b=−0.6)で表される領域
内にある黒鉛粉体 2)更に、波長5145Åのアルゴンイオンレーザー光
を用いたラマンスペクトル分析において、1570〜1
620cm-1の範囲に存在するピークの強度をIA、1
350〜1370cm-1の範囲に存在するピークの強度
をIBとしたとき、その比であるR値(=IB/IA)
が、0.001以上0.2以下である黒鉛粉体。 3)更に、1570〜1620cm-1に存在するピーク
の半値幅である△v値の大きさが、14〜22cm-1
ある黒鉛粉体。
1) When the value of the specific surface area measured by the BET method is y (m 2 / g) and the value of the particle size (μm) of the powder is x, 4 ≦ x ≦ 40, 0.1 ≦ y ≦ 25 and y ≦ a
xb , graphite powder in the region represented by (where a = 52, b = -0.6) 2) Further, in Raman spectrum analysis using argon ion laser light having a wavelength of 5145 °, 1570 to 1
The intensity of the peak existing in the range of 620 cm -1 was IA, 1
When the intensity of the peak existing in the range of 350 to 1370 cm -1 is defined as IB, an R value (= IB / IA) which is a ratio thereof
But not less than 0.001 and not more than 0.2. 3) In addition, is the half width of peaks present in 1570~1620cm -1 △ v magnitude of value, the graphite powder is 14~22cm -1.

【0013】「黒鉛粉体」黒鉛粉体の種類としては、そ
れらの黒鉛の性状が分かっている場合は、高結晶性の天
然黒鉛、高結晶性の人造黒鉛、又は天然黒鉛や人造黒鉛
の再熱処理品、膨張黒鉛の再熱処理品、或いはこれらの
黒鉛の高純度精製品が好ましい。黒鉛材料粉体の種類と
しては、(1)高結晶性の天然黒鉛や人造黒鉛、(2)
天然黒鉛、人造黒鉛、或いは膨張黒鉛の2000℃以上
での再熱処理品、更に、上記具体例(1)、(2)と同
等の性能を持つ黒鉛を黒鉛化可能な有機物原料から黒鉛
化を行うことで得る場合は、(3)コールタールピッ
チ、石炭系重質油、常圧残油、石油系重質油、芳香族炭
化水素、窒素含有環状化合物、硫黄含有環状化合物、ポ
リフェニレン、ポリ塩化ビニル、ポリビニルアルコー
ル、ポリアクリロニトリル、ポリビニルブチラール、天
然高分子、ポリフェニレンサイルファイド、ポリフェニ
レンオキシド、フルフリルアルコール樹脂、フェノール
−ホルムアルデヒド樹脂、イミド樹脂から選ばれる1 種
以上の有機物を2500℃以上3200℃以下の焼成温度で黒鉛
化したもの、(4)上記(3)の黒鉛化可能な有機物を
リチウム、ベリリウム、ホウ素、マグネシウム、アルミ
ニウム、珪素、カリウム、カルシウム、チタン、バナジ
ウム、クロム、マンガン、銅、亜鉛、ニッケル、白金、
パラジウム、コバルト、ルテニウム、錫、鉛、鉄、ゲル
マニウム、ジルコニウム、モリブデン、銀、バリウム、
タンタル、タングステン、レニウム、から選ばれる少な
くとも一種以上の粉体、或いは薄膜などの触媒存在下
で、400 ℃以上2500℃以下、より好ましくは1000℃以上
2000℃以下で焼成することで黒鉛化したものが選択可能
である。加えて、(5)黒鉛粉体の粒径測定、及びラマ
ン分光分析を行い、その数値が高い負極容量や高速の充
放電に対する耐レート特性を期待できるような、ある一
定の範囲内の数値をとる黒鉛材料でなくても、それらの
材料を改めて2000℃以上3200℃以下の温度で再焼成処理
することで、焼成後の材料の持つ粒径とラマン分光から
得られる数値を一定範囲に収めることができれば、その
ような材料も選択可能である。(6)更にまた黒鉛粉体
のBET法による測定から得られる比表面積、及びラマ
ン分光分析を行い、その数値が高い負極容量や高速の充
放電に対する耐レート特性を期待できるような、ある一
定の範囲内の数値をとる黒鉛材料でなくても、それらの
材料を改めて2000℃以上3200℃以下の温度で再焼成処理
することで、焼成後の材料の持つ粒径、比表面積とラマ
ン分光から得られる数値を一定範囲に収めることができ
れば、そのような材料も選択可能である。
"Graphite powder" As for the type of graphite powder, if the properties of the graphite are known, natural graphite having high crystallinity, artificial graphite having high crystallinity, or natural graphite or artificial graphite may be used. A heat-treated product, a re-heat-treated product of expanded graphite, or a high-purity purified product of these graphites is preferable. The types of graphite material powder include (1) natural graphite and artificial graphite having high crystallinity, and (2)
Re-heat-treated natural graphite, artificial graphite, or expanded graphite at 2000 ° C. or higher, and further graphitize an organic material capable of graphitizing graphite having performance equivalent to those of the specific examples (1) and (2). (3) coal tar pitch, coal-based heavy oil, atmospheric residual oil, petroleum-based heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride Baking of at least one organic substance selected from the group consisting of polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin at 2500 ° C to 3200 ° C (4) The graphitizable organic substance of (3) above is converted to lithium, beryllium, U, magnesium, aluminum, silicon, potassium, calcium, titanium, vanadium, chromium, manganese, copper, zinc, nickel, platinum,
Palladium, cobalt, ruthenium, tin, lead, iron, germanium, zirconium, molybdenum, silver, barium,
In the presence of at least one kind of powder selected from tantalum, tungsten, rhenium, or a catalyst such as a thin film, the temperature is 400 ° C or more and 2500 ° C or less, more preferably 1000 ° C or more.
Graphitized by firing at 2000 ° C or lower can be selected. In addition, (5) the particle size of the graphite powder is measured and Raman spectroscopy is performed, and the numerical value is determined to be within a certain range that can be expected to have a high negative electrode capacity and a high withstand rate characteristic against high-speed charge and discharge. Even if it is not a graphite material to be taken, by re-baking those materials again at a temperature of 2000 to 3200 ° C., the particle size of the fired material and the value obtained from Raman spectroscopy will be within a certain range If possible, such a material can also be selected. (6) Further, the specific surface area of the graphite powder measured by the BET method and the Raman spectroscopic analysis are performed. Even if it is not a graphite material with a numerical value in the range, it can be obtained from the particle size, specific surface area and Raman spectroscopy of the fired material by re-baking it at a temperature of 2000 ° C to 3200 ° C again. Such a material can be selected as long as the value can be kept within a certain range.

【0014】「黒鉛材料の測定方法」まず、黒鉛粉体の
粒径を測定する。粒子の大きさの測定には、レーザー回
折法、、電気抵抗式法、CCD 高感度カメラの写真イメー
ジの処理による粒径直接評価法などが利用できるが、該
黒鉛粉体の粒子の大きさとしては、その平均粒径が4μ
m 〜40μm であるものを選別する。比表面積の測定に
は気体分子吸着によるBET法、有機分子吸着法、有機
溶媒吸着法が利用できるが、上記粒径範囲の黒鉛粉体の
BET法を用いた場合の比表面積が、0.1〜25m2
gにあるものを更に選ぶ。更にこの中から(比表面積)
≦52(粒径)-0.6の範囲を満たすものがリチウムイオン
2次電池の負極材として好ましい性質を有する。その中
でもその平均粒径が4μm 〜30μm で、その比表面積
が0.1〜20m2 /gにあるもので(比表面積)≦42
(粒径)-0.6の範囲を満たすものは更に好ましい。
"Method of Measuring Graphite Material" First, the particle size of graphite powder is measured. The particle size can be measured by a laser diffraction method, an electric resistance method, a direct particle size evaluation method by processing a photographic image of a CCD high-sensitivity camera, and the like. Has an average particle size of 4μ
Those having a size of m to 40 μm are selected. For the measurement of the specific surface area, a BET method by gas molecule adsorption, an organic molecule adsorption method, and an organic solvent adsorption method can be used, and the specific surface area of the graphite powder having the above particle size range when the BET method is 0.1 is used. ~ 25m 2 /
Select more items in g. Furthermore, from this (specific surface area)
≤52 (particle size) Those satisfying the range of -0.6 have preferable properties as a negative electrode material of a lithium ion secondary battery. Among them, those having an average particle diameter of 4 μm to 30 μm and a specific surface area of 0.1 to 20 m 2 / g (specific surface area) ≦ 42
(Particle size) Those satisfying the range of -0.6 are more preferable.

【0015】上記平均粒径と比表面積の関係を満たす黒
鉛材料において、波長5145Åのアルゴンイオンレー
ザー光を用いたラマンスペクトル分析を行い、1570〜16
20cm-1の範囲に存在するピークの強度をIA、1350〜
1370cm-1の範囲に存在するピークの強度をIBとした
とき、その比であるR値(=IB/IA)が、0.001を
超え0.2 以下であり、且つ、1570〜1620cm-1に存在す
るピークの半値幅である△ν値の大きさが、14以上22c
-1以下であるものをリチウム二次電池用の負極黒鉛材
料として用いることが好ましい。R値が0.001以上
0.15以下の物はより好ましく、0.001以上0.
07以下の物は更に好ましい。本発明における黒鉛材料
では、これ以外の物性値は必ずしも必要ではないが、あ
えてその他の黒鉛材料の性状を規定する他の物性値を併
記するとすれば、X線回折による(002)面の面間隔
d002が3.38Å以下が好ましく、3.36Å以下
であることがより好ましい。また、c軸方向の結晶子の
大きさ(Lc)は1000Å以下であることが好まし
い。
The graphite material satisfying the above relationship between the average particle size and the specific surface area was subjected to Raman spectrum analysis using an argon ion laser beam having a wavelength of 5145 ° to obtain 1570-16
The intensity of the peak existing in the range of 20 cm -1 was IA, 1350 to
When the intensity of the peak existing in the range of 1370 cm −1 is defined as IB, the R value (= IB / IA), which is the ratio, is more than 0.001 and 0.2 or less, and the peak existing in the range of 1570 to 1620 cm −1. The magnitude of the Δν value, which is the half width of
It is preferable to use those having a value of m -1 or less as a negative graphite material for a lithium secondary battery. Those having an R value of 0.001 or more and 0.15 or less are more preferable, and those having an R value of 0.001 or more and 0.15 or less are preferred.
07 or less are more preferred. In the graphite material of the present invention, other physical property values are not necessarily required. However, if other physical property values defining the properties of other graphite materials are to be described together, the plane spacing of the (002) plane by X-ray diffraction can be used. d002 is preferably equal to or less than 3.38 °, and more preferably equal to or less than 3.36 °. Further, the crystallite size (Lc) in the c-axis direction is preferably 1000 ° or less.

【0016】「非晶質炭素被覆黒鉛系炭素質物」作成の
ための有機物 本発明に用いうる有機物としては、液相で炭素化が進行
する有機物として、軟ピッチから硬ピッチまでのコール
タールピッチや乾留液化油などの石炭系重質油や、常圧
残油、減圧残油等の直流系重質油、原油、ナフサなどの
熱分解時に副生するエチレンタール等分解系重質油等の
石油系重質油が挙げられる。さらにアセナフチレン、デ
カシクレン、アントラセンなどの芳香族炭化水素、フェ
ナジンやアクリジンなどの窒素含有環状化合物、チオフ
ェンなどの硫黄含有環状化合物、30MPa以上の加圧
が必要となるがアダマンタンなどの脂環、ビフェニルや
テルフェニルなどのポリフェニレン、ポリ塩化ビニル、
ポリビニルアルコールなどの高分子があげられる。
Organic substance for producing "amorphous carbon-coated graphite-based carbonaceous substance" The organic substance which can be used in the present invention includes coal tar pitch from soft pitch to hard pitch, as organic substance which progresses carbonization in a liquid phase. Coal-based heavy oil such as dry-distilled liquefied oil, direct-current heavy oil such as atmospheric residual oil, vacuum residual oil, etc., and petroleum oil such as cracked heavy oil such as ethylene tar by-produced during thermal cracking of crude oil and naphtha Heavy oil. Further, aromatic hydrocarbons such as acenaphthylene, decacyclene, and anthracene; nitrogen-containing cyclic compounds such as phenazine and acridine; sulfur-containing cyclic compounds such as thiophene; pressurization of 30 MPa or more are required; alicyclic rings such as adamantane; Polyphenylene such as phenyl, polyvinyl chloride,
Examples include polymers such as polyvinyl alcohol.

【0017】固相で炭素化が進行する有機物としては、
セルロースや糖類などの天然高分子、ポリフェニレンサ
イルファイド、ポリフェニレンオキシド等の熱可塑性樹
脂、フルフリルアルコール樹脂、フェノール−ホルムア
ルデヒド樹脂、イミド樹脂等の熱硬化性樹脂などが挙げ
られる。以上の有機物及び黒鉛性炭素質物を混合し、4
00〜2800℃、より好ましくは700〜1500℃
で焼成し、粉砕を行うことにより、「非晶質炭素被覆黒
鉛系炭素質物」が得られる。「非晶質炭素被覆黒鉛系炭
素質物」は粉砕により好ましくは、4〜100μm、更
に好ましくは5〜50μmの平均粒径をもつ粒子として
使用する。
As organic substances which undergo carbonization in the solid phase,
Examples include natural polymers such as cellulose and saccharides, thermoplastic resins such as polyphenylene sulfide, and polyphenylene oxide; and thermosetting resins such as furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin. The above organic substance and the graphitic carbonaceous substance are mixed, and 4
00 to 2800 ° C, more preferably 700 to 1500 ° C
By firing and grinding, "amorphous carbon-coated graphite-based carbonaceous material" is obtained. The “amorphous carbon-coated graphite-based carbonaceous material” is preferably used as particles having an average particle size of 4 to 100 μm, more preferably 5 to 50 μm, by pulverization.

【0018】焼成、粉砕等の工程を経て最終調整された
「非晶質炭素被覆黒鉛系炭素質物」中で、黒鉛性炭素質
物は99〜50重量%で、有機物の焼成物組成が1〜5
0重量%であることが好ましく、黒鉛性炭素質物は99
〜75重量%で、有機物の焼成物組成が1〜25重量%
であることがより好ましく、更に好ましくは黒鉛性炭素
質物が90〜99重量%で、有機物の焼成物組成が1〜
10重量%である。該粒子の性質としては、X線回折に
よる(002)面の面間隔d002 が3.36Å以上、
3.39Å以下のピークを有し、波長5145Åのアル
ゴンイオンレーザー光を用いたラマンスペクトル分析に
於いて、R=IB/IA(ラマンスペクトルにおいて、
1580〜1620cm-1の範囲にピークPAを有し、
1350〜1370cm-1の範囲にピークPBを有し、
PAの強度をIA、PBの強度をIBとする)の値が
0.15以上、1.0以下、BET法を用いて測定した
比表面積が13m2 /g以下0.1m2 /g以上、より
好ましくは10m2 /g以下、最も好ましくは、4m2
/g以下である様な粒子が好ましい。
[0018] In the "amorphous carbon-coated graphite-based carbonaceous material" finally adjusted through steps such as firing and pulverization, the proportion of the graphitic carbonaceous material is 99 to 50% by weight, and the composition of the fired organic material is 1 to 5%.
0% by weight, and the graphitic carbonaceous material is 99% by weight.
7575% by weight, and the composition of the baked organic material is 1-25% by weight
More preferably, the graphitic carbonaceous material is 90 to 99% by weight, and the composition of the burned material of the organic material is 1 to 99% by weight.
10% by weight. As the properties of the particles, the plane spacing d002 of the (002) plane by X-ray diffraction is 3.36 ° or more,
In a Raman spectrum analysis using an argon ion laser beam with a wavelength of 5145 ° having a peak of 3.39 ° or less, R = IB / IA (in the Raman spectrum,
Having a peak PA in the range of 1580 to 1620 cm -1 ,
Having a peak PB in the range of 1350-1370 cm -1 ,
PA intensity is IA, PB intensity is IB) is 0.15 or more and 1.0 or less, and the specific surface area measured by BET method is 13 m 2 / g or less and 0.1 m 2 / g or more. preferably 10 m 2 / g or less, and most preferably, 4m 2
/ G or less are preferred.

【0019】有機物の焼成物組成が上記範囲以上では、
低電位化、急速充放電特性の改善が少なく、また、更に
性能を改善するため、この後の工程として実施すること
が好ましい酸またはアルカリによる処理の効果があまり
顕著でない場合がある。尚、上記範囲は原料仕込み比で
はなく、最終的な調整段階での含有量である。そのた
め、仕込み時には、最終段階での組成比を考慮して原料
の配合量を決定する必要がある。こうして調整した「非
晶質炭素被覆黒鉛系炭素質物」を負極として用いたリチ
ウムイオン2次電池は被覆しない黒鉛負極使用時に比
べ、高い電池容量、優れたレート特性とサイクル特性を
示す。
When the composition of the baked product of the organic substance is above the above range,
The effect of the treatment with an acid or alkali, which is preferably performed as a subsequent step in order to reduce the potential and improve the rapid charge / discharge characteristics little and further improve the performance, may not be so remarkable in some cases. The above range is not the raw material charging ratio but the content at the final adjustment stage. Therefore, at the time of preparation, it is necessary to determine the compounding amount of the raw materials in consideration of the composition ratio at the final stage. A lithium ion secondary battery using the thus prepared “amorphous carbon-coated graphite-based carbonaceous material” as a negative electrode exhibits higher battery capacity, superior rate characteristics, and cycle characteristics as compared with a non-coated graphite negative electrode.

【0020】「酸性溶液」本発明で使用する「非晶質炭
素被覆黒鉛系炭素質物」を処理するための「酸性溶液」
は、特許発明の主旨を超えない限り何れのものでも構わ
ないが、フッ酸、塩酸、臭素酸、ヨウ素酸をはじめとす
る含ハロゲン酸、硫酸、硝酸、或いは酢酸、トリクロロ
酢酸、トリフルオロ酢酸、蓚酸等の有機酸、又はこれら
の酸の混酸あるいはこれらの酸の溶液などが好ましい。
また、これらの溶液を水の沸点以下の温度で加温した溶
液等も好ましい。最も好ましいのは塩酸である。これら
の酸の好ましい濃度範囲は5規定以上である。
"Acid solution""Acidsolution" for treating the "amorphous carbon-coated graphite-based carbonaceous material" used in the present invention.
Any may be used as long as it does not exceed the gist of the patented invention, but hydrofluoric acid, hydrochloric acid, bromic acid, halogen-containing acids including iodic acid, sulfuric acid, nitric acid, or acetic acid, trichloroacetic acid, trifluoroacetic acid, Organic acids such as oxalic acid, mixed acids of these acids or solutions of these acids are preferred.
Further, a solution obtained by heating these solutions at a temperature equal to or lower than the boiling point of water is also preferable. Most preferred is hydrochloric acid. The preferred concentration range of these acids is at least 5N.

【0021】「アルカリ性溶液」本発明で使用する「非
晶質炭素被覆黒鉛系炭素質物」を処理するための「アル
カリ性溶液」も、特許発明の主旨を超えない限り何れの
ものでも構わないが、水酸化ナトリウム、水酸化カリウ
ム等のアルカリ金属の水酸化物、アンモニア、テトラア
ルキルアンモニウム、尿素等の溶液、あるいはピリジ
ン、キノリン、キノキサリン、ピペリジン等の有機アミ
ンの溶液等が挙げられる。また、これらの溶液を水の沸
点以下の温度で加温した溶液等がより好ましい。最も好
ましいのはアルカリ金属水酸化物の水溶液である。これ
らのアルカリ性溶液の好ましい濃度範囲は例えば、アル
カリ金属水酸化物の場合に5規定以上である。
"Alkaline solution" The "alkaline solution" for treating the "amorphous carbon-coated graphite-based carbonaceous material" used in the present invention may be any one as long as it does not exceed the gist of the patented invention. Examples thereof include a solution of an alkali metal hydroxide such as sodium hydroxide and potassium hydroxide, ammonia, tetraalkylammonium, and urea, and a solution of an organic amine such as pyridine, quinoline, quinoxaline, and piperidine. Further, a solution obtained by heating these solutions at a temperature equal to or lower than the boiling point of water is more preferable. Most preferred is an aqueous solution of an alkali metal hydroxide. A preferable concentration range of these alkaline solutions is, for example, 5N or more in the case of an alkali metal hydroxide.

【0022】次に本発明の負極の製造方法について説明
する。本発明の負極の製造方法は上記方法によって得た
「非晶質炭素被覆黒鉛系炭素質物」、及び処理溶液とし
ての「酸性溶液」または「アルカリ性溶液」を使用する
限り、限定無く、従来公知の方法が採用可能である。例
えば、有機材料と黒鉛材料を加熱手段がある混合機で最
終組成が上記範囲内となる仕込み比で混合し、脱気・脱
揮処理を行い、400〜2000℃、0.1〜12時
間、好ましくは700〜1500℃で、0.5〜5時間
焼成を行い。この焼成物を好ましくは1〜100μ
m、、更に好ましくは平均粒径5〜50μmの範囲に粉
砕して、「非晶質炭素被覆黒鉛系炭素質物」を得る。こ
れを「酸性溶液」又は「アルカリ性溶液」に分散させ
て、好ましくは0.5時間以上1週間以下の間、20〜
150℃の温度で撹拌、振とう、又は超音波を重畳して
処理した後に、超純水や蒸留水などで粉体に付着した
「酸性溶液」又は「アルカリ性溶液」を流去する。その
後、好ましくは、80℃以上350℃以下、より好まし
くは80℃以上150℃以下の温度で粉体を乾燥させる
が、この際、材料炭素の構造そのものに変化を及ぼすよ
うな高温までには加熱する必要はない。
Next, a method for producing the negative electrode of the present invention will be described. The method for producing the negative electrode of the present invention is not particularly limited, as long as the `` amorphous carbon-coated graphite-based carbonaceous material '' obtained by the above method and the `` acid solution '' or `` alkaline solution '' as the treatment solution are used. A method can be adopted. For example, an organic material and a graphite material are mixed in a mixer having a heating means at a charge ratio such that the final composition is within the above range, deaeration / devolatilization treatment is performed, and 400 to 2000 ° C., 0.1 to 12 hours, Preferably, baking is performed at 700 to 1500 ° C. for 0.5 to 5 hours. This fired product is preferably 1 to 100 μm
m, more preferably in the range of 5 to 50 μm in average particle size to obtain “amorphous carbon-coated graphite-based carbonaceous material”. This is dispersed in an “acidic solution” or “alkaline solution”, preferably for 20 hours or more and 0.5 hours or less and 20 weeks or less.
After agitation, shaking, or superposition of ultrasonic waves at a temperature of 150 ° C., the “acid solution” or “alkaline solution” adhered to the powder is washed away with ultrapure water or distilled water. Thereafter, the powder is preferably dried at a temperature of 80 ° C. or more and 350 ° C. or less, more preferably 80 ° C. or more and 150 ° C. or less. do not have to.

【0023】即ち、本発明のリチウムイオン二次電池用
負極材料は、改質前の状態で既に表面に非晶質炭素相を
具備しているもので、「酸性溶液」又は「アルカリ性溶
液」で処理して改質した後は、単に水洗、及び80〜1
50℃までの温度で乾燥するのみで、高温で加熱処理す
る必要がない。こうして調整した酸又はアルカリ処理
「非晶質炭素被覆黒鉛系炭素質物」を負極として用いた
リチウムイオン2次電池は処理をしない「非晶質炭素被
覆黒鉛系炭素質物」負極使用時に比べ、更に高い電池容
量、更に優れたレート特性とサイクル特性を示す。
That is, the negative electrode material for a lithium ion secondary battery of the present invention has an amorphous carbon phase already on the surface in a state before modification, and can be used as an “acid solution” or “alkaline solution”. After treatment and modification, simply wash with water and 80-1
Only drying at a temperature of up to 50 ° C. does not require heat treatment at a high temperature. The lithium ion secondary battery using the acid or alkali treated “amorphous carbon-coated graphite-based carbonaceous material” thus prepared as a negative electrode is much higher than when using the “amorphous carbon-coated graphite-based carbonaceous material” without treatment. Shows battery capacity, and further excellent rate and cycle characteristics.

【0024】次に本発明の負極の製造方法について説明
する。本発明の電極の製造方法は上記の選別された後の
黒鉛質粉体を負極として使用する限り、限定無く、従来
公知の方法が採用可能である。例えば、負極材としての
該黒鉛粉体や、正極材に結着剤、溶媒等を加えて、スラ
リー状とし、銅箔等の金属製の集電体の基板にスラリー
を塗布・乾燥することで電極とする。また、該電極材料
をそのままロール成形、圧縮成形等の方法で電極の形状
に成形することもできる。
Next, a method for producing the negative electrode of the present invention will be described. The method for producing an electrode of the present invention is not limited, and any conventionally known method can be adopted as long as the above-mentioned sorted graphite powder is used as a negative electrode. For example, the graphite powder as a negative electrode material, a binder, a solvent, etc. are added to the positive electrode material to form a slurry, and the slurry is applied and dried on a metal current collector substrate such as a copper foil. Electrodes. Further, the electrode material can be directly formed into an electrode shape by a method such as roll molding or compression molding.

【0025】上記の目的で使用できる結着剤としては、
溶媒に対して安定な、ポリエチレン、ポリプロピレン、
ポリエチレンテレフタレート、芳香族ポリアミド、セル
ロース等の樹脂系高分子、スチレン・ブタジエンゴム、
イソプレンゴム、ブタジエンゴム、エチレン・プロピレ
ンゴム等のゴム状高分子、スチレン・ブタジエン・スチ
レンブロック共重合体、その水素添加物、スチレン・エ
チレン・ブタジエン・スチレン共重合体、スチレン・イ
ソプレン・スチレンブロック共重合体、その水素添加物
等の熱可塑性エラストマー状高分子、シンジオタクチッ
ク1,2−ポリブタジエン、エチレン・酢酸ビニル共重
合体、プロピレン・α−オレフィン(炭素数2〜12)
共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデ
ン、ポリテトラフルオロエチレン、ポリテトラフルオロ
エチレン・エチレン共重合体等のフッ素系高分子、アル
カリ金属イオン、特にリチウムイオンのイオン伝導性を
有する高分子組成物が挙げられる。
Examples of the binder that can be used for the above purpose include:
Solvent-stable, polyethylene, polypropylene,
Polyethylene terephthalate, aromatic polyamide, resin-based polymers such as cellulose, styrene-butadiene rubber,
Rubber-like polymers such as isoprene rubber, butadiene rubber, and ethylene / propylene rubber, styrene / butadiene / styrene block copolymer, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymer, and styrene / isoprene / styrene block copolymer Polymers, thermoplastic elastomeric polymers such as hydrogenated products thereof, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / α-olefin (2 to 12 carbon atoms)
Soft resinous polymers such as copolymers, fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene / ethylene copolymers, and alkali metal ions, particularly lithium ions Molecular compositions.

【0026】上記のイオン伝導性を有する高分子として
は、ポリエチレンオキシド、ポリプロピレンオキシド等
のポリエーテル系高分子化合物、ポリエーテル化合物の
架橋体高分子、ポリエピクロルヒドリン、ポリフォスフ
ァゼン、ポリシロキサン、ポリビニルピロリドン、ポリ
ビニリデンカーボネート、ポリアクリロニトリル等の高
分子化合物に、リチウム塩、またはリチウムを主体とす
るアルカリ金属塩を複合させた系、あるいはこれにプロ
ピレンカーボネート、エチレンカーボネート、γ−ブチ
ロラクトン等の高い誘電率を有する有機化合物を配合し
た系を用いることができる。この様な、イオン伝導性高
分子組成物の室温におけるイオン導電率は、好ましくは
10-5S/cm以上、より好ましくは10-3S/cm以
上である。
Examples of the polymer having ion conductivity include polyether polymer compounds such as polyethylene oxide and polypropylene oxide, crosslinked polymers of polyether compounds, polyepichlorohydrin, polyphosphazene, polysiloxane, polyvinylpyrrolidone, and the like. Polyvinylidene carbonate, a polymer compound such as polyacrylonitrile, a lithium salt, or a system in which an alkali metal salt mainly composed of lithium is combined, or propylene carbonate, ethylene carbonate, having a high dielectric constant such as γ-butyrolactone A system containing an organic compound can be used. The ionic conductivity of such an ion-conductive polymer composition at room temperature is preferably 10 -5 S / cm or more, more preferably 10 -3 S / cm or more.

【0027】本発明に用いる黒鉛粉体と上記の結着剤と
の混合形式としては、各種の形態をとることができる。
即ち、両者の粒子が混合した形態、繊維状の結着剤が炭
素質物の粒子に絡み合う形で混合した形態、または結着
剤の層が炭素質物の粒子表面に付着した形態などが挙げ
られる。炭素質物と上記結着剤との混合割合は、炭素質
物に対し、好ましくは0.1〜30重量%、より好まし
くは、0.5〜10重量%である。これ以上の量の結着
剤を添加すると、電極の内部抵抗が大きくなり、好まし
くなく、これ以下の量では集電体と炭素質粉体の結着性
に劣る。
The graphite powder used in the present invention and the above-mentioned binder can be mixed in various forms.
That is, a form in which both particles are mixed, a form in which a fibrous binder is entangled with the carbonaceous material particles, or a form in which a binder layer is attached to the surface of the carbonaceous material particles are exemplified. The mixing ratio of the carbonaceous material and the binder is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight, based on the carbonaceous material. If the binder is added in an amount larger than this, the internal resistance of the electrode increases, which is not preferable. If the amount is smaller than this, the binding property between the current collector and the carbonaceous powder is poor.

【0028】こうして作製した負極板と以下に説明する
電解液、正極板を、その他の電池構成要素であるセパレ
ータ、ガスケット、集電体、封口板、セルケース等と組
み合わせて二次電池を構成する。作成可能な電池は筒
型、角型、コイン型等特に限定されるものではないが、
基本的にはセル床板上に集電体と負極材料を乗せ、その
上に電解液とセパレータを、更に負極と対向するように
正極を乗せ、ガスケット、封口板と共にかしめて二次電
池とする。
The secondary battery is constructed by combining the negative electrode plate thus prepared, the electrolyte solution described below, and the positive electrode plate with other battery components such as a separator, a gasket, a current collector, a sealing plate, and a cell case. . The batteries that can be created are not particularly limited, such as cylindrical, square, coin type,
Basically, a current collector and a negative electrode material are placed on a cell floor plate, an electrolytic solution and a separator are further placed thereon, and a positive electrode is placed on the cell floor plate so as to face the negative electrode.

【0029】電解液用に使用できる非水溶媒としては、
プロピレンカーボネート、エチレンカーボネート、クロ
ロエチレンカーボネート、トリフルオロプロピレンカー
ボネート、ジエチルカーボネート、ジメチルカーボネー
ト、エチルメチルカーボネート、1,2−ジメトキシエ
タン、γ−ブチロラクトン、テトラヒドロフラン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、スル
ホラン、1,3−ジオキソラン等の有機溶媒の単独、ま
たは二種類以上を混合したものを用いることができる。
また、CO2、2 O、CO、SO2 等のガスやポリサル
ファイドSx 2ー、ビニレンカーボネート、カテコールカ
ーボネートなど負極表面にリチウムイオンの効率よい充
放電を可能にする良好な皮膜を生成する添加剤を任意の
割合で上記単独又は混合溶媒に添加してもよい。
Non-aqueous solvents that can be used for the electrolyte include:
Propylene carbonate, ethylene carbonate, chloroethylene carbonate, trifluoropropylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-butyrolactone, tetrahydrofuran, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3 -Organic solvents such as dioxolane can be used alone or in combination of two or more.
In addition, a gas such as CO 2, N 2 O, CO, and SO 2 , and polysulfide S x 2- , vinylene carbonate, and catechol carbonate, which form a good film capable of efficiently charging and discharging lithium ions on the negative electrode surface, are added. The agent may be added to the above-mentioned single or mixed solvent at an arbitrary ratio.

【0030】これらの溶媒に0.5〜2.0M程度のL
iClO4 、LiPF6 、LiBF 4 、LiAsF6
LiCl、LiBr等の無機のリチウム塩、LiCF3
SO 3 、LiN(SO2 CF3 2 、LiN(SO2
2 5 2 、LiC(SO2CF3 3 、LiN(SO
3 CF3 2 等の有機のリチウム塩を電解質として上記
溶媒に溶解して電解液とする。
In these solvents, L of about 0.5 to 2.0 M is added.
iCLOFour, LiPF6, LiBF Four, LiAsF6,
Inorganic lithium salts such as LiCl and LiBr, LiCFThree
SO Three, LiN (SOTwoCFThree)Two, LiN (SOTwoC
TwoFFive)Two, LiC (SOTwoCFThree)Three, LiN (SO
ThreeCFThree)TwoUsing organic lithium salt such as above as electrolyte
Dissolve in a solvent to form an electrolyte.

【0031】また、リチウムイオン等のアルカリ金属カ
チオンの導電体である高分子固体電解質を、用いること
もできる。正極体の材料は、特に限定されないが、リチ
ウムイオンなどのアルカリ金属カチオンを充放電時に吸
蔵、放出できる金属カルコゲン化合物からなることが好
ましい。その様な金属カルコゲン化合物としては、バナ
ジウムの酸化物、バナジウムの硫化物、モリブデンの酸
化物、モリブデンの硫化物、マンガンの酸化物、クロム
の酸化物、チタンの酸化物、チタンの硫化物及びこれら
の複合酸化物、複合硫化物等が挙げられる。好ましく
は、Cr3 8 、V2 5 、V5 13、VO2、Cr2
5 、MnO2 、TiO2 、MoV2 8 、TiS2
2 5 MoS2、MoS3 VS2 、Cr0.25
0.752 、Cr0.5 0.5 2 等である。また、LiM
2 (Mは、Co、Ni等の遷移金属YはO、S等のカ
ルコゲン化合物)、LiM2 4 (MはMn、Yは
O)、WO3 等の酸化物、CuS、Fe0.25
0.752 、Na0.1 CrS2 等の硫化物、NiPS3
FePS3 等のリン、硫黄化合物、VSe2 、NbSe
3 等のセレン化合物等を用いることもできる。これらを
負極材と同様、結着剤と混合して集電体の上に塗布して
正極板とする。電解液を保持するセパレーターは、一般
的に保液性に優れた材料であり、例えば、ポリオレフィ
ン系樹脂の不織布や多孔性フィルムなどを使用して、上
記電解液を含浸させる。
In addition, alkali metal such as lithium ion
Using a solid polymer electrolyte, which is a conductor of thione
Can also. Although the material of the positive electrode body is not particularly limited,
Absorbs alkali metal cations such as
It is preferably composed of a metal chalcogen compound that can be stored and released.
Good. Such metal chalcogen compounds include vana
Indium oxide, vanadium sulfide, molybdenum acid
, Molybdenum sulfide, manganese oxide, chromium
Oxides, titanium oxides, titanium sulfides and these
Composite oxides and composite sulfides. Preferably
Is CrThreeO8, VTwoOFive, VFiveO13, VOTwo, CrTwo
OFive, MnOTwo, TiOTwo, MoVTwoO8, TiSTwoV
TwoSFiveMoSTwo, MoSThreeVSTwo, Cr0.25V
0.75STwo, Cr0.5V0.5STwoAnd so on. Also, LiM
YTwo(M is a transition metal such as Co and Ni. Y is a metal such as O and S.
Lucogen compound), LiMTwoYFour(M is Mn, Y is
O), WOThreeOxides such as CuS, Fe0.25V
0.75STwo, Na0.1CrSTwoSuch as sulfide, NiPSThree,
FePSThreeSuch as phosphorus, sulfur compounds, VSeTwo, NbSe
ThreeAnd the like can also be used. these
Like the negative electrode material, mix with the binder and apply it on the current collector.
A positive electrode plate is used. The separator that holds the electrolyte is generally
It is a material with excellent liquid retention properties.
Using non-woven resin or porous film
The electrolyte is impregnated.

【0032】[0032]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。 「電極材料の評価方法」評価内容の内、粒径測定はレー
ザー回折式粒径評価装置により行い、自動的に算出され
る平均粒径を評価基準に用いた。比表面積はBET1点
法を用いて測定した。ラマンスペクトル測定は、日本分
光NR-1800 により行い、波長5145Åのアルゴンイオ
ンレーザー光を、30mWの強度で照射した。ここでは1570
〜1620cm-1の範囲に存在するピークの強度および、13
50〜1370cm-1の範囲に存在するピークの強度を測定
し、これらから得られるR値、及び1570〜1620cm-1
存在するピークの半値幅である△ν値を求めた。
Next, the present invention will be described in more detail by way of examples, which should not be construed as limiting the present invention. Among the evaluation contents of "Electrode material evaluation method", the particle size was measured by a laser diffraction type particle size evaluation apparatus, and the automatically calculated average particle size was used as an evaluation standard. The specific surface area was measured using the BET one-point method. The Raman spectrum was measured by JASCO Corporation NR-1800, and irradiated with an argon ion laser beam having a wavelength of 5145 ° at an intensity of 30 mW. Here 1570
Peak intensity in the range of ~ 1620 cm -1 and 13
The intensities of the peaks in the range of 50 to 1370 cm -1 were measured, and the R values obtained therefrom and the Δν value, which was the half width of the peaks in the range of 1570 to 1620 cm -1 , were determined.

【0033】(実施例1)内容積20リットルのステン
レスタンクに、粒径22〜23μm;X線回折による
(002)面の面間隔が3.36;波長5145Åのア
ルゴンイオンレーザー光を用いたラマンスペクトル分析
において、R=IB/IA(ラマンスペクトルにおい
て、1580〜1620cm-1の範囲にピークPAを有
し、1350〜1370cm-1の範囲にピークPBを有
し、PAの強度をIA、PBの強度をIBとする)の値
が0.11;BET法を用いて測定した比表面積が4.
7m2 /gなる人造黒鉛粉末3.0kgをナフサ分解時
に得られるエチレンヘビーエンドタール(EHE;三菱
化学(株)社製)1.0kgに対し混合した。得られた
スラリー状の混合物を回分式加熱炉で不活性雰囲気下に
て700℃に保ち、1時間熱処理することにより、脱揮
した。次に、1300℃まで温度を上昇させ2時間保持
した。これを粉砕し、振動式篩いにより粒径を20〜2
5μmに整えた。これを5規定の塩酸12.5L中に投
入し、3日間撹拌を行った。この後処理酸液を濾過して
取り除き、残った沈殿物を純水により洗滌した。この過
程は、沈殿物が分散状態にある洗浄水のpHが中性に戻
るまで繰り返した。得られた沈殿物は、120℃で加熱
乾燥をほどこしサンプル粉体とした。
(Example 1) Raman using an argon ion laser beam having a particle size of 22 to 23 µm, a (002) plane spacing of 3.36 by X-ray diffraction, and a wavelength of 5145 ° in a stainless steel tank having an inner volume of 20 liters. In the spectrum analysis, R = IB / IA (in the Raman spectrum, a peak PA was found in the range of 1580 to 1620 cm -1, a peak PB was found in the range of 1350 to 1370 cm -1, and the PA intensity was IA and PB. Strength is defined as IB) is 0.11; specific surface area measured by BET method is 4.
3.0 kg of artificial graphite powder of 7 m 2 / g was mixed with 1.0 kg of ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation) obtained during naphtha decomposition. The resulting slurry-like mixture was devolatilized by heat treatment at 700 ° C. for 1 hour in a batch heating furnace under an inert atmosphere. Next, the temperature was raised to 1300 ° C. and maintained for 2 hours. This is crushed and the particle size is reduced to 20 to 2 by a vibrating sieve.
It was adjusted to 5 μm. This was put into 12.5 L of 5N hydrochloric acid, and stirred for 3 days. The post-treated acid solution was removed by filtration, and the remaining precipitate was washed with pure water. This process was repeated until the pH of the washing water in which the precipitate was in a dispersed state returned to neutral. The obtained precipitate was heated and dried at 120 ° C. to obtain a sample powder.

【0034】この電極材料サンプル5gに、ポリフッ化
ビニリデン(PVdF)のジメチルアセトアミド溶液を
固形分換算で10重量%加えたものを撹拌し、スラリー
を得た。このスラリーを銅箔上に塗布し、80℃で予備
乾燥を行った。さらに圧着させたのち、直径20mmの
円盤状に打ち抜き、110℃で減圧乾燥をして電極とし
た。得られた電極に対し、電解液を含浸させたポリプロ
ピレン製セパレーターをはさみ、リチウム金属電極に対
向させたコイン型セルを作製し、充放電試験を行った。
電解液には、エチレンカーボネートとジエチルカーボネ
ートを容量比1:1の比率で混合した溶媒に過塩素酸リ
チウムを1.0mol/Lの割合で溶解させたものを用
いた。
A solution of polyvinylidene fluoride (PVdF) in dimethylacetamide of 10% by weight in terms of solid content was added to 5 g of this electrode material sample to obtain a slurry. This slurry was applied on a copper foil and pre-dried at 80 ° C. After further pressure bonding, it was punched into a disk having a diameter of 20 mm, and dried under reduced pressure at 110 ° C. to form an electrode. The obtained electrode was sandwiched with a separator made of polypropylene impregnated with an electrolytic solution, and a coin-shaped cell facing the lithium metal electrode was prepared, and a charge / discharge test was performed.
As the electrolytic solution, a solution in which lithium perchlorate was dissolved at a ratio of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used.

【0035】基準充放電試験は、電流密度0.16mA
/cm2 で極間電位差が0Vになるまでドープを行い、
電流密度0.33mA/cm2 で極間電位差が1.5V
になるまで脱ドープを行った。容量値は、コイン型セル
3個について各々充放電試験を行い、その初回サイクル
及び第4回サイクルのドープ容量、脱ドープ容量、及び
初回充放電効率等を平均して評価した。その初回サイク
ル及び第4回サイクルのドープ容量、脱ドープ容量、及
び初回充放電効率を表1に示す
In the standard charge / discharge test, the current density was 0.16 mA.
/ Cm 2 until the potential difference between the electrodes becomes 0 V,
A current density of 0.33 mA / cm 2 and a potential difference between the electrodes of 1.5 V
Dedoping was performed until. The capacity value was evaluated by performing a charge / discharge test on each of three coin-type cells, and averaging the doping capacity, the undoping capacity, the initial charge / discharge efficiency, and the like in the first cycle and the fourth cycle. Table 1 shows the doping capacity, undoping capacity, and initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0036】(比較例1)実施例1で用いた人造黒鉛粉
末を酸処理等をせず、そのまま電極材料として用いた他
は、実施例1と同様の操作を行った。その初回サイクル
及び第4回サイクルのドープ容量、脱ドープ容量、及び
初回充放電効率を表1に示す
Comparative Example 1 The same operation as in Example 1 was performed except that the artificial graphite powder used in Example 1 was used as an electrode material without acid treatment or the like. Table 1 shows the doping capacity, undoping capacity, and initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0037】(比較例2)実施例1で用いた人造黒鉛粉
末を5規定の塩酸12.5L中に投入し、3日間撹拌を
行い、処理酸液を濾過して取り除き、残った沈殿物を純
水により洗滌した。この過程は、沈殿物が分散状態にあ
る洗浄水のpHが中性に戻るまで繰り返した。得られた
沈殿物は、120℃で加熱乾燥をほどこしサンプル粉体
とした。これ以外の極板作成法、セパレーター、電解
液、充放電試験方法は実施例1と同様の操作を行った。
その初回サイクル及び第4回サイクルのドープ容量、脱
ドープ容量、及び初回充放電効率を表1に示す
Comparative Example 2 The artificial graphite powder used in Example 1 was put into 12.5 L of 5N hydrochloric acid, stirred for 3 days, the treated acid solution was removed by filtration, and the remaining precipitate was removed. Washed with pure water. This process was repeated until the pH of the washing water in which the precipitate was in a dispersed state returned to neutral. The obtained precipitate was heated and dried at 120 ° C. to obtain a sample powder. Except for this, the same operations as in Example 1 were performed for the method of preparing the electrode plate, the separator, the electrolytic solution, and the charge / discharge test method.
Table 1 shows the doping capacity, undoping capacity, and initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0038】(比較例3)実施例1で用いたエチレンヘ
ビーエンドタール(EHE;三菱化学(株)社製)1.
0kgを回分式加熱炉で不活性雰囲気下にて700℃に
保ち、1時間熱処理することにより、脱揮した。次に、
1300℃まで温度を上昇させ2時間保持した。これを
粉砕し、振動式篩いにより粒径を20〜25μmに整え
た。これを5規定の塩酸12.5L中に投入し、3日間
撹拌を行った。この後処理酸液を濾過して取り除き、残
った沈殿物を純水により洗滌した。この過程は、沈殿物
が分散状態にある洗浄水のpHが中性に戻るまで繰り返
した。得られた沈殿物は、120℃で加熱乾燥をほどこ
しサンプル粉体とした。これ以外の極板作成法、セパレ
ーター、電解液、充放電試験方法は実施例1と同様の操
作を行った。その初回サイクル及び第4回サイクルのド
ープ容量、脱ドープ容量、及び初回充放電効率を表1に
示す。
Comparative Example 3 Ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation) used in Example 1
0 kg was devolatilized by keeping it at 700 ° C. in an inert atmosphere in a batch heating furnace and heat-treating for 1 hour. next,
The temperature was raised to 1300 ° C. and held for 2 hours. This was pulverized, and the particle size was adjusted to 20 to 25 μm by a vibrating sieve. This was put into 12.5 L of 5N hydrochloric acid, and stirred for 3 days. The post-treated acid solution was removed by filtration, and the remaining precipitate was washed with pure water. This process was repeated until the pH of the washing water in which the precipitate was in a dispersed state returned to neutral. The obtained precipitate was heated and dried at 120 ° C. to obtain a sample powder. Except for this, the same operations as in Example 1 were performed for the method of preparing the electrode plate, the separator, the electrolytic solution, and the charge / discharge test method. Table 1 shows the doping capacity, the undoping capacity, and the initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0039】(比較例4)実施例1で用いたエチレンヘ
ビーエンドタール(EHE;三菱化学(株)社製)1.
0kgを回分式加熱炉で不活性雰囲気下にて1300℃
に保ち、1時間熱処理することにより、脱揮した。これ
を粉砕し、振動式篩いにより粒径を20〜25μmに整
えた。これ以外の極板作成法、セパレーター、電解液、
充放電試験方法は実施例1と同様の操作を行った。その
初回サイクル及び第4回サイクルのドープ容量、脱ドー
プ容量、及び初回充放電効率を表1に示す。
(Comparative Example 4) Ethylene heavy end tar (EHE; manufactured by Mitsubishi Chemical Corporation) used in Example 1
0kg in a batch heating furnace under an inert atmosphere at 1300 ° C
Devolatilized by heat treatment for 1 hour. This was pulverized, and the particle size was adjusted to 20 to 25 μm by a vibrating sieve. Other electrode making methods, separators, electrolytes,
The charge / discharge test method was the same as in Example 1. Table 1 shows the doping capacity, the undoping capacity, and the initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0040】(比較例5)実施例1で用いたエチレンヘ
ビーエンドタール(EHE;三菱化学(株)社製)1.
0kgを回分式加熱炉で不活性雰囲気下にて700℃に
保ち、1時間熱処理することにより、脱揮する以外は、
比較例4と同様の操作を行った。その初回サイクル及び
第4回サイクルのドープ容量、脱ドープ容量、及び初回
充放電効率を表1に示す。
Comparative Example 5 Ethylene Heavy End Tar (EHE; manufactured by Mitsubishi Chemical Corporation) used in Example 1
0 kg is kept in an inert atmosphere at 700 ° C. in a batch heating furnace, and heat-treated for 1 hour, except for devolatilization.
The same operation as in Comparative Example 4 was performed. Table 1 shows the doping capacity, the undoping capacity, and the initial charge / discharge efficiency of the first cycle and the fourth cycle.

【0041】[0041]

【表1】 [Table 1]

【0042】(実施例2から実施例5)実施例1におけ
る5規定の塩酸の代わりに、表2に記載の各処理液を使
用した以外は実施例1と同様にして負極を作成した。作
成した負極を用いて実施例1と同様のコイン電池を作成
し、基準充放電試験と、更に高速充放電に対する耐レー
ト試験を行った。高速充放電に対する耐レート試験は、
電流密度0.16mA/cm2 で極間電位差が0Vにな
るまでドープを行い、それぞれ電流密度2.8mA/c
2 、及び電流密度5.6mA/cm2 で極間電位差が
1.5Vになるまで脱ドープを行った。容量値は、コイ
ン型セル3個について各々充放電試験を行い、初回サイ
クルのドープ容量、脱ドープ容量の値の比である初回の
効率、第4回サイクルのドープ容量、脱ドープ容量、及
び2.8mA/cm2 、5.6mA/cm2 でのそれぞ
れの脱ドープ容量を平均して評価した結果を実施例1で
得られた負極の結果と併せて表2に示す。
(Examples 2 to 5) Negative electrodes were prepared in the same manner as in Example 1 except that the treatment solutions shown in Table 2 were used instead of the 5N hydrochloric acid in Example 1. A coin battery similar to that of Example 1 was produced using the produced negative electrode, and a reference charge / discharge test and a rate resistance test for high-speed charge / discharge were performed. The withstand rate test for high-speed charge and discharge
Doping was performed at a current density of 0.16 mA / cm 2 until the potential difference between the electrodes became 0 V, and a current density of 2.8 mA / c was applied.
Dedoping was performed at m 2 and a current density of 5.6 mA / cm 2 until the potential difference between the electrodes became 1.5 V. The capacity value was obtained by conducting a charge / discharge test on each of three coin-type cells, and determining the ratio of the doping capacity and the undoping capacity in the first cycle to the initial efficiency, the doping capacity in the fourth cycle, the undoping capacity, and 2 Table 2 shows the results of averaging the undoped capacities at 8.8 mA / cm 2 and 5.6 mA / cm 2 together with the results of the negative electrode obtained in Example 1.

【0043】(比較例6)比較例2で作成した、酸処理
をした人造黒鉛粉末を負極として用いた以外は上記実施
例2から5と同様の充放電試験を行った結果を表2に示
す。 (比較例7)比較例3で作成した、酸処理をした炭素粉
末を負極として用いた以外は上記実施例2から5と同様
の充放電試験を行った結果を表2に示す。 (比較例8)比較例4で作成した、炭素粉末を負極とし
て用いた以外は上記実施例2から5と同様の充放電試験
を行った結果を表2に示す。
Comparative Example 6 Table 2 shows the results of the same charge / discharge test as in Examples 2 to 5 except that the acid-treated artificial graphite powder prepared in Comparative Example 2 was used as a negative electrode. . Comparative Example 7 Table 2 shows the results of the same charge / discharge test as in Examples 2 to 5 except that the acid-treated carbon powder prepared in Comparative Example 3 was used as the negative electrode. Comparative Example 8 Table 2 shows the results of the same charge / discharge test as in Examples 2 to 5 except that the carbon powder prepared in Comparative Example 4 was used as the negative electrode.

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【発明の効果】以上の結果より、本発明のリチウムイオ
ン二次電池用負極は、黒鉛の理論容量近辺から、特に好
ましい態様においては、その理論容量以上の容量を発現
し、かつ、その電位は、Li/Li+ に対し0.5V以
下のリチウム脱ドープ電位を与え、初回サイクル効率、
初回からの脱ドープ特性に優れるとともに、高速充放電
時においても、高い容量を保つことができる、優れた効
果を奏するものである。
From the above results, the negative electrode for a lithium ion secondary battery of the present invention exhibits a capacity not less than the theoretical capacity of the graphite in a particularly preferred embodiment from the vicinity of the theoretical capacity of graphite, and the potential of the graphite is higher than the theoretical capacity. , Li / Li + to give a lithium undoping potential of 0.5 V or less,
It is excellent in dedoping characteristics from the first time and can maintain a high capacity even at the time of high-speed charge and discharge, and has an excellent effect.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛性炭素質物の表面を炭素化可能な有
機物で被覆し、焼成し、粉砕して得られる非晶質炭素被
覆黒鉛系炭素質物を、酸性又はアルカリ性溶液で処理し
た炭素質物を負極として用いたことを特徴とするリチウ
ムイオン二次電池。
An amorphous carbon-coated graphite-based carbonaceous material obtained by coating the surface of a graphitic carbonaceous material with an organic material capable of being carbonized, calcining, and pulverizing the material to obtain a carbonaceous material treated with an acidic or alkaline solution. A lithium ion secondary battery used as a negative electrode.
【請求項2】 酸性溶液が、フッ酸、塩酸、臭素酸、ヨ
ウ素酸、硫酸、硝酸、酢酸、トリクロロ酢酸、トリフル
オロ酢酸、蓚酸から選ばれる少なくとも1つの酸性溶液
であることを特徴とする請求項1記載のリチウムイオン
二次電池。
2. The method according to claim 1, wherein the acidic solution is at least one acidic solution selected from hydrofluoric acid, hydrochloric acid, bromic acid, iodic acid, sulfuric acid, nitric acid, acetic acid, trichloroacetic acid, trifluoroacetic acid and oxalic acid. Item 7. The lithium ion secondary battery according to Item 1.
【請求項3】 アルカリ性溶液が、アルカリ金属水酸化
物、アンモニア、テトラアルキルアンモニウム、尿素、
ピリジン、キノリン、キノキサリン、ピペリジンから選
ばれる少なくとも1つの化合物を含有する溶液であるこ
とを特徴とする請求項1記載のリチウムイオン二次電
池。
3. An alkaline solution comprising: an alkali metal hydroxide, ammonia, tetraalkylammonium, urea,
The lithium ion secondary battery according to claim 1, wherein the solution is a solution containing at least one compound selected from pyridine, quinoline, quinoxaline, and piperidine.
【請求項4】 黒鉛性炭素質物が、BET法で測定され
た比表面積の値をy(m2 /g)、粉体の粒径(μm)
の値をxとした場合、 4≦x≦40、0.1≦y≦25、且つy≦axb
(但しa=52、b=−0.6)で表される領域内にあ
る黒鉛粉体であることを特徴とする請求項1〜請求項3
のいずれかに記載のリチウムイオン二次電池。
4. The graphitic carbonaceous material has a specific surface area measured by a BET method of y (m 2 / g) and a powder particle size (μm).
Is x, 4 ≦ x ≦ 40, 0.1 ≦ y ≦ 25, and y ≦ ax b ,
4. A graphite powder in a region represented by (where a = 52, b = -0.6).
The lithium ion secondary battery according to any one of the above.
【請求項5】 黒鉛性炭素質物が、更に、波長5145
Åのアルゴンイオンレーザー光を用いたラマンスペクト
ル分析において、1570〜1620cm-1の範囲に存
在するピークの強度をIA、1350〜1370cm-1
の範囲に存在するピークの強度をIBとしたとき、その
比であるR値(=IB/IA)が、0.001以上0.
2以下であり、かつ、1570〜1620cm-1に存在
するピークの半値幅である△v値の大きさが、14〜2
2cm-1である黒鉛粉体であることを特徴とする請求項
4記載のリチウムイオン二次電池。
5. The graphitic carbonaceous material further has a wavelength of 5145.
In Raman spectrum analysis using an argon ion laser beam of Å, the intensity of a peak existing in the range of 1570~1620cm -1 IA, 1350~1370cm -1
When the intensity of the peak existing in the range is defined as IB, the R value (= IB / IA), which is the ratio, is 0.001 or more and 0.
2, and the magnitude of the Δv value, which is the half width of the peak existing at 1570 to 1620 cm −1 , is 14 to 2
5. The lithium ion secondary battery according to claim 4, wherein the lithium ion secondary battery is 2 cm -1 .
【請求項6】 炭素化可能な有機物が、コールタールピ
ッチ、石炭系重質油、石油系重質油、芳香族炭化水素、
窒素含有環状化合物、硫黄含有環状化合物、ポリフェニ
レン、ポリ塩化ビニル、ポリビニルアルコール、ポリア
クリロニトリル、天然高分子、ポリフェニレンサルファ
イド、ポリフェニレンオキシド、フルフリルアルコール
樹脂、フェノールーホルムアルデヒド樹脂、イミド樹脂
から選ばれる1種以上の有機物であることを特徴とする
請求項1〜請求項5のいずれかに記載のリチウムイオン
二次電池。
6. The organic matter capable of being carbonized includes coal tar pitch, coal-based heavy oil, petroleum-based heavy oil, aromatic hydrocarbon,
At least one selected from nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, natural polymers, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin The lithium ion secondary battery according to claim 1, wherein the lithium ion secondary battery is an organic material.
【請求項7】 焼成温度が、450〜2000℃である
ことを特徴とする請求項1〜請求項6のいずれかに記載
のリチウムイオン二次電池。
7. The lithium ion secondary battery according to claim 1, wherein a firing temperature is 450 to 2000 ° C.
【請求項8】 酸性又はアルカリ性溶液による処理温度
が20〜150℃であることを特徴とする請求項1〜請
求項7のいずれかに記載のリチウムイオン二次電池。
8. The lithium ion secondary battery according to claim 1, wherein the treatment temperature with an acidic or alkaline solution is 20 to 150 ° C.
【請求項9】 酸性又はアルカリ性溶液で処理した後、
洗滌及び60〜350℃で乾燥を行うことを特徴とする
請求項1〜請求項8のいずれかに記載のリチウムイオン
二次電池。
9. After treatment with an acidic or alkaline solution,
The lithium ion secondary battery according to any one of claims 1 to 8, wherein washing and drying are performed at 60 to 350 ° C.
JP02195298A 1997-02-04 1998-02-03 Lithium ion secondary battery Expired - Fee Related JP3633257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02195298A JP3633257B2 (en) 1997-02-04 1998-02-03 Lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-21443 1997-02-04
JP2144397 1997-02-04
JP02195298A JP3633257B2 (en) 1997-02-04 1998-02-03 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JPH10284080A true JPH10284080A (en) 1998-10-23
JP3633257B2 JP3633257B2 (en) 2005-03-30

Family

ID=26358502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02195298A Expired - Fee Related JP3633257B2 (en) 1997-02-04 1998-02-03 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3633257B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039315A1 (en) * 1999-11-19 2001-05-31 Pionics Kabushiki Kaisha Polymer cell
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2002222649A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Negative electrode material for non-aqueous electrolyte secondary battery and the manufacturing method therefor, and non-aqueous electrolyte secondary battery using the method
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material
CN1330041C (en) * 2003-07-01 2007-08-01 索尼株式会社 Non-aqueous electrolyte battery
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
JP2009255053A (en) * 2008-03-21 2009-11-05 Sumitomo Chemical Co Ltd Manufacturing method of electrode catalyst, and electrode catalyst
JP2010118243A (en) * 2008-11-12 2010-05-27 Kansai Coke & Chem Co Ltd Anode material for lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery using this anode material
WO2010095716A1 (en) * 2009-02-20 2010-08-26 三菱化学株式会社 Carbon material for lithium ion secondary batteries
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2010251126A (en) * 2009-04-15 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
KR101085048B1 (en) 2010-03-31 2011-11-21 한국화학연구원 Advenced Method For Manufacturing Pitch , And High Capacity Metal-Carbon Anode Meterial From Petroleum Products Using The Same.
US8173049B2 (en) 1999-04-30 2012-05-08 Acep Inc. Electrode materials with high surface conductivity
WO2014157630A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery and method of producing same, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2014199750A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2014199749A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2015525184A (en) * 2012-05-21 2015-09-03 イメリス グラファイト アンド カーボン スイッツァランド リミティド Surface-modified carbon hybrid particles, production method and application thereof
JP2017183051A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode arranged by use thereof, and lithium ion secondary battery arranged by use thereof
CN110495026A (en) * 2017-03-30 2019-11-22 松下知识产权经营株式会社 Negative electrode material and non-aqueous electrolyte secondary battery
CN114188521A (en) * 2021-12-10 2022-03-15 湖南大学 Light coating layer on surface of graphite positive electrode material of double-ion battery and preparation method
CN114477137A (en) * 2020-11-12 2022-05-13 中国科学院大连化学物理研究所 Carbon nanotube composite material wrapped by carbon material and preparation and application thereof

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506851B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
US8173049B2 (en) 1999-04-30 2012-05-08 Acep Inc. Electrode materials with high surface conductivity
US8257616B2 (en) 1999-04-30 2012-09-04 Acep Inc. Electrode materials with high surface conductivity
US8506852B2 (en) 1999-04-30 2013-08-13 Acep Inc. Electrode materials with high surface conductivity
EP1265307A4 (en) * 1999-11-19 2006-11-29 Dai Ichi Kogyo Seiyaku Co Ltd Polymer cell
WO2001039315A1 (en) * 1999-11-19 2001-05-31 Pionics Kabushiki Kaisha Polymer cell
US7311998B1 (en) 1999-11-19 2007-12-25 Sharp Kabushiki Kaisha Lithium polymer battery with a crosslinked electrolyte
EP1265307A1 (en) * 1999-11-19 2002-12-11 Pionics Kabushiki Kaisha Polymer cell
JP2001229914A (en) * 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
JP2002222649A (en) * 2001-01-25 2002-08-09 Mitsubishi Heavy Ind Ltd Negative electrode material for non-aqueous electrolyte secondary battery and the manufacturing method therefor, and non-aqueous electrolyte secondary battery using the method
WO2003049912A1 (en) * 2001-12-12 2003-06-19 Arkray, Inc. Method and implement for opening hole in soft material
US7816037B2 (en) 2002-01-25 2010-10-19 Toyo Tanso Co., Ltd. Anode material for lithium ion secondary battery
JP2004303674A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Non-aqueous electrolyte secondary battery and negative electrode material
CN1330041C (en) * 2003-07-01 2007-08-01 索尼株式会社 Non-aqueous electrolyte battery
JP2009255053A (en) * 2008-03-21 2009-11-05 Sumitomo Chemical Co Ltd Manufacturing method of electrode catalyst, and electrode catalyst
JP2010118243A (en) * 2008-11-12 2010-05-27 Kansai Coke & Chem Co Ltd Anode material for lithium-ion secondary battery and method of manufacturing the same, and lithium-ion secondary battery using this anode material
JP2010219036A (en) * 2009-02-20 2010-09-30 Mitsubishi Chemicals Corp Carbon material for lithium ion secondary battery
WO2010095716A1 (en) * 2009-02-20 2010-08-26 三菱化学株式会社 Carbon material for lithium ion secondary batteries
US8647776B2 (en) 2009-02-20 2014-02-11 Mitsubishi Chemical Corporation Carbon material for lithium ion secondary battery
JP2010251126A (en) * 2009-04-15 2010-11-04 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
KR101085048B1 (en) 2010-03-31 2011-11-21 한국화학연구원 Advenced Method For Manufacturing Pitch , And High Capacity Metal-Carbon Anode Meterial From Petroleum Products Using The Same.
US9991016B2 (en) 2012-05-21 2018-06-05 Imerys Graphite & Carbon Switzerland Ltd. Surface-modified carbon hybrid particles, methods of making, and applications of the same
JP2015525184A (en) * 2012-05-21 2015-09-03 イメリス グラファイト アンド カーボン スイッツァランド リミティド Surface-modified carbon hybrid particles, production method and application thereof
US10115493B2 (en) 2012-05-21 2018-10-30 Imerys Graphite & Carbon Switzerland Ltd. Surface-modified carbon hybrid particles, methods of making, and applications of the same
JP2014199750A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
JP2014199749A (en) * 2013-03-29 2014-10-23 日本電気株式会社 Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
US9972829B2 (en) 2013-03-29 2018-05-15 Nec Corporation Negative electrode carbon material for lithium secondary battery and method for manufacturing the same, and negative electrode for lithium secondary battery, and lithium secondary battery
WO2014157630A1 (en) * 2013-03-29 2014-10-02 日本電気株式会社 Negative electrode carbon material for lithium secondary battery and method of producing same, and negative electrode for lithium secondary battery, and lithium secondary battery
JP2017183051A (en) * 2016-03-30 2017-10-05 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode arranged by use thereof, and lithium ion secondary battery arranged by use thereof
CN110495026A (en) * 2017-03-30 2019-11-22 松下知识产权经营株式会社 Negative electrode material and non-aqueous electrolyte secondary battery
CN110495026B (en) * 2017-03-30 2022-07-15 松下知识产权经营株式会社 Negative electrode material and nonaqueous electrolyte secondary battery
CN114477137A (en) * 2020-11-12 2022-05-13 中国科学院大连化学物理研究所 Carbon nanotube composite material wrapped by carbon material and preparation and application thereof
CN114188521A (en) * 2021-12-10 2022-03-15 湖南大学 Light coating layer on surface of graphite positive electrode material of double-ion battery and preparation method
CN114188521B (en) * 2021-12-10 2023-10-20 湖南大学 Light coating layer on surface of graphite anode material of double-ion battery and preparation method

Also Published As

Publication number Publication date
JP3633257B2 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
JP3633257B2 (en) Lithium ion secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101395403B1 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
JP6906891B2 (en) Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
TW201338253A (en) Carbonaceous material for non-aqueous electrolyte secondary batteries
US20220285686A1 (en) Globular carbon-based anode active material, method for manufacturing same, and anode and lithium secondary battery comprising same
JP3969164B2 (en) Negative electrode material for lithium secondary battery and negative electrode body produced therefrom
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
WO1998034291A1 (en) Lithium ion secondary battery
JP2007103382A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured of this
JP3654790B2 (en) Graphite material for electrode and lithium ion secondary battery using the same
KR20130008532A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery which comprises the negative electrode material, and lithium ion secondary battery
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6859593B2 (en) Carbon material for non-aqueous secondary batteries and lithium-ion secondary batteries
CN114424368A (en) Negative electrode active material, method of preparing negative electrode active material, negative electrode including the same, and lithium secondary battery including the same
JPH0992284A (en) Graphite material for secondary battery electrode, its manufacture, and secondary battery
JP2003272627A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JPH10284081A (en) Lithium ion secondary battery
JP2003272621A (en) Negative electrode material for lithium secondary battery and negative electrode sheet manufactured from it
JP2000260428A (en) Lithium secondary battery using nonaqueous cabon- coated negative electrode
JP2015230794A (en) Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US20230307641A1 (en) Negative electrode active material, and negative electrode and secondary battery which include the same
JP6315258B2 (en) Conductive material for lithium ion secondary battery, composition for forming negative electrode of lithium ion secondary battery, composition for forming positive electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary Secondary battery
JP2002198053A (en) Negative electrode material for lithium ion battery
JPH1125979A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees