JPH1028326A - Method for controlling system stabilization - Google Patents

Method for controlling system stabilization

Info

Publication number
JPH1028326A
JPH1028326A JP8178247A JP17824796A JPH1028326A JP H1028326 A JPH1028326 A JP H1028326A JP 8178247 A JP8178247 A JP 8178247A JP 17824796 A JP17824796 A JP 17824796A JP H1028326 A JPH1028326 A JP H1028326A
Authority
JP
Japan
Prior art keywords
failure
stabilization control
power
kinetic energy
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8178247A
Other languages
Japanese (ja)
Other versions
JP3510048B2 (en
Inventor
Hideji Oshida
秀治 押田
Kenpei Seki
建平 戚
Yoichi Kitamura
洋一 北村
Makoto Yamamoto
山本  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Chubu Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Chubu Electric Power Co Inc
Priority to JP17824796A priority Critical patent/JP3510048B2/en
Publication of JPH1028326A publication Critical patent/JPH1028326A/en
Application granted granted Critical
Publication of JP3510048B2 publication Critical patent/JP3510048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform stabilization control, even when a wide-extent failure occurs due to the failure of a trunk transmission system by deciding the optimum stabilization controlling quantity by detecting the location of the failure and the failure of the trunk transmission system by comparing the value of kinetic energy at a fixed period of time, after the occurrence of the failure with a preset threshold. SOLUTION: A terminal device 1A computes the electric output of equivalent power generator (a single equivalent power generator for the operators being operated in a power plant 3A) at every hour, based on the voltage data and current data measured by means of a sensor 51A. Then the device 1A predicts the hourly changing locus of the kinetic energy and discriminates whether a failure occurs in a trunk transmission system or power system, by comparing the predicted kinetic energy value at a certain point of time after the occurrence of the failure with a preestablished criterion level. Therefore, whether a failure is a trunk transmission system failure or power system failure can be discriminated on-line, merely from the local backup information of the power plant, and stabilization control can be performed optimumly in accordance with the location of the failure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電力系統に生じ
た事故の影響が拡大・波及し、この電力系統に接続され
た発電機が脱調に至るのを未然に防止する系統安定化制
御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system stabilization control method for preventing the effects of an accident occurring in a power system from spreading and spreading, and preventing a generator connected to the power system from stepping out. It is about.

【0002】[0002]

【従来の技術】図7は例えば平成2年電気学会全国大会
講演論文1343に示された従来の過渡安定度制御方法
を実現した系統安定化リレー装置のシステム構成図であ
り、図において、1Aは発電所設置の端末装置、1Nは
中央演算装置、1Bは変電所設置の端末装置、21Nは
端末装置1Bと中央演算装置1Nを接続した情報伝送
路、3Aは被制御対象(電源制限)となる発電所、3B
は変電所、4Aは電力系統、51Aは発電所3Aと変電
所3B間の電圧データ、電流データを計測するセンサで
ある。
2. Description of the Related Art FIG. 7 is a system configuration diagram of a system stabilizing relay device which realizes a conventional transient stability control method disclosed in, for example, a paper 1343 of the National Convention of the Institute of Electrical Engineers of Japan in 1990. In FIG. A terminal device installed at a power station, 1N is a central processing unit, 1B is a terminal device installed at a substation, 21N is an information transmission line connecting the terminal device 1B and the central processing unit 1N, and 3A is a controlled object (power supply restriction). Power plant, 3B
Is a substation, 4A is a power system, and 51A is a sensor that measures voltage data and current data between the power plant 3A and the substation 3B.

【0003】次に動作について説明する。変電所設置の
端末装置1Bでは、変電所3Bの母線電圧データ、電流
データ、遮断器信号を計測し、当該系統の事故検出を行
う。発電所設置の端末装置1Aでは、センサ51Aで計
測された当該発電機の電圧データ、電流データを入力し
発電機電気的出力PE の演算を行い、中央演算装置1N
に出力し、この中央演算装置1Nからの遮断指令を受
け、それを遮断器に出力する。
Next, the operation will be described. The terminal device 1B installed in the substation measures the bus voltage data, the current data, and the circuit breaker signal of the substation 3B, and detects an accident in the system. In power plants installed terminal apparatus 1A, performs voltage data of the generator measured by the sensor 51A, the operation of the generator electrical output P E type the current data, the central processing unit 1N
And receives a shut-off command from the central processing unit 1N, and outputs it to the circuit breaker.

【0004】中央演算装置1Nでは、図7に示すよう
に、制御対象となる電源系統を1機無限大母線系統にモ
デル化し、想定される制御完了時間において等価発電機
(対象とする発電機を並列インピーダンス法で合成した
もの)に蓄積されている運動エネルギーVkとオンライ
ンデータに基づいて推定した電力相差角曲線より、図9
に示すように系統の持つ臨界エネルギーVcを算出し、
この臨界エネルギーVcの大小から系統の過渡安定度を
判定する。即ち、 Vk≧Vcのとき不安定 Vk<Vcのとき安定 不安定と判断した場合には、発電機遮断実施時の運動エ
ネルギーVk、臨界エネルギーVcを算出し、安定化を
図るために最適な発電機の組み合わせを選択し、発電所
設置の端末装置1Aに対し発電機遮断指令を送信する。
In the central processing unit 1N, as shown in FIG. 7, a power supply system to be controlled is modeled as one infinite bus system, and an equivalent generator (target generator is used) at an assumed control completion time. From the power phase difference angle curve estimated based on the kinetic energy Vk accumulated in the parallel impedance method and the online data, FIG.
Calculate the critical energy Vc of the system as shown in
The transient stability of the system is determined from the magnitude of the critical energy Vc. That is, if Vk ≧ Vc, it is unstable. If Vk <Vc, it is stable. If it is determined that it is unstable, the kinetic energy Vk and critical energy Vc when the generator is cut off are calculated, and the optimal power generation for stabilization is calculated. The combination of the generators is selected, and a generator shutoff command is transmitted to the terminal device 1A installed at the power plant.

【0005】なお、図8は対象となる電源系統を並列イ
ンピーダンス法で1台の等価発電機系統に縮約したもの
であり、従って、機械的入力Pm、電気的出力Peおよ
び慣性定数Mは対象電源系統で運転中の全発電機の合計
値となる。また、リアクタンスjXd’、jXtは運転
中の全発電機の並列合成値、jX1は電源線の並列合成
値、jXsは故障発生後の発電機端で計測されるデータ
より推定した値である。無限大母線とは非常に大きな電
力系統を表す仮の母線である。
[0005] Fig. 8 is a diagram in which the target power supply system is reduced to one equivalent generator system by the parallel impedance method. Therefore, the mechanical input Pm, the electrical output Pe, and the inertia constant M are the target. This is the total value of all generators operating in the power system. Further, reactances jXd 'and jXt are parallel combined values of all generators in operation, jX1 is a parallel combined value of power supply lines, and jXs is a value estimated from data measured at a generator end after a failure has occurred. The infinite bus is a temporary bus representing a very large power system.

【0006】図8における電気的出力Peは下式で与え
られる。 Pe=P* sinδ ・・・(1) 図9は、この式に基づいて電力位相角曲線(Pe−δ曲
線)を描いたものである。なお、P* は1/Xに比例す
る(図8において、X=jXd’+jXt+jX1+j
Xs)。また、Xは事故中(故障中)非常に大きな値と
なるので、事故中におけるPe−δ曲線は事故クリア後
よりも小さくなる。従って、図9のような関係が得ら
れ、運動エネルギ−Vk、臨界エネルギーVcが同図に
示すように与えられる。
The electric output Pe in FIG. 8 is given by the following equation. Pe = P * sin δ (1) FIG. 9 shows a power phase angle curve (Pe−δ curve) based on this equation. Note that P * is proportional to 1 / X (in FIG. 8, X = jXd '+ jXt + jX1 + j
Xs). Further, since X takes a very large value during an accident (during a failure), the Pe-δ curve during the accident becomes smaller than after the accident is cleared. Accordingly, the relationship as shown in FIG. 9 is obtained, and the kinetic energy -Vk and the critical energy Vc are given as shown in FIG.

【0007】図9において、Pe* (tsh)は制御完
了想定時刻tshにおける出力、P* は電力位相角曲線
のピーク値、Δωは補正係数であり、運動エネルギーV
k(tsh)および臨界エネルギーVcは(2)式およ
び(3)式で得られる。 Vk=M{Δω(tsh)}/2 ・・・(2) Vc=P* (cosδsh−cosδu )+Pm(δsh−δu )・・・(3)
In FIG. 9, Pe * (tsh) is an output at a control completion assumed time tsh, P * is a peak value of a power phase angle curve, Δω is a correction coefficient, and kinetic energy V
k (tsh) and critical energy Vc are obtained by the equations (2) and (3). Vk = M {Δω (tsh) } / 2 ··· (2) Vc = P * (cosδ sh -cosδ u) + Pm (δ sh -δ u) ··· (3)

【0008】以下、上記発電機電気的出力PE の算出処
理について説明する。 PE (t)={v(t)・i(t)+v(t−90 )・i(t−90 )} /2 ・・・(4) v(t)・i(t):現在のサンプリング電圧、電流
(差分フイルタ) v(t−90 )・i(t−90 ):電気角90゜前
のサンプリング電圧、電流(差分フイルタ)
[0008] The following describes calculation of the generator electrical output P E. P E (t) = {v (t) · i (t) + v (t−90) · i (t−90)} / 2 (4) v (t) · i (t): current Sampling voltage and current (difference filter) v (t-90) .i (t-90): sampling voltage and current (electrical difference filter) 90 ° before electrical angle

【0009】上式にて、図10に示すように、各相毎の
発電機の電気的出力PE を4.167ms(電気角90
゜)毎に算出し、12.5ms(電気角270゜)周期
で移動平均を下記の式で行う。 PEa1 (t)={PEa10(t)+PEa10(t−Tc)+PEa10(t−2Tc) +PEa10(t−3Tc)}/4 ・・・(5) 下式で3相の合計を取る。 PE1(t)=PEa1 (t)+PEb1 (t)+PEc1 (t) ・・・(6) また、下式にて発電所の合計を取る。 PE (t)=PE1(t)+PE2(t)+PE3(t)+PE4(t)・・(7)
[0009] At the above equation, as shown in FIG. 10, 4.167Ms electrical output P E of the generator for each phase (electrical angle of 90
゜), and the moving average is calculated by the following formula at a period of 12.5 ms (electrical angle: 270 °). P Ea1 (t) = {P Ea10 (t) + P Ea10 (t−Tc) + P Ea10 (t−2Tc) + P Ea10 (t−3Tc)} / 4 (5) take. P E1 (t) = P Ea1 (t) + P Eb1 (t) + P Ec1 (t) (6) Further, the total of the power plants is calculated by the following equation. P E (t) = P E1 (t) + P E2 (t) + P E3 (t) + P E4 (t) (7)

【0010】[0010]

【発明が解決しようとする課題】従来の系統安定化制御
方法は以上のように構成されているので、 1)対象とする現象が電源線故障に起因したローカルな
ものに限定され、基幹系故障などに起因した広範囲な現
象に対応できない。 2)原理的に基幹系故障に対する安定判別、安定化制御
量の決定ができない。 3)電源系故障に対しても、励磁系制御による発電機内
部電圧変化の影響を簡単な補正係数Kで考慮しているだ
けなので、その変化が大きな場合には誤差要因となる。
などの課題があった。
The conventional system stabilization control method is configured as described above. 1) The target phenomenon is limited to a local phenomenon caused by a power line failure, and a main system failure occurs. It cannot respond to a wide range of phenomena caused by such factors. 2) In principle, it is not possible to determine the stability of the main system failure and determine the stabilization control amount. 3) Even in the case of a power supply system failure, the influence of a change in the generator internal voltage due to the excitation system control is merely considered with a simple correction coefficient K, so that if the change is large, it becomes an error factor.
There were issues such as.

【0011】この発明は上記のような課題を解決するた
めになされたもので、ローカルな現象だけでなく、基幹
系故障に起因した広範囲な現象に対しても安定化制御が
実施できるとともに、ローカルな電源系故障に対しても
励磁系制御による発電機内部電圧変化の影響を考慮した
精度の高い安定化制御が実施できる系統安定化制御方法
を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and can perform stabilization control not only for local phenomena but also for a wide range of phenomena caused by backbone failures. It is an object of the present invention to provide a system stabilization control method capable of performing high-accuracy stabilization control in consideration of the influence of a generator internal voltage change due to an excitation system control even when a power supply system fails.

【0012】[0012]

【課題を解決するための手段】請求項1記載の発明に係
る系統安定化制御方法は、電力系統の発電所単位に計測
される電流データおよび電圧データより計算される運動
エネルギーと故障発生からの経過時間を直交する平面座
標にとった運動エネルギーの推移軌跡を用い、故障発生
からある一定時間後における運動エネルギーの値と事前
にシミュレーション設定したしきい値を比較することに
よって、電力系統に発生する故障の場所と安定化制御の
基幹系故障および不感帯を検出し、その検出結果に従っ
て、最適な安定化制御量を決定するようにしたものであ
る。
According to a first aspect of the present invention, there is provided a system stabilization control method, wherein kinetic energy calculated from current data and voltage data measured for each power plant in an electric power system and kinetic energy generated from a failure occurrence. Using the trajectory of the kinetic energy in which the elapsed time is plotted in orthogonal plane coordinates, the kinetic energy value is generated in the power system by comparing the kinetic energy value after a certain time from the occurrence of the failure with the threshold value set in advance by simulation. A failure location, a core failure of the stabilization control and a dead zone are detected, and an optimum stabilization control amount is determined according to the detection result.

【0013】請求項2記載の発明に係る系統安定化制御
方法は、基幹系故障と判定された場合、運動エネルギー
の推移軌跡により一定時間先の予測を行って、その予測
値を整定値と比較することによって、基幹系故障の安定
化制御量を決定するものである。
According to a second aspect of the present invention, in the system stabilization control method, when it is determined that a main system failure has occurred, a prediction is made a predetermined time ahead based on a trajectory of a kinetic energy transition, and the predicted value is compared with a settling value. By doing so, the stabilization control amount of the backbone failure is determined.

【0014】請求項3記載の発明に係る系統安定化制御
方法は、電源系故障と判定された場合、発電所単位に計
測される電流データおよび電圧データより計算される電
気的出力と等価発電機の位相角を直交する平面座標にと
った電力位相角曲線の推移軌跡を、一定の演算式に当て
はめて推定し、その推定した電力位相角曲線のピーク値
とあらかじめ整定した安定度余裕量の合計値と等価発電
機の機械的入力を比較することによって、過渡安定度の
厳しさを判定し、その厳しさに応じて適切な安定化制御
量を決定するものである。
According to a third aspect of the present invention, in the system stabilization control method, when it is determined that a power supply system has failed, an electrical output and an equivalent generator calculated from current data and voltage data measured for each power plant. The transition trajectory of the power phase angle curve in which the phase angle of the power phase angle curve is orthogonal to the plane coordinates is estimated by applying a fixed arithmetic expression, and the sum of the estimated peak value of the power phase angle curve and the stability margin previously settled is calculated. By comparing the value with the mechanical input of the equivalent generator, the severity of the transient stability is determined, and an appropriate stabilization control amount is determined according to the severity.

【0015】請求項4記載の発明に係る系統安定化制御
方法は、過渡安定度に比較的余裕があると判定された場
合、推定した電力位相角曲線を軸に一定幅のバンド域を
設け、実測データがバンド域の上限、下限、あるいはバ
ンド域の中にあるなどに従って、最適な安定化制御量を
決定するものである。
According to a fourth aspect of the present invention, in the system stabilization control method, when it is determined that the transient stability has a relatively large margin, a band region having a constant width is provided around the estimated power phase angle curve as an axis. The optimum stabilization control amount is determined in accordance with the fact that the measured data is at the upper limit, the lower limit of the band area, or within the band area.

【0016】[0016]

【発明の実施の形態】以下、この発明の実施の一形態を
説明する。 実施の形態1.図1は実施の形態1による系統安定化制
御方法に基づく系統安定化システムの構成図であり、図
において、1Nは系統安定化システムの中央演算装置、
1Aは系統安定化システムの端末装置、3Aは被制御対
象(電源制限)となる発電所、4Aは電力系統、51A
は電力系統4Aの電圧データ、電流データを計測するセ
ンサである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below. Embodiment 1 FIG. FIG. 1 is a configuration diagram of a system stabilization system based on a system stabilization control method according to a first embodiment, where 1N is a central processing unit of the system stabilization system;
1A is a terminal device of the system stabilization system, 3A is a power plant to be controlled (power supply restriction), 4A is a power system, 51A
Is a sensor that measures voltage data and current data of the power system 4A.

【0017】次に動作について説明する。端末装置1A
では、センサ51Aで計測される電圧データ、電流デー
タに基づき等価発電機(発電所3Aで運転中の発電機を
並列インピーダンス法で等価1機に集約したもの)の各
時刻毎における電気的出力Pe(t1)を演算する。こ
のオンラインで計測される電気的出力の時系列データを
用いて次の(8)式および(9)式より運動エネルギー
Vk(t)を計算する。
Next, the operation will be described. Terminal device 1A
Then, based on the voltage data and the current data measured by the sensor 51A, the electrical output Pe at each time of the equivalent generator (the generator operating at the power plant 3A is consolidated into one equivalent by the parallel impedance method) (T1) is calculated. The kinetic energy Vk (t) is calculated from the following equations (8) and (9) using the time series data of the electrical output measured online.

【数1】 (Equation 1)

【数2】 但し、ωo:運転発電機の基準角周波数、△ω(t):
運転発電機の平均的な角周波数偏差、Pm:運転発電機
の合計した機械的入力、Pe:運転発電機の慣性定数の
重み付で合計した電気的出力、M:運転発電機の合計し
た慣性定数である。
(Equation 2) Here, ωo: reference angular frequency of the driving generator, △ ω (t):
Average angular frequency deviation of the operating generator, Pm: total mechanical input of the operating generator, Pe: electrical output, weighted by the inertia constant of the operating generator, M: total inertia of the operating generator Is a constant.

【0018】この運動エネルギーVk(t)を用いて、
図2に示すように故障個所および安定化制御の不感帯を
判定する。すなわち、故障の除去後における適当な時刻
t1とt2を決め、その間にディジタルシミュレーショ
ンに基づいて前記(8)式および(9)式により適切な
運動エネルギーVk0と運動エネルギーVk1で規定さ
れる領域にVk(t)が一定時間以上存在することをも
って、過渡的に安定{Vk(t)<Vk0;不感帯}、
基幹系故障{(t)<Vk1}、電源系故障{Vk
(t)≧Vk1}と判定する。ここで、t1、t2、V
k0、Vk1は各発電所毎の事前整定値である。なお、
基幹系故障と判定された場合は、運動エネルギー予測値
により安定化制御量を決定し、電源系故障と判定された
場合はバンド法アルゴリズムに従って安定化制御量を決
定し、不感帯と判定された場合は安定化制御量を0と決
定する。
Using this kinetic energy Vk (t),
As shown in FIG. 2, the fault location and the dead zone of the stabilization control are determined. That is, appropriate times t1 and t2 after the failure is eliminated are determined, and during that time, Vk is set in an area defined by appropriate kinetic energies Vk0 and Vk1 by the above equations (8) and (9) based on digital simulation. (T) exists for a certain period of time or more, transiently stable {Vk (t) <Vk0; dead zone},
Backbone failure {(t) <Vk1}, power supply failure {Vk
(T) ≧ Vk1} is determined. Here, t1, t2, V
k0 and Vk1 are pre-set values for each power plant. In addition,
If it is determined that a main system failure has occurred, the stabilization control amount is determined based on the kinetic energy prediction value.If it is determined that the power supply system failure has occurred, the stabilization control amount is determined according to the band method algorithm. Determines the stabilization control amount to be zero.

【0019】自端情報のみを使う分散型のシステム構成
(発電所等の中央演算装置を配置したシステム構成で各
装置間のやり取りがない)を想定する場合、基幹系故障
と電源系故障に対して同じ制御論理を適用するのは困難
である。その理由は基幹系故障が多機系モードの現象と
なるのに対して、電源系故障は多くの場合1機無限大母
線系統的な現象となるためである。しかるに、以上の実
施の形態1によれば、発電所の自端情報のみで基幹系故
障と電源系故障をオフラインで判別できるので、各故障
個所に応じた最適な安定化制御の実施が可能となる。
When a distributed system configuration using only self-terminal information (a system configuration in which a central processing unit such as a power plant is arranged and there is no exchange between the devices) is assumed, a failure in a main system and a failure in a power supply system are considered. Therefore, it is difficult to apply the same control logic. The reason for this is that a trunk system failure is a phenomenon in a multi-machine system mode, whereas a power supply system failure is often an infinite bus system phenomenon in one machine. However, according to the above-described first embodiment, it is possible to determine the main system failure and the power supply system failure off-line only using the self-end information of the power plant, so that it is possible to perform optimal stabilization control according to each failure location. Become.

【0020】実施の形態2.上記実施の形態1で基幹系
故障と判定された場合には、運動エネルギーVk(t)
を使って必要な安定化制御量(電制量)を決定する。な
お、必要電制量は系統故障の発生からある程度時間が経
過した時点の運動エネルギーVk(t)を用いなければ
正確な量が決まらないが、一方で時間が遅れるほど必要
電制量が増加してしまう。
Embodiment 2 If it is determined in the first embodiment that the main system failure has occurred, the kinetic energy Vk (t)
Is used to determine the required stabilization control amount (electric control amount). It should be noted that the required amount of control cannot be accurately determined unless the kinetic energy Vk (t) at a point in time after the occurrence of the system failure is used, but the required amount of control increases as the time delays. Would.

【0021】そこで、この実施の形態2では、運動エレ
ルギーVk(t)の時間的予測値を用いて、基幹系故障
に対する必要電制量を決定する。そのため、例えば運動
エネルギーVk(t)の動きを下式のように2次近似す
る。 Vk(t)=V2t2 +V1t+V0 ・・・(10) この(10)式に、図3に示すt1〜t2におけるサン
プリングデータから最小二乗法を適用し、V0,V1,
V2を決定する。これによって、電制量限度時刻t3に
おけるVk(t3)が予測できるようになる。
Therefore, in the second embodiment, the required amount of electricity control for the backbone failure is determined by using the temporally predicted value of the kinetic energy Vk (t). Therefore, for example, the motion of the kinetic energy Vk (t) is secondarily approximated as in the following equation. Vk (t) = V2t 2 + V1t + V0 (10) The least squares method is applied to the equation (10) from the sampling data at t1 to t2 shown in FIG.
Determine V2. As a result, Vk (t3) at the power limit time t3 can be predicted.

【0022】このVk(t3)と対象系統を詳細模擬し
たモデルを用いたディジタルシミュレーションにより事
前に整定した一定のしきい値と比べて、電制無し{Vk
(t3)<Vd1}、電制1台{Vd1≦VK(t3)
<Vd2}、電制2台{Vd2≦Vx(t3)<Vd
3}、電制3台{Vx(t3)≧Vd3}のように判定
する。また電制量のレベル判定しきい値Vd1,Vd2
およびVd3は事前のオフラインシミュレーションによ
る整定値とする。
Compared with this Vk (t3) and a fixed threshold value set in advance by digital simulation using a model simulating the target system in detail, there is no power control.
(T3) <Vd1}, one electric control {Vd1 ≦ VK (t3)
<Vd2}, two electronic controls {Vd2 ≦ Vx (t3) <Vd
3}, three electronic control units {Vx (t3) ≧ Vd3} are determined. Also, the level determination thresholds Vd1 and Vd2 of the electric control amount
And Vd3 are set values obtained by a preliminary offline simulation.

【0023】分散型のシステム構成で、基幹系故障によ
って生じる多機系モードの現象に対して、最適安定化制
御量を決定することは非常に困難である。しかるに、以
上の実施の形態2によれば、発電所の自端情報のみを用
いて、自律分散的に最適安定化制御量が得られるように
なる。
In a distributed system configuration, it is very difficult to determine an optimal stabilization control amount for a multi-machine mode phenomenon caused by a main system failure. However, according to the above-described second embodiment, the optimal stabilization control amount can be obtained in an autonomous and decentralized manner using only the own end information of the power plant.

【0024】以下、係数V0,V1,V2の求め方につ
いて説明する。この係数V0,V1,V2は、最小2乗
法を適用することで、以下のように求められる。t1
(s)からt2(s)のサンプリングデータが得られる
場合、次の行列式が導出できる。 b=A・X ・・・(11) ここで、各ベクトル、行列は(12)式のようになる。
Hereinafter, a method of obtaining the coefficients V0, V1, and V2 will be described. The coefficients V0, V1, and V2 are obtained as follows by applying the least squares method. t1
When sampling data of t2 (s) is obtained from (s), the following determinant can be derived. b = A · X (11) Here, each vector and matrix are as shown in Expression (12).

【数3】 上記(12)式より、係数V1,V2,V3は次の(1
3)式のとおり求められる。
(Equation 3) From the above equation (12), the coefficients V1, V2, and V3 are given by the following (1)
3) It is obtained as shown in the equation.

【数4】 (Equation 4)

【0025】実施の形態3.上記実施の形態1および実
施の形態2では、運動エネルギーVk(t)を用いて基
幹系故障か電源系故障か判断し、基幹系故障と判断され
た場合に行う系統安定化方法について述べたが、電源系
故障と判断された場合には図4に示すような電力位相角
曲線(以下、Pe−δ曲線と称する)を用いて、処理を
実施する。なお、この実施の形態3の系統安定化方法に
基づいた安定化装置の構成は前記図1に示す実施の形態
1の構成例と同じである。そして、電力系統は図5に示
すような仮想した等価1機無限大母線系統にモデル化で
き、図5における発電機Gの電気的出力Peは(14)
式のように表現できる。 Pe=P0+P1sinΔδ+P2cosΔδ ・・・(14) Δδ:発電機位相角偏差 P0,P1,P2:定係数
Embodiment 3 In the first and second embodiments, the system stabilization method is described in which it is determined whether a main system failure or a power supply system failure occurs using the kinetic energy Vk (t), and the system stabilization method is performed when the main system failure is determined. If it is determined that the power supply system has failed, the processing is performed using a power phase angle curve (hereinafter, referred to as a Pe-δ curve) as shown in FIG. The configuration of the stabilization device based on the system stabilization method of the third embodiment is the same as the configuration example of the first embodiment shown in FIG. The power system can be modeled as a virtual equivalent one-machine infinite bus system as shown in FIG. 5, and the electric output Pe of the generator G in FIG.
It can be expressed like an expression. Pe = P0 + P1sinΔδ + P2cosΔδ (14) Δδ: generator phase angle deviation P0, P1, P2: constant coefficient

【0026】次に動作について説明する。発電所3Aの
電気的出力Peはセンサ51Aで計測される電圧、電流
データを端末装置1Aから中央演算装置1Nに送ること
で常時算出され、実施の形態1で示した運動エネルギー
Vk(t)の値がある整定値になったことを条件(キッ
ク)として、中央演算装置1Nは常時モードから監視モ
ードに移行し、図6に示したフローチャートに従って安
定化制御を行う。
Next, the operation will be described. The electric output Pe of the power plant 3A is constantly calculated by sending the voltage and current data measured by the sensor 51A from the terminal device 1A to the central processing unit 1N, and is calculated based on the kinetic energy Vk (t) shown in the first embodiment. On condition that the value has reached a certain set value (kick), the central processing unit 1N shifts from the continuous mode to the monitoring mode, and performs stabilization control according to the flowchart shown in FIG.

【0027】すなわち図6において、ステップST6−
1は、実施の形態1で示した方法によって電源系故障と
判断された時に監視モードに移行する処理工程。ステッ
プST6−2は、故障除去後の一定期間の発電機出力P
eを時系列的にサンプリングし、このサンプリングデー
タを用いて、Pe−δ曲線の推定式(15)によって定
係数P0,P1,P2を同定して、Pe−δ曲線を推定
する処理工程である。
That is, in FIG. 6, step ST6-
1 is a processing step of shifting to the monitoring mode when it is determined that the power supply system has failed by the method described in the first embodiment. In step ST6-2, the generator output P for a certain period after the failure is eliminated
e is sampled in time series, and using this sampled data, the constants P0, P1, and P2 are identified by the Pe-δ curve estimation formula (15), and the Pe-δ curve is estimated. .

【数5】 ステップST6−3は、このPe−δ曲線のピーク値P
peakを求めて、(16)式の比較演算を行い、 Ppeak≦Pm+α ・・・(16) α:余裕量(不感帯:事前整定値) Pm:発電機機械的入力 (16)式が成立すれば、安定化対象電源系統は第1波
で脱調であると判定して、ステップST6−8へ進み、
それ以外はステップST6−4へ進む処理工程である。
(Equation 5) In step ST6-3, the peak value P of the Pe-δ curve is determined.
Peak is obtained, and a comparison operation of Expression (16) is performed. Ppeak ≦ Pm + α (16) α: Margin (dead zone: Pre-set value) Pm: Generator mechanical input If Expression (16) holds It is determined that the power supply system to be stabilized is out of synchronization in the first wave, and the process proceeds to step ST6-8.
Otherwise, the process proceeds to step ST6-4.

【0028】ステップST6−4は、図4に示す、対象
系統を詳細模擬したモデルを用いたディジタルシミュレ
ーションにより事前にあらかじめ整定したバンド域(ハ
ッチング部分)と実測データを用いて安定度判別を行う
処理工程。すなわち、位相角実測データが減少する
「(dΔδ/dt)<0」か、または、電気的出力実測
データがバンド域の上限値を越えれば、安定と判定し
て、ステップST6−9へ進み、それ以外はステップS
T6−5へ進む処理工程である。
Step ST6-4 is a process of performing stability discrimination by using a band region (hatched portion) set in advance by digital simulation using a model simulating the target system in detail and shown in FIG. 4 and actual measurement data. Process. That is, if the measured phase angle data decreases to “(dΔδ / dt) <0” or the measured electrical output exceeds the upper limit of the band, it is determined to be stable, and the process proceeds to step ST6-9. Otherwise, step S
This is a processing step that proceeds to T6-5.

【0029】ステップST6−5は、ステップST6−
4と同様に安定度判別を行い、電気的出力実測データが
バンド域の下限を越えれば不安定と判定して、ステップ
ST6−7へ進み、それ以外はステップST6−6へ進
む処理工程。ステップST6−6は、実測データがバン
ド域内に入ってからの時間tが、あらかじめ整定した時
間t3よりも長いときは、不安定と判定して、ステップ
ST6−7へ進み、それ以外はステップST6−4へ戻
る処理工程である。
Step ST6-5 includes step ST6-
A processing step in which the stability is determined in the same manner as in step 4, and if the measured electrical output data exceeds the lower limit of the band area, it is determined to be unstable, and the process proceeds to step ST6-7, otherwise proceeds to step ST6-6. In step ST6-6, if the time t from when the actually measured data enters the band area is longer than the preset time t3, it is determined to be unstable, and the process proceeds to step ST6-7. This is a processing step returning to -4.

【0030】ステップST6−7は、不安定と判定した
ときまでのサンプリングデータを基にして、再度Pe−
δ曲線を推定する処理工程。ステップST6−8は、ス
テップST6−7で推定したPe−δ曲線を基に、等面
積法に従って電制量を決定する処理工程。ステップST
6−9は、対象系統が安定と判定して、電制量が存在し
ないことを判断する処理工程である。
In step ST6-7, Pe- is determined again based on the sampling data up to the time when it is determined to be unstable.
Processing step for estimating a δ curve. Step ST6-8 is a processing step of determining the electric control amount according to the equal area method based on the Pe-δ curve estimated in step ST6-7. Step ST
6-9 is a processing step of determining that the target system is stable and determining that there is no electric power control.

【0031】なお、Pe−δ曲線の電気的出力(電力)
Peは、電圧、電流のサンプリングデータより計算する
ことができる。位相角δについては(9)式を再度積分
することによって計算することができる。太線部分で示
すサンプリング期間は事前のシュミレーションに基づき
適当な値を設定する。一般に故障クリア後50ms〜2
50ms程度に設定する。
The electric output (power) of the Pe-δ curve
Pe can be calculated from voltage and current sampling data. The phase angle δ can be calculated by integrating the equation (9) again. An appropriate value is set for the sampling period indicated by the bold line based on a previous simulation. Generally 50ms to 2 after clearing the fault
Set to about 50 ms.

【0032】以上のように、この実施の形態3によれ
ば、Pe−δ曲線にバンド域を設け、このバンド域を利
用して安定度判別をするようにしたので、サンプリング
データ(図4の太線部分)によって、Pe−δ曲線を推
定した後、発電機励磁系制御によって背後電圧が上昇す
ることにより、実際には安定となるケースが推定したP
e−δ曲線による判定では不安定となるような現象に対
して正確に安定判断を実施できる。
As described above, according to the third embodiment, a band area is provided on the Pe-δ curve, and the stability is determined using this band area. After estimating the Pe-δ curve by the bold line portion, the case where the back voltage rises by the control of the generator excitation system to be actually stable is estimated.
In the determination based on the e-δ curve, a stable determination can be accurately performed for an unstable phenomenon.

【0033】実施の形態4.上記実施の形態3では、こ
の発明に基づく電源系故障の安定化制御方法について示
したが、この実施の形態4では、図4に示すPe−δ曲
線を用いた過渡安定度の安定判別手法の具体的な方法に
ついて説明する。(14)式をΔδで1回微分した式は
(17)式になる。 (dPe/dΔδ)=P1cosΔδ−P2sinΔδ=0・・(17) (17)式から次の(18)式を得ることができる。 Δδpeak=tanー1(P1/P2) ・・・(18) (18)式を(17)式に代入して、(19)式により
Ppeakを算出する。 Ppeak=P0+P1sinΔδpeak+P2cosΔδ・・(19) このPpeakを用いて、(16)式により安定判別を
実施する。
Embodiment 4 FIG. In the above-described third embodiment, the stabilization control method for the power supply system failure based on the present invention has been described. In the fourth embodiment, however, a method for determining the stability of transient stability using the Pe-δ curve shown in FIG. A specific method will be described. An equation obtained by differentiating equation (14) once with Δδ is equation (17). (DPe / dΔδ) = P1cosΔδ−P2sinΔδ = 0 (17) From the expression (17), the following expression (18) can be obtained. Δδpeak = tan −1 (P1 / P2) (18) Ppeak is calculated by equation (19) by substituting equation (18) into equation (17). Ppeak = P0 + P1sinΔδpeak + P2cosΔδ (19) Using this Ppeak, a stability determination is performed by equation (16).

【0034】以上のように、この実施の形態4によれ
ば、Pe−δ曲線のピーク値を用いて、早期に厳しい脱
調現象を予測し、系統脱調を未然に防止することができ
る。
As described above, according to the fourth embodiment, severe out-of-step phenomenon can be predicted at an early stage by using the peak value of the Pe-δ curve, and system out-of-step can be prevented beforehand.

【0035】[0035]

【発明の効果】以上のように、請求項1記載の発明によ
れば、対象発電機を並列インピーダンス法で1台に集約
した等価発電機の運動エネルギーに着目し、その運動エ
ネルギーの時間推移軌跡を予測し、故障発生後ある時点
での運動エネルギー予測値と事前に整定した判定レベル
を比較することによって基幹系故障か電源系故障かを判
定するように構成したので、発電所自端情報のみで基幹
系故障と電源系故障をオンラインで判別でき、各故障個
所に応じた最適な安定化制御の実施が可能となる効果が
ある。
As described above, according to the first aspect of the present invention, focusing on the kinetic energy of an equivalent generator in which the target generators are integrated into one unit by the parallel impedance method, It is configured to judge whether it is a main system failure or a power supply system failure by comparing the kinetic energy predicted value at a certain point after the occurrence of the failure with the judgment level set in advance, so that only the power station own end information is used. Thus, the main system failure and the power supply system failure can be distinguished online, and there is an effect that optimal stabilization control corresponding to each failure location can be performed.

【0036】請求項2記載の発明によれば、基幹系故障
と判定された場合には、その運動エネルギー予測値と事
前に整定した制御量決定レベルを比較することによっ
て、必要な安定化制御量を決定するように構成したの
で、発電所の自端情報のみを用いて、自律分散的に最適
安定化制御量が得られるようになる効果がある。
According to the second aspect of the present invention, when it is determined that a main system failure has occurred, a required stabilization control amount is determined by comparing the kinetic energy predicted value with a previously determined control amount determination level. Is determined, so that there is an effect that the optimal stabilization control amount can be obtained in an autonomous and decentralized manner using only the self-end information of the power plant.

【0037】請求項3記載の発明によれば、電源系故障
と判定された場合には、電力相差角曲線をオンライン推
定し、その推定曲線のピーク値と事前に整定した安定度
余裕量の合計値と等価発電機の機械的入力を比較するこ
とによって、過渡安定度の厳しさを判定するように構成
したので、安定度的に余裕がないと判定された場合に
は、例えば従来技術で示した手法などを使って、直ちに
安定判別、安定化制御量の決定を行い、励磁系制御の影
響を考慮した安定化制御が実施できる効果がある。
According to the third aspect of the invention, when it is determined that the power supply system has failed, the power phase difference angle curve is estimated online, and the sum of the peak value of the estimated curve and the previously set stability margin is calculated. The value is compared with the mechanical input of the equivalent generator to determine the severity of the transient stability.If it is determined that there is no margin in stability, for example, it is shown in the prior art. The stabilization control taking into account the influence of the excitation system control can be performed by immediately determining the stability and determining the stabilization control amount by using the above-described method.

【0038】請求項4記載の発明によれば、安定度的に
余裕があると判定された場合には、推定Pe−δ曲線を
軸として、事前に整定した一定幅のバンド域を設け、定
則されたPe−δ軌跡がある時間内に励磁系制御等の影
響によってバンド域の上側から出た場合、または相差角
δが増加から減少に転じた場合に安定と判定し、実測P
e−δ軌跡がバンドの下側から出た場合またはある時間
を越えてバンド域の中に存在していた場合には不安定傾
向にあると判定するように構成したので、例えば従来技
術で示した手法を使って厳密な安定判別、安定化制御量
の決定を行える効果がある。
According to the fourth aspect of the invention, when it is determined that there is a margin in stability, a band region having a predetermined width set in advance is provided around the estimated Pe-δ curve as an axis. It is determined that the Pe-δ trajectory is stable when the trajectory exits from the upper side of the band area due to the control of the excitation system or the like within a certain time, or when the phase difference angle δ changes from increasing to decreasing.
When the e-δ trajectory comes out from the lower side of the band or exists in the band over a certain period of time, it is determined that there is an unstable tendency. There is an effect that strict determination of stability and determination of a stabilization control amount can be performed by using the above-described technique.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1による系統安定化制
御方法に基づく系統安定化システムの構成図である。
FIG. 1 is a configuration diagram of a system stabilization system based on a system stabilization control method according to a first embodiment of the present invention.

【図2】 この発明の運動エネルギーによる電源系故障
と基幹系故障の判別手法を示す特性図である。
FIG. 2 is a characteristic diagram showing a method for determining a power supply system failure and a main system failure based on kinetic energy according to the present invention.

【図3】 この発明の実施の形態2の加速エネルギー予
測値による基幹系故障の電制量決定手法を示す特性図で
ある。
FIG. 3 is a characteristic diagram showing a method for determining a control amount for a trunk system failure based on an estimated acceleration energy value according to the second embodiment of the present invention.

【図4】 この発明の実施の形態3の安定判別の概念を
示すPe−δ曲線図である。
FIG. 4 is a Pe-δ curve diagram showing a concept of stability determination according to a third embodiment of the present invention.

【図5】 この発明の実施の形態3の対象電源系統の仮
想等価1機による無限大母線の系統モデル図である。
FIG. 5 is a system model diagram of an infinite bus using one virtual equivalent of a target power supply system according to Embodiment 3 of the present invention.

【図6】 この発明の実施の形態3の系統安定化制御方
法を示すフローチャートである。
FIG. 6 is a flowchart illustrating a system stabilization control method according to a third embodiment of the present invention.

【図7】 従来の系統安定化装置を示す構成図である。FIG. 7 is a configuration diagram illustrating a conventional system stabilization device.

【図8】 従来の系統安定化制御方法の対象電源系統の
等価1機による無限大母線の系統モデル図である。
FIG. 8 is a system model diagram of an infinite bus with one equivalent of a target power supply system in a conventional system stabilization control method.

【図9】 従来の系統安定化方法の概念を示すPe−δ
曲線図である。
FIG. 9 shows Pe-δ showing the concept of a conventional system stabilization method.
It is a curve figure.

【図10】 発電機出力PE 算出処理の説明図である。FIG. 10 is an explanatory diagram of a generator output PE calculation process.

【符号の説明】[Explanation of symbols]

Vk 運動エネルギー、Pm 機械的入力、G 等価発
電機、Pe 電気的出力、δ 位相角。
Vk kinetic energy, Pm mechanical input, G equivalent generator, Pe electrical output, δ phase angle.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 洋一 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 (72)発明者 山本 誠 愛知県名古屋市東区東新町1番地 中部電 力株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoichi Kitamura 1 Higashi-Shinmachi, Higashi-ku, Nagoya City, Aichi Prefecture Inside (72) Inventor Makoto Yamamoto 1 Higashi-Shinmachi, Higashi-ku, Nagoya City, Aichi Prefecture Chubu Electric Power Co., Inc. Inside

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の発電所単位に計測される電流
データおよび電圧データより計算される運動エネルギー
と故障発生からの経過時間を直交する平面座標にとった
運動エネルギーの推移軌跡を用い、故障発生からある一
定時間後における運動エネルギーの値と事前にシミュレ
ーション設定したしきい値を比較することによって、電
力系統に発生する故障の場所と安定化制御の基幹系故障
および不感帯を検出し、その検出結果に従って、最適な
安定化制御量を決定することを特徴とする系統安定化制
御方法。
A kinetic energy calculated from current data and voltage data measured for each power plant in a power system and a kinetic energy transition trajectory obtained by plotting the elapsed time from the occurrence of a failure on a plane coordinate orthogonal to the failure. By comparing the value of the kinetic energy at a certain time after the occurrence with the threshold value set in advance by simulation, the location of the fault occurring in the power system and the core fault and dead zone of the stabilization control are detected, and the detection is performed. A system stabilization control method characterized in that an optimum stabilization control amount is determined according to a result.
【請求項2】 基幹系故障と判定された場合、運動エネ
ルギーの推移軌跡により一定時間先の予測を行って、そ
の予測値を整定値と比較することによって、基幹系故障
の安定化制御量を決定することを特徴とする請求項1記
載の系統安定化制御方法。
2. When it is determined that a main system failure has occurred, a prediction is made a predetermined time ahead based on a trajectory of a kinetic energy transition, and the predicted value is compared with a set value, thereby stabilizing the control amount of the main system failure. The system stabilization control method according to claim 1, wherein the determination is performed.
【請求項3】 電源系故障と判定された場合、発電所単
位に計測される電流データおよび電圧データより計算さ
れる電気的出力と等価発電機の位相角を直交する平面座
標にとった電力位相角曲線の推移軌跡を、一定の演算式
に当てはめて推定し、その推定した電力位相角曲線のピ
ーク値とあらかじめ整定した安定度余裕量の合計値と等
価発電機の機械的入力を比較することによって、過渡安
定度の厳しさを判定し、その厳しさに応じて適切な安定
化制御量を決定することを特徴とする系統安定化制御方
法。
3. When it is determined that the power supply system is faulty, the electric power calculated from the current data and the voltage data measured for each power plant and the electric power phase obtained by taking the phase angle of the equivalent generator in plane coordinates orthogonal to each other. Estimate the transition trajectory of the angle curve by applying a certain arithmetic expression, and compare the estimated peak value of the power phase angle curve with the total value of the previously settled stability margin and the mechanical input of the equivalent generator. A system stability control method characterized by determining the degree of transient stability, and determining an appropriate stabilization control amount in accordance with the degree of transient stability.
【請求項4】 過渡安定度に比較的余裕があると判定さ
れた場合、推定した電力位相角曲線を軸に一定幅のバン
ド域を設け、実測データがバンド域の上限、下限、ある
いはバンド域の中にあるなどに従って、最適な安定化制
御量を決定することを特徴とする請求項3記載の系統安
定化制御方法。
4. When it is determined that the transient stability has a relatively large margin, a band region having a fixed width is provided around the estimated power phase angle curve, and the actually measured data is the upper or lower limit of the band region or the band region. 4. The system stabilization control method according to claim 3, wherein an optimal stabilization control amount is determined according to the following.
JP17824796A 1996-07-08 1996-07-08 Grid stabilization control method Expired - Fee Related JP3510048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17824796A JP3510048B2 (en) 1996-07-08 1996-07-08 Grid stabilization control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17824796A JP3510048B2 (en) 1996-07-08 1996-07-08 Grid stabilization control method

Publications (2)

Publication Number Publication Date
JPH1028326A true JPH1028326A (en) 1998-01-27
JP3510048B2 JP3510048B2 (en) 2004-03-22

Family

ID=16045167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17824796A Expired - Fee Related JP3510048B2 (en) 1996-07-08 1996-07-08 Grid stabilization control method

Country Status (1)

Country Link
JP (1) JP3510048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288878A (en) * 2006-04-14 2007-11-01 Hitachi Ltd Method and device for determining stability of power system
CN108832620A (en) * 2018-05-31 2018-11-16 中国电力科学研究院有限公司 A kind of method and system of the effect based on deviation area assessment emergency control policy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007288878A (en) * 2006-04-14 2007-11-01 Hitachi Ltd Method and device for determining stability of power system
JP4616206B2 (en) * 2006-04-14 2011-01-19 株式会社日立製作所 Power system stability determination method and apparatus
CN108832620A (en) * 2018-05-31 2018-11-16 中国电力科学研究院有限公司 A kind of method and system of the effect based on deviation area assessment emergency control policy
CN108832620B (en) * 2018-05-31 2023-04-07 中国电力科学研究院有限公司 Method and system for evaluating effect of emergency control strategy based on deviation area

Also Published As

Publication number Publication date
JP3510048B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
KR100863237B1 (en) An adaptive reclosing technique considering the distributed generation
EP1928007A1 (en) A method and apparatus for predicting the future behavior of current paths
Fischer et al. Tutorial on power swing blocking and out-of-step tripping
JP4616206B2 (en) Power system stability determination method and apparatus
CN108957243A (en) A kind of method for locating single-phase ground fault and system applied to power distribution network
US5638297A (en) Method of on-line transient stability assessment of electrical power systems
CN112234641B (en) Direct-current commutation failure blocking and preventing control method
US8340930B2 (en) Arrangement for protecting equipment of a power system
JPS6338929B2 (en)
Glavic et al. E-SIME-A method for transient stability closed-loop emergency control: achievements and prospects
EP3639336B1 (en) Method for detecting fault in power transmission line and protection system using the same
JPH1028326A (en) Method for controlling system stabilization
JP2011115003A (en) System stabilization apparatus
CN104218576A (en) Transient state stability fluctuation method of reclosing power system
JP3504471B2 (en) Power supply stabilization control method and device
JP4108578B2 (en) Power system stabilization control system and power system stabilization control method
JPH0946908A (en) Stabilizing equipment of power system
JP4025222B2 (en) Power system stabilizer
Nourizadeh et al. Frequency monitoring and control during power system restoration based on wide area measurement system
JP3419970B2 (en) Power supply stabilization control method and control device
JP3787486B2 (en) System stabilization control method
JPH11289669A (en) Power system stabilizing apparatus
JP3602742B2 (en) System stabilization control device and system stabilization control method
JPS5934049B2 (en) Synchronous machine step-out prediction method
JPH06269123A (en) Wide-area power-system emergency monitoring as well as method and apparatus for control of emergency

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031224

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees