JPH10282088A - Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution - Google Patents

Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution

Info

Publication number
JPH10282088A
JPH10282088A JP9087951A JP8795197A JPH10282088A JP H10282088 A JPH10282088 A JP H10282088A JP 9087951 A JP9087951 A JP 9087951A JP 8795197 A JP8795197 A JP 8795197A JP H10282088 A JPH10282088 A JP H10282088A
Authority
JP
Japan
Prior art keywords
polyvinyl chloride
elastic modulus
gelation
degree
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9087951A
Other languages
Japanese (ja)
Inventor
Hisatoshi Shimura
尚俊 志村
Naomoto Sato
直基 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP9087951A priority Critical patent/JPH10282088A/en
Publication of JPH10282088A publication Critical patent/JPH10282088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a method for measuring the extent of gelation of polyvinyl chloride and the residual grain size distribution conveniently and quantitatively without requiring skill for any worker by imparting a dynamical stimulus to the polyvinyl chloride. SOLUTION: A test piece produced by admixing polyvinyl chloride resin with a thermal stabilizer is imparted continuously and periodically with a dynamical stimulus at eight constant interval points for 1 Log using a viscoelasticity measuring unit in order to determine the modulus of elasticity and the loss tangent thereof at 170 deg.C, 0.01 Hz and the inclination of logarithmic plot of frequency-elasticity at 170 deg.C. Activation energy of the modulus of elasticity is also determined from the measurements of viscoelasticity. The measurements are substituted into expression I (G is the modulus of elasticity of a sample), expression II (T is the loss tangent of the modulus of elasticity of a sample), expression III (K is the inclination of logarithmic plot of frequency-elasticity of a sample) and expression IV (E is the activation energy of the modulus of elasticity of a sample) thus determining the extent of gelation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粘弾性測定法に代
表される力学的刺激を利用したポリ塩化ビニルのゲル化
度及び残存粒子径分布の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the degree of gelation of polyvinyl chloride and the distribution of residual particle diameters using a mechanical stimulus represented by a viscoelasticity measurement method.

【0002】[0002]

【従来の技術】ポリ塩化ビニルの製造方法として一般的
な懸濁重合法により得られたポリ塩化ビニルは、その粒
子がグレインと呼ばれる100μm〜300μmの最外
郭の粒子から順次サブグレイン、アグロメレート、一次
粒子、ドメイン、ミクロドメインまで階層的な粒子構造
で構成されており、成形加工に供した場合、成形加工時
の加工機による熱履歴と剪断力履歴により随時微細化し
ていく。しかしながら、ポリ塩化ビニルの最終製品成形
体中には成形加工時に崩壊微細化しきれなかった数μm
〜0.05μmの粒子が残存し、このような残存粒子は
成形加工中に弾性率や溶融粘度の上昇を招き、加工機に
負担がかかりすぎたり、成形体の外観不良を生じるばか
りでなく、冷却固化された成形体中には構造欠陥として
作用するので成形品の材料強度特性などの最終物性に悪
影響するおそれがある。
2. Description of the Related Art Polyvinyl chloride obtained by a general suspension polymerization method as a method for producing polyvinyl chloride is composed of sub-grains, agglomerates, and primary particles in the order of 100 μm to 300 μm outermost particles called grains. It is composed of a hierarchical particle structure including particles, domains, and microdomains. When it is subjected to molding, it is refined as needed by the history of heat and the shearing force of a processing machine during molding. However, in the final molded product of polyvinyl chloride, several μm
Particles of ~ 0.05 μm remain, and such residual particles cause an increase in the elastic modulus and melt viscosity during the molding process, and not only overload the processing machine, but also cause poor appearance of the molded product, Since the molded product that has been cooled and solidified acts as a structural defect, it may adversely affect final physical properties such as material strength characteristics of the molded product.

【0003】そして、ポリ塩化ビニルのゲル化度を評価
する方法としては、1)成形加工中のポリ塩化ビニル樹
脂コンパウンドを手で触り、その弾力性の程度でゲル化
度を経験的に評価する方法、2)成形体をアセトン等の
溶剤に浸積しその成形体の形状の保持具合で判断する方
法、3)DSC法によりポリ塩化ビニルの微結晶の融解
再結晶化微結晶の融解熱量と未融解微結晶の融解熱量の
相対量比からゲル化度を算出する方法、などが知られて
いる。
As a method of evaluating the gelation degree of polyvinyl chloride, 1) a polyvinyl chloride resin compound being formed is touched by hand, and the gelation degree is empirically evaluated based on the degree of elasticity. Method 2) Method of immersing the molded body in a solvent such as acetone and judging by the degree of holding of the shape of the molded body. 3) Melting of crystallites of polyvinyl chloride by DSC method. A method of calculating the degree of gelation from the relative amount ratio of the heat of fusion of unmelted microcrystals, and the like are known.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、1)お
よび2)のいずれの方法も極めて抽象的な評価尺度であ
り、作業者によって評価順位が異なる、といった問題の
みならず具体的な数字として表すことができないため、
再現性、信頼性に問題が生じていた。一方、3)の方法
は、ゲル化があまり進行していないと融解再結晶化した
微結晶量が少なすぎ、またゲル化が極端に進行している
と未融解の微結晶量が少なさ過ぎて分解能に劣る、とい
った問題が生じていた。
However, each of the methods 1) and 2) is an extremely abstract evaluation scale, and it is necessary to express not only the problem that the evaluation order differs depending on the operator but also specific numbers. Can not do
There were problems with reproducibility and reliability. On the other hand, in the method 3), if the gelation has not progressed much, the amount of the recrystallized microcrystals is too small, and if the gelation has progressed extremely, the amount of the unmelted microcrystals is too small. And the resolution is poor.

【0005】本発明の目的は、粘弾性測定法に代表され
る力学的刺激を利用して得られるポリ塩化ビニルの弾性
率、弾性率の損失正接、弾性率の周波数依存性及び/又
は弾性率の活性化エネルギ等よりポリ塩化ビニルのゲル
化度及び残存粒子径分布を簡便に測定する方法を提供す
るものである。
An object of the present invention is to provide an elastic modulus, a loss tangent of elastic modulus, a frequency dependence of elastic modulus, and / or an elastic modulus of polyvinyl chloride obtained by using a mechanical stimulus represented by a viscoelasticity measuring method. The present invention provides a method for easily measuring the gelation degree and the residual particle size distribution of polyvinyl chloride from the activation energy and the like.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討した結果、粘弾性測定法に代表
される力学的刺激により求められる結果がポリ塩化ビニ
ルのゲル化度及び残存粒子径分布に良く対応しているこ
とを見い出し本発明を完成するに至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the results obtained by mechanical stimulation represented by a viscoelasticity measuring method have shown that the degree of gelation of polyvinyl chloride and The present inventors have found that they correspond well to the residual particle size distribution, and have completed the present invention.

【0007】即ち、本発明はポリ塩化ビニルに力学的刺
激を与えることによりゲル化度又は残存粒子径分布を求
めることを特徴とする測定方法に関するものである。
That is, the present invention relates to a measuring method characterized by determining the degree of gelation or the distribution of the residual particle size by applying a mechanical stimulus to polyvinyl chloride.

【0008】以下に、本発明をより詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0009】本発明でいうポリ塩化ビニルのゲル化度と
は、ポリ塩化ビニルの成形加工時に行う混練の進行に伴
いポリ塩化ビニルの未崩壊又は未融解の残存粒子が小さ
く、もしくは少なくなっていく程度のことを言う。一般
的は、ポリ塩化ビニルにおいては同一の成形法であれば
成形加工温度が高くなるほどゲル化が進むことが経験的
に知られている。
The degree of gelation of polyvinyl chloride referred to in the present invention means that the undisintegrated or unmelted residual particles of polyvinyl chloride become smaller or smaller as kneading proceeds during the molding and processing of polyvinyl chloride. Say something about. In general, it is empirically known that polyvinyl chloride increases the gelling temperature as the molding temperature increases if the molding method is the same.

【0010】また、本発明でいうポリ塩化ビニルの残存
粒子径分布とは、ポリ塩化ビニルを成形加工に供した際
にも未崩壊又は未融解で残存するポリ塩化ビニル粒子の
粒子径分布をいう。
[0010] The term "remaining particle size distribution of polyvinyl chloride" as used in the present invention refers to the particle size distribution of polyvinyl chloride particles which remain undisintegrated or unmelted even when polyvinyl chloride is subjected to molding. .

【0011】本発明における力学的刺激とは、測定の際
に力学的刺激として一般的に知られているものでよく、
その代表的なものとしては粘弾性測定法による力学的刺
激が挙げられる。そして、その力学的刺激の印加形態に
ついては任意であるが、例えば剪断振動モード、圧縮振
動モード、伸張振動モード等が挙げられる。
In the present invention, the mechanical stimulus may be one generally known as a mechanical stimulus in measurement.
A typical example is mechanical stimulation by a viscoelasticity measurement method. The application form of the mechanical stimulus is arbitrary, and examples thereof include a shear vibration mode, a compression vibration mode, and an extension vibration mode.

【0012】本発明においてポリ塩化ビニルに力学的刺
激を与え、ポリ塩化ビニルのゲル化度又は残存粒子径分
布を測定するためのポリ塩化ビニルの弾性率、弾性率の
損失正接、弾性率の周波数依存性、弾性率の活性化エネ
ルギ等を求めるためには試作又は市販の粘弾性測定装置
のいずれも使用することも可能である。そして、市販の
粘弾性測定装置としては、例えばレオロジ(株)製の粘
弾性測定装置(商品名MR500)、レオメトリック・
サイエンティフィック(株)製の粘弾性測定装置(商品
名ARES)などが挙げられる。
In the present invention, the elastic modulus, the loss tangent of the elastic modulus, and the frequency of the elastic modulus of the polyvinyl chloride are measured to give a mechanical stimulus to the polyvinyl chloride and measure the gelation degree or the residual particle size distribution of the polyvinyl chloride. In order to obtain the dependence, the activation energy of the elastic modulus, and the like, it is also possible to use either a prototype or a commercially available viscoelasticity measuring device. Examples of commercially available viscoelasticity measuring devices include a viscoelasticity measuring device (trade name: MR500) manufactured by Rheology Co., Ltd.
A viscoelasticity measuring device (trade name: ARES) manufactured by Scientific Inc. is exemplified.

【0013】そして、本発明の測定方法を実施するため
に、ポリ塩化ビニルの弾性率、弾性率の損失正接、弾性
率の周波数依存性、弾性率の活性化エネルギ等を求める
時の力学的刺激を与える際には、ポリ塩化ビニル試料と
測定治具の間で滑らないよう工夫することが好ましい。
そのスリップ防止の方法として、例えば測定中に一定応
力で試料を押さえつけるようにしたり、測定治具の表面
に溝を切り込む等の方法が挙げられる。
In order to carry out the measuring method of the present invention, a mechanical stimulus for obtaining the elastic modulus of elasticity of polyvinyl chloride, loss tangent of elastic modulus, frequency dependence of elastic modulus, activation energy of elastic modulus, etc. It is preferable to make the device not to slip between the polyvinyl chloride sample and the measuring jig when giving the value.
As a method of preventing the slip, for example, a method of pressing the sample with a constant stress during the measurement, a method of cutting a groove in the surface of the measurement jig, and the like can be mentioned.

【0014】本発明の第1の測定方法は、ポリ塩化ビニ
ルに力学的刺激を与えることによりポリ塩化ビニルのゲ
ル化度を測定する方法である。ここで、ポリ塩化ビニル
のゲル化度を測定する際に用いる情報としては、ポリ塩
化ビニルに力学的刺激を与えることにより得られるポリ
塩化ビニルの弾性率、弾性率の損失正接、弾性率の周波
数依存性、弾性率の活性化エネルギ等を挙げることがで
きる。
The first measuring method of the present invention is a method for measuring the degree of gelation of polyvinyl chloride by applying a mechanical stimulus to the polyvinyl chloride. Here, the information used to measure the degree of gelation of polyvinyl chloride includes the elastic modulus of the polyvinyl chloride obtained by applying a mechanical stimulus to the polyvinyl chloride, the loss tangent of the elastic modulus, and the frequency of the elastic modulus. Dependency and activation energy of the elastic modulus can be cited.

【0015】本発明においては、ポリ塩化ビニルに力学
的刺激を与えることにより得られるポリ塩化ビニルの弾
性率よりポリ塩化ビニルのゲル化度を測定することがで
きる。ここで、力学的刺激に対するポリ塩化ビニルの弾
性率は、ゲル化が進行すると小さくなる傾向を有するこ
とから、該弾性率の大きさからポリ塩化ビニルのゲル化
度を算出することが可能となる。そのポリ塩化ビニルの
ゲル化度を算出する方法は任意であるが、簡便な方法と
しては、例えばゲル化の程度を広範囲に変えた試料を作
成し、それぞれの試料に力学的刺激を与え、それぞれの
試料の弾性率を測定し得られた弾性率の上限弾性率をゲ
ル化度0%、下限弾性率をゲル化度100%として、そ
の間の弾性率を相対的な百分率としてゲル化度を算出す
る方法が挙げられる。該方法では、測定した上限弾性率
値(以下、Gmaxという。)をゲル化度0%とし、下
限弾性率値(以下、Gminという。)をゲル化度10
0%とすることにより、下記(1)式によりポリ塩化ビ
ニルのゲル化度を百分率による相対評価として測定する
ことが可能となる。
In the present invention, the degree of gelation of polyvinyl chloride can be measured from the elastic modulus of the polyvinyl chloride obtained by applying a mechanical stimulus to the polyvinyl chloride. Here, since the elastic modulus of polyvinyl chloride to a mechanical stimulus has a tendency to decrease as gelation proceeds, it is possible to calculate the gelation degree of polyvinyl chloride from the magnitude of the elastic modulus. . The method of calculating the degree of gelation of the polyvinyl chloride is arbitrary, but as a simple method, for example, a sample in which the degree of gelation is changed in a wide range is prepared, and a mechanical stimulus is given to each sample, and The upper limit of the elastic modulus obtained by measuring the elastic modulus of the sample was determined to be 0% for the degree of gelation, and the lower limit elasticity was set to 100% for the degree of gelation. Method. In this method, the measured upper limit elastic modulus value (hereinafter, referred to as Gmax) is set to a gelling degree of 0%, and the lower limit elastic modulus value (hereinafter, referred to as Gmin) is set to a gelling degree of 10.
By setting it to 0%, it becomes possible to measure the degree of gelation of polyvinyl chloride as a relative evaluation by percentage according to the following formula (1).

【0016】 ゲル化度(%)=(G−Gmin)/(Gmax−Gmin)×100 (1) (ここで、Gは測定試料の弾性率を表す。) また、ポリ塩化ビニルの弾性率は、ポリ塩化ビニルに与
えた力学的刺激に対する応答を刺激に対する歪みで割る
ことにより得られる。
Gelation degree (%) = (G−Gmin) / (Gmax−Gmin) × 100 (1) (where G represents the elastic modulus of the measurement sample.) The elastic modulus of polyvinyl chloride is , Obtained by dividing the response to a mechanical stimulus given to polyvinyl chloride by the strain to the stimulus.

【0017】本発明においては、ポリ塩化ビニルのゲル
化度を測定する際には測定試料の厚みによる依存性の影
響を除き、精度の高い測定とするために、力学的刺激よ
り得られる弾性率の損失正接を用いることが好ましい。
ここで、力学的刺激に対するポリ塩化ビニルの弾性率の
損失正接は、ゲル化が進行すると大きくなる傾向を有す
ることから、該弾性率の損失正接の大きさからポリ塩化
ビニルのゲル化度を算出することが可能となる。そのポ
リ塩化ビニルのゲル化度を算出する方法は任意である
が、簡便な方法としては、例えばゲル化の程度を広範囲
に変えた試料を作成し、それぞれの試料に力学的刺激を
与え、それぞれの試料の弾性率の損失正接を測定し得ら
れた弾性率の損失正接の上限の弾性率の損失正接をゲル
化度100%、下限の弾性率の損失正接をゲル化度0%
として、その間の弾性率の損失正接を相対的な百分率と
してゲル化度を算出する方法が挙げられる。該方法で
は、測定した上限の弾性率の損失正接値(以下、Tma
xという。)をゲル化度100%とし、下限の弾性率の
損失正接値(以下、Tminという。)をゲル化度0%
とすることにより、下記(2)式によりポリ塩化ビニル
のゲル化度を百分率による相対評価として測定すること
が可能となる。
In the present invention, when measuring the degree of gelation of polyvinyl chloride, the elastic modulus obtained from the mechanical stimulus is used in order to remove the influence of the thickness of the measurement sample and obtain a highly accurate measurement. Is preferably used.
Here, since the loss tangent of the elastic modulus of polyvinyl chloride to a mechanical stimulus tends to increase as gelation proceeds, the gelation degree of polyvinyl chloride is calculated from the magnitude of the loss tangent of the elastic modulus. It is possible to do. The method of calculating the degree of gelation of the polyvinyl chloride is arbitrary, but as a simple method, for example, a sample in which the degree of gelation is changed in a wide range is prepared, and a mechanical stimulus is given to each sample, and The loss tangent of the modulus of elasticity of the sample was measured. The loss tangent of the upper limit of the loss tangent of the elastic modulus obtained was 100% of the gelation degree, and the loss tangent of the lower limit of the elasticity was 0% of the gelation degree.
As a method, a method of calculating the degree of gelation using the loss tangent of the elastic modulus therebetween as a relative percentage is exemplified. In the method, the measured loss tangent value of the upper limit elastic modulus (hereinafter, Tma
It is called x. ) Is taken as the gelation degree of 100%, and the loss tangent value of the lower elastic modulus (hereinafter referred to as Tmin) is taken as the gelation degree of 0%.
Thus, the gelation degree of polyvinyl chloride can be measured as a relative evaluation by percentage according to the following equation (2).

【0018】 ゲル化度(%)=(T−Tmin)/(Tmax−Tmin)×100 (2) (ここで、Tは測定試料の弾性率の損失正接を表す。) また、ポリ塩化ビニルの弾性率の損失正接は、ポリ塩化
ビニルに周期的な力学的刺激を与えることにより得られ
る貯蔵弾性率と損失弾性率の比として得られる。
Gelation degree (%) = (T−Tmin) / (Tmax−Tmin) × 100 (2) (where T represents the loss tangent of the elastic modulus of the measurement sample.) The loss tangent of the modulus of elasticity is obtained as the ratio of the storage modulus to the loss modulus obtained by applying periodic mechanical stimulation to polyvinyl chloride.

【0019】更に、本発明においては、ポリ塩化ビニル
のゲル化度の測定精度を向上するために、ポリ塩化ビニ
ルに異なる周期的な力学的刺激を与えることにより得ら
れる弾性率の周波数依存性を用いることが好ましい。こ
こで、弾性率の周波数依存性とは、例えば図1に示すよ
うな測定試料に与えた力学的刺激の周波数と得られた弾
性率の対数プロットのグラフの傾きを用いることができ
る。該傾きは、ポリ塩化ビニルのゲル化が進行すると大
きくなる傾向を有することから、弾性率の周波数依存性
の大きさからポリ塩化ビニルのゲル化度を算出すること
が可能となる。
Further, in the present invention, in order to improve the measurement accuracy of the gelation degree of polyvinyl chloride, the frequency dependence of the elastic modulus obtained by applying different periodic mechanical stimuli to polyvinyl chloride is determined. Preferably, it is used. Here, as the frequency dependence of the elastic modulus, for example, a slope of a graph of a logarithmic plot of the frequency of the mechanical stimulus applied to the measurement sample and the obtained elastic modulus as shown in FIG. 1 can be used. Since the inclination tends to increase as the gelation of polyvinyl chloride proceeds, the gelation degree of polyvinyl chloride can be calculated from the magnitude of the frequency dependence of the elastic modulus.

【0020】そして、そのポリ塩化ビニルのゲル化度を
算出する方法は任意であるが、弾性率の周波数依存性と
して力学的刺激の周波数と得られた弾性率の対数プロッ
トのグラフの傾きを用いた場合、簡便な方法としては、
例えばゲル化の程度を広範囲に変えた試料を作成し、そ
れぞれの試料に異なる周期的な力学的刺激を与え、それ
ぞれの試料の周波数−弾性率の対数プロットの傾き(弾
性率の周波数依存性)を測定し得られた傾きの上限傾き
値をゲル化度100%、下限傾き値をゲル化度0%とし
て、その間の傾きを相対的な百分率としてゲル化度を算
出する方法が挙げられる。該方法では、測定した上限傾
き値(以下、Kmaxという。)をゲル化度100%と
し、下限傾き値(以下、Kminという。)をゲル化度
0%とすることにより、下記(3)式によりポリ塩化ビ
ニルのゲル化度を百分率による相対評価として測定する
ことが可能となる。
The method of calculating the gelation degree of the polyvinyl chloride is arbitrary, but the frequency of the mechanical stimulus and the slope of the logarithmic plot of the obtained elastic modulus are used as the frequency dependence of the elastic modulus. If you have, as a simple way,
For example, a sample in which the degree of gelation is changed in a wide range is prepared, different periodic mechanical stimuli are applied to each sample, and the slope of a logarithmic plot of frequency-elastic modulus of each sample (frequency dependence of elastic modulus). The gelation degree can be calculated by setting the upper limit slope value of the slope obtained by measuring the gelation degree to 100% and the lower limit slope value to 0% gelation degree, and the slope between them as a relative percentage. In this method, the measured upper limit slope value (hereinafter, referred to as Kmax) is defined as 100% gelling degree, and the lower limit slope value (hereinafter, referred to as Kmin) is defined as 0% gelling degree. This allows the degree of gelation of polyvinyl chloride to be measured as a percentage relative evaluation.

【0021】 ゲル化度(%)=(K−Kmin)/(Kmax−Kmin)×100 (3) (ここで、Kは測定試料の周波数−弾性率の対数プロッ
トの傾きを表す。) 本発明においては、例えばフィラー等の充填剤等が配合
されたポリ塩化ビニルのゲル化度を測定する場合、該充
填剤等の弾性率への影響を除き、測定精度の高いゲル化
度の測定をするために、弾性率の活性化エネルギにより
ゲル化度を求めることが好ましい。ここで、弾性率の活
性化エネルギは、例えばポリ塩化ビニルに、周波数及び
温度が異なる条件下で力学的刺激を与えることにより得
られる弾性率の周波数依存性及び温度依存性から次のよ
うにして求めることができる。図1に弾性率の周波数依
存性のプロットの一例を示す。図2に図1より得られた
シフト量及び測定温度の逆数をプロットした弾性率の温
度依存性の一例を示す。まず、一定の温度間隔、例えば
10℃おきの弾性率の周波数依存性を測定することによ
り、図1に示す弾性率の周波数依存性が得られる。そし
て、該測定結果の2番目に高い温度で測定した任意の周
波数の弾性率に着目し、該弾性率値が該測定温度の次に
高い測定温度の結果に重なるように周波数方向にシフト
させる。この操作を順次高温側から行いシフト量を求め
る。該シフト量を絶対温度の逆数に対してプロットする
ことにより図2に示す弾性率の温度依存性が得られる。
そして、その傾きより下記(4)により活性化エネルギ
を求めることができる。
Gelation degree (%) = (K−Kmin) / (Kmax−Kmin) × 100 (3) (where K represents the slope of a logarithmic plot of frequency-elastic modulus of the measurement sample) In, for example, when measuring the degree of gelation of polyvinyl chloride compounded with fillers such as fillers, except for the influence on the elastic modulus of the fillers and the like, measure the degree of gelation with high measurement accuracy Therefore, it is preferable to determine the degree of gelation from the activation energy of the elastic modulus. Here, the activation energy of the elastic modulus is obtained from the frequency dependence and the temperature dependence of the elastic modulus obtained by applying a mechanical stimulus to, for example, polyvinyl chloride under different frequency and temperature conditions as follows. You can ask. FIG. 1 shows an example of a plot of the frequency dependence of the elastic modulus. FIG. 2 shows an example of the temperature dependence of the elastic modulus in which the shift amount and the reciprocal of the measured temperature obtained from FIG. 1 are plotted. First, the frequency dependence of the elastic modulus shown in FIG. 1 is obtained by measuring the frequency dependence of the elastic modulus at regular temperature intervals, for example, every 10 ° C. Then, focusing on the elastic modulus at an arbitrary frequency measured at the second highest temperature of the measurement result, the elastic modulus value is shifted in the frequency direction so as to overlap the result of the next highest measurement temperature after the measurement temperature. This operation is sequentially performed from the high temperature side to determine the shift amount. By plotting the shift amount against the reciprocal of the absolute temperature, the temperature dependence of the elastic modulus shown in FIG. 2 can be obtained.
Then, the activation energy can be obtained from the slope by the following (4).

【0022】 活性化エネルギ(J/mol/K) =傾き×気体定数(J/mol/K)÷Ln10 (4) ここで、弾性率の活性化エネルギは、ポリ塩化ビニルの
ゲル化の進行とともに小さくなる傾向があることから、
弾性率の活性化エネルギよりポリ塩化ビニルのゲル化度
が算出できる。そのポリ塩化ビニルのゲル化度を算出す
る方法は任意であるが、簡便な方法としては、例えばゲ
ル化の程度を広範囲に変えた試料を作成し、それぞれの
試料に力学的刺激を与え、それぞれの試料の弾性率の活
性化エネルギを測定し得られた弾性率の活性化エネルギ
の上限の活性化エネルギをゲル化度0%、下限の活性化
エネルギをゲル化度100%として、その間の弾性率の
活性化エネルギを相対的な百分率としてゲル化度を算出
する方法が挙げられる。該方法では、測定した上限の弾
性率の活性化エネルギ値(以下、Emaxという。)を
ゲル化度0%とし、下限の弾性率の活性化エネルギ値
(以下、Eminという。)をゲル化度100%とする
ことにより、下記(5)式によりポリ塩化ビニルのゲル
化度を百分率による相対評価として測定することが可能
となる。
Activation energy (J / mol / K) = Slope × Gas constant (J / mol / K) ÷ Ln10 (4) Here, the activation energy of the elastic modulus changes with the progress of gelation of polyvinyl chloride. Because it tends to be smaller,
The gelation degree of polyvinyl chloride can be calculated from the activation energy of the elastic modulus. The method of calculating the degree of gelation of the polyvinyl chloride is arbitrary, but as a simple method, for example, a sample in which the degree of gelation is changed in a wide range is prepared, and a mechanical stimulus is given to each sample, and The activation energy of the elastic modulus of the sample was measured, and the activation energy at the upper limit of the activation energy of the elastic modulus obtained was defined as the degree of gelation of 0%, and the activation energy at the lower limit was defined as the degree of gelation of 100%. A method of calculating the degree of gelation using the activation energy of the ratio as a relative percentage is exemplified. In this method, the measured activation energy value of the upper limit elastic modulus (hereinafter, referred to as Emax) is defined as the degree of gelation of 0%, and the activation energy value of the lower limit elastic modulus (hereinafter, referred to as Emin) is defined as the degree of gelation. By setting it to 100%, it becomes possible to measure the degree of gelation of polyvinyl chloride as a percentage relative evaluation by the following equation (5).

【0023】 ゲル化度(%)=(E−Emin)/(Emax−Emin)×100 (5) (ここで、Eは測定試料の弾性率の活性化エネルギを表
す。) さらに、本発明の測定方法においては、ポリ塩化ビニル
に周波数及び温度が異なる条件下で力学的刺激を与える
ことにより求められる弾性率の活性化エネルギが、低周
波数側の力学的刺激により得られる活性化エネルギが高
周波数側の力学的刺激により得られる活性化エネルギに
比べてポリ塩化ビニル中の粒子径の大きい残存粒子に敏
感であることから、弾性率の活性化エネルギの周波数依
存性の波形より本発明の第2の発明であるポリ塩化ビニ
ル中の残存粒子径分布を求めることができる。
Gelation degree (%) = (E−Emin) / (Emax−Emin) × 100 (5) (where E represents the activation energy of the elastic modulus of the measurement sample.) In the measurement method, the activation energy of the elastic modulus required by applying a mechanical stimulus to the polyvinyl chloride under different frequency and temperature conditions is different from the activation energy obtained by the mechanical stimulus on the lower frequency side. The second embodiment of the present invention is based on the frequency-dependent waveform of the activation energy of the elastic modulus, since the activation energy obtained by the mechanical stimulation on the side is more sensitive to the residual particles having a large particle diameter in the polyvinyl chloride. The particle size distribution of the residual particles in the polyvinyl chloride according to the invention can be determined.

【0024】本発明において、ポリ塩化ビニルに力学的
刺激を与えポリ塩化ビニルのゲル化度叉は残存粒子径分
布を測定する際に与える異なる周期的な力学的刺激の周
波数は、ポリ塩化ビニルのゲル化の違いによって使い分
けることも可能であり、ポリ塩化ビニル中の残存粒子径
が比較的大きい場合は、周波数の小さい力学的刺激を印
加して弾性率を求めることが好ましい。その方法として
は、例えば予め電子顕微鏡観察等によりポリ塩化ビニル
中の残存粒子径の大きさを見積もり、ポリ塩化ビニル中
の残存粒子径の大きさが0.1〜1μmの範囲である場
合、周波数10-3〜10-1Hzの範囲で力学的刺激を与
えて弾性率を測定することが好ましい。一方、ポリ塩化
ビニル中の残存粒子径の大きさが0.01〜0.1μm
の範囲である場合、周波数が10-1〜102Hzの範囲
で力学的刺激を与えて弾性率を測定することが好まし
い。
In the present invention, the frequency of the different periodic mechanical stimuli to be applied when the mechanical stimulus is applied to the polyvinyl chloride to measure the gelling degree or the residual particle size distribution of the polyvinyl chloride is different from that of the polyvinyl chloride. It is also possible to use differently depending on the difference in gelation. When the residual particle diameter in polyvinyl chloride is relatively large, it is preferable to apply a mechanical stimulus having a small frequency to determine the elastic modulus. As the method, for example, the size of the residual particle size in polyvinyl chloride is estimated in advance by observation with an electron microscope or the like, and when the size of the residual particle size in polyvinyl chloride is in the range of 0.1 to 1 μm, It is preferable to measure the elastic modulus by applying a mechanical stimulus in the range of 10 -3 to 10 -1 Hz. On the other hand, the size of the residual particle diameter in polyvinyl chloride is 0.01 to 0.1 μm
If the range of, it is preferable to measure the elastic modulus gives mechanical stimulation range frequency of 10 -1 ~10 2 Hz.

【0025】本発明の測定方法において、ポリ塩化ビニ
ルに力学的刺激を与えポリ塩化ビニルのゲル化度又は残
存粒子径分布を測定する際の測定温度は、本発明の目的
を逸脱いない限りにおいて特に限定されるものではな
い。そして、測定中のポリ塩化ビニルの劣化の問題がな
く、特に安定した測定が可能となることから120℃〜
230℃で測定することが好ましく、特に可能な限り成
形加工温度の近傍で測定することが好ましい。
In the measuring method of the present invention, the temperature at which a mechanical stimulus is applied to the polyvinyl chloride to measure the gelling degree or the residual particle size distribution of the polyvinyl chloride is not particularly limited as long as it does not deviate from the object of the present invention. It is not limited. Then, since there is no problem of deterioration of polyvinyl chloride during the measurement, and particularly stable measurement becomes possible, the
The measurement is preferably performed at 230 ° C., particularly preferably as close to the molding temperature as possible.

【0026】本発明の測定方法により、測定されるポリ
塩化ビニルとしては、通常ポリ塩化ビニルとして知られ
ているであり、例えば塩化ビニル単独重合体、エチレン
−塩化ビニル共重合体、酢酸ビニル−塩化ビニル共重合
体等を挙げることができ、特に本発明の測定方法は、懸
濁重合方法により得られるポリ塩化ビニルの測定方法と
して適している。さらに、ポリ塩化ビニルには熱安定
剤、滑剤、酸化防止剤、紫外線吸収剤等の各種配合剤が
添加されていても差し支えない。
The polyvinyl chloride to be measured by the measuring method of the present invention is generally known as polyvinyl chloride, for example, vinyl chloride homopolymer, ethylene-vinyl chloride copolymer, vinyl acetate-chloride. Examples of the method include a vinyl copolymer, and the measurement method of the present invention is particularly suitable as a method for measuring polyvinyl chloride obtained by a suspension polymerization method. Further, various compounding agents such as a heat stabilizer, a lubricant, an antioxidant, and an ultraviolet absorber may be added to polyvinyl chloride.

【0027】さらに、本発明の測定方法を一般的なポリ
塩化ビニルの成形加工機、例えばカレンダー成形加工
機、押出しキャスト成形加工機、異形押出し成形加工
機、パイプ成形加工機、射出成形加工機等に該成形加工
機の特殊機能として備え付け、ポリ塩化ビニルの形成加
工時のゲル化度又は残存粒子径分布のインライン自動検
査システムとして用いることにより、品質管理を行いな
がらポリ塩化ビニルの成形加工を行うことも可能とな
る。
Further, the measuring method of the present invention is applied to a general polyvinyl chloride molding machine such as a calender molding machine, an extrusion cast molding machine, a profile extrusion molding machine, a pipe molding machine, an injection molding machine and the like. Equipped as a special function of the molding machine, and used as an in-line automatic inspection system for the degree of gelation or residual particle size distribution at the time of forming and processing of polyvinyl chloride, thereby performing the molding of polyvinyl chloride while performing quality control It is also possible.

【0028】[0028]

【実施例】本発明の測定方法を以下に実施例を用いて説
明するが、本発明はこれら実施例に限定されるものでは
ない。
EXAMPLES The measuring method of the present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0029】〜参考例1〜 ポリ塩化ビニル((株)大洋塩ビ製、商品名TH70
0)100重量部に対して、熱安定剤(大日本インキ
(株)製、商品名T157)3重量部を配合し、130
℃、150℃、170℃、190℃、200℃の温度条
件に設定した8インチテストロールで1、2、5、1
0、15分間混練することにより、それぞれの混練条件
による厚さ1.1mmの板状成形体を得た。ただし、1
30℃、1分間の混練条件では板状成形体を得ることは
できなかった。また、210℃以上では1分以上混練す
るとポリ塩化ビニルの劣化が見られたため板状成形体を
得ることができなかった。そして、得られた板状成形体
を加圧プレス機を用いて厚さ1.0mmの板状成形体と
し試験片を得た。
Reference Example 1 Polyvinyl chloride (trade name: TH70, manufactured by Taiyo PVC Co., Ltd.)
0) 3 parts by weight of a heat stabilizer (trade name: T157, manufactured by Dainippon Ink Co., Ltd.) were added to 100 parts by weight,
1, 2, 5, 1 with an 8-inch test roll set to temperature conditions of 150 ° C., 150 ° C., 170 ° C., 190 ° C., and 200 ° C.
By kneading for 0 and 15 minutes, a plate-shaped molded body having a thickness of 1.1 mm under each kneading condition was obtained. However, 1
Under a kneading condition of 30 ° C. for 1 minute, a plate-like molded body could not be obtained. Further, at 210 ° C. or more, if kneaded for 1 minute or more, deterioration of polyvinyl chloride was observed, so that a plate-like molded product could not be obtained. Then, the obtained plate-like molded body was formed into a plate-like molded body having a thickness of 1.0 mm using a press machine to obtain a test piece.

【0030】得られたそれぞれの試験片を粘弾性測定装
置((株)レオメトリック・サイエンティフィック製、
商品名ARES)を用い、温度170、180、190
℃、周波数0.01Hz〜15.5Hzの間で1Log
に対し等間隔に八点の周期的な力学的刺激を連続して与
えることにより、弾性率の周波数依存性及び弾性率の損
失正接を測定した。
Each of the obtained test pieces was subjected to a viscoelasticity measuring device (manufactured by Rheometric Scientific Co., Ltd.).
Temperature 170, 180, 190 using the trade name ARES)
° C, 1 Log at a frequency of 0.01 Hz to 15.5 Hz
The frequency dependence of the elastic modulus and the loss tangent of the elastic modulus were measured by continuously applying eight periodic mechanical stimuli at equal intervals.

【0031】そして、この測定からそれぞれの試験片の
170℃、0.01Hz測定時の弾性率、弾性率の損失
正接、170℃測定時の周波数−弾性率の対数プロット
の傾き、活性化エネルギを求めた。
From this measurement, the modulus of elasticity, the loss tangent of the modulus of elasticity at 170 ° C. and 0.01 Hz, the slope of the logarithmic plot of frequency-elasticity at 170 ° C., and the activation energy of each test piece were measured. I asked.

【0032】ここで、130℃、1分間の混練条件では
試験片が得られなかったことから130℃、2分間の混
練条件の試験片をゲル化度0%とすることにより、得ら
れた弾性率を上限弾性率値(Gmax)、弾性率の損失
正接を下限の弾性率の損失正接値(Tmin)、傾きを
下限傾き値(Kmin)、活性化エネルギを上限活性化
エネルギ値(Emax)とした。また、200℃の混練
条件の全ての試験片より得られた弾性率、弾性率の損失
正接、傾き、活性化エネルギは同じ値を有していたこと
から200℃の混練条件の試験片をゲル化度100%と
することにより、得られた弾性率を下限弾性率値(Gm
in)、弾性率の損失正接を上限の弾性率の損失正接値
(Tmax)、傾きを上限傾き値(Kmax)、活性化
エネルギを下限活性化エネルギ値(Emin)とした。
Here, since no test piece was obtained under the kneading conditions of 130 ° C. for 1 minute, the elasticity obtained by setting the degree of gelation of the test piece under the kneading conditions of 130 ° C. for 2 minutes to 0% was obtained. The modulus is defined as the upper limit elastic modulus value (Gmax), the elastic loss tangent is defined as the lower elastic modulus tangent value (Tmin), the slope is defined as the lower slope value (Kmin), and the activation energy is defined as the upper activation energy value (Emax). did. In addition, since the elastic modulus, the loss tangent of the elastic modulus, the slope, and the activation energy obtained from all the test pieces under the kneading conditions of 200 ° C. had the same values, the test pieces under the kneading conditions of 200 ° C. were gelated. By setting the degree of conversion to 100%, the obtained elastic modulus is reduced to a lower limit elastic modulus value (Gm
in), the loss tangent of the elastic modulus was defined as the loss tangent value (Tmax) of the upper elastic modulus, the slope was defined as the upper slope value (Kmax), and the activation energy was defined as the lower activation energy value (Emin).

【0033】表1に、これより得られた弾性率の上限値
・下限値、弾性率の損失正接の上限値・下限値、傾きの
上限値・下限値、活性化エネルギの上限値・下限値を示
す。
Table 1 shows the upper and lower limits of the elastic modulus, the upper and lower limits of the loss tangent of the elastic modulus, the upper and lower limits of the slope, and the upper and lower limits of the activation energy. Is shown.

【0034】実施例1 ポリ塩化ビニル樹脂((株)大洋塩ビ製、商品名TH7
00)100重量部に対して、熱安定剤(大日本インキ
(株)製、商品名T157)3重量部を配合し、170
℃に設定された8インチテストロールで10分間混練
し、厚さ1.1mmの透明板状成形体を得た。該透明板
状成形体を170℃に設定された加圧プレス機を用いて
厚さ1.0mmの透明板状成形体とし試験片を得た。
Example 1 Polyvinyl chloride resin (trade name: TH7, manufactured by Taiyo PVC Co., Ltd.)
100 parts by weight, 3 parts by weight of a heat stabilizer (trade name: T157, manufactured by Dainippon Ink Co., Ltd.) was added,
The mixture was kneaded with an 8-inch test roll set at a temperature of 10 ° C. for 10 minutes to obtain a transparent plate-shaped molded product having a thickness of 1.1 mm. The transparent plate-like molded body was formed into a 1.0 mm-thick transparent plate-like molded body using a press machine set at 170 ° C. to obtain a test piece.

【0035】該試験片を粘弾性測定装置((株)レオメ
トリック・サイエンティフィック製、商品名ARES)
を用い、温度170、180、190℃、周波数0.0
1Hz〜15.5Hzの間で1Logに対し等間隔に八
点の周期的な力学的刺激を連続して与えることにより、
弾性率の周波数依存性及び弾性率の損失正接を測定し
た。
The test piece was subjected to a viscoelasticity measuring device (ARES, manufactured by Rheometric Scientific Co., Ltd.).
At a temperature of 170, 180, 190 ° C. and a frequency of 0.0
By continuously providing eight periodic mechanical stimuli at equal intervals for 1 Log between 1 Hz to 15.5 Hz,
The frequency dependence of the elastic modulus and the loss tangent of the elastic modulus were measured.

【0036】そして、この測定からそれぞれの試験片の
170℃、0.01Hz測定時の弾性率、弾性率の損失
正接、170℃測定時の周波数−弾性率の対数プロット
の傾きを求めたその結果を表1に示す。
From this measurement, the elastic modulus, the loss tangent of the elastic modulus at 170 ° C. and 0.01 Hz of each test piece, and the slope of the logarithmic plot of frequency-elastic modulus at 170 ° C. were determined. Are shown in Table 1.

【0037】また、弾性率の活性化エネルギについて
は、粘弾性の測定結果を用い以下の手順で求めた。図1
に示す180℃の弾性率測定結果のうち着目する周波
数、0.01Hzの弾性率が190℃の粘弾性曲線に重
なるように水平方向にシフトさせ、そのシフト量を求め
た後、170℃の0.01Hzの弾性率が先にシフトさ
せた180℃の粘弾性曲線に重なるよう水平方向にシフ
トさせ、そのシフト量を求める。そして、求めたシフト
量を図2に示すように絶対温度の逆数に対してプロット
し、その傾きから上記に示した式(4)より着目する周
波数に対する活性化エネルギが得られる。これらの操作
を着目する周波数を0.01Hzから1Hzまで変え
て、各着目した周波数に対する活性化エネルギを求め
た。表2に0.01Hzにおける弾性率の活性化エネル
ギを示す。
The activation energy of the elastic modulus was determined by the following procedure using the measurement results of the viscoelasticity. FIG.
In the results of the elastic modulus measurement at 180 ° C. shown in FIG. 6, the frequency of interest, the elastic modulus at 0.01 Hz is shifted in the horizontal direction so as to overlap the viscoelastic curve at 190 ° C., and the shift amount is calculated. The elastic modulus of 0.011 Hz is shifted in the horizontal direction so as to overlap the previously shifted viscoelastic curve at 180 ° C., and the shift amount is obtained. Then, the obtained shift amount is plotted with respect to the reciprocal of the absolute temperature as shown in FIG. 2, and the activation energy for the frequency of interest is obtained from the above equation (4) from the slope. The frequency of interest for these operations was changed from 0.01 Hz to 1 Hz, and the activation energy for each frequency of interest was determined. Table 2 shows the activation energy of the elastic modulus at 0.01 Hz.

【0038】図3に170℃における弾性率の周波数依
存性を示す。
FIG. 3 shows the frequency dependence of the elastic modulus at 170 ° C.

【0039】図4に活性化エネルギの周波数依存性を示
す。
FIG. 4 shows the frequency dependence of the activation energy.

【0040】これらの測定結果を上記の式(1)、
(2)、(3)、(5)に代入して求めたゲル化度を表
2に示す。
These measurement results are calculated by the above equation (1),
Table 2 shows the gelation degree obtained by substituting (2), (3) and (5).

【0041】また、図4に示す活性化エネルギの周波数
分散は、そのままポリ塩化ビニル中に残存する粒子の粒
子径、量に対応するものである。ここで、低周波数側は
粒子径の大きい残存粒子の量に対応し、高周波数側が粒
子径の小さい残存粒子の量に対応している。そして、本
実施例においては、平均残存粒子径が大きいために最大
頻度の粒子径を有する残存粒子に対応する周波数が測定
範囲外となっているため、残存粒子径分布の裾野が見え
ている。また、該試験片を走査型電子顕微鏡で測定する
ことにより得られた残存粒子の平均粒子径は360nm
であった。
The frequency dispersion of the activation energy shown in FIG. 4 corresponds to the particle size and amount of the particles remaining in the polyvinyl chloride. Here, the low frequency side corresponds to the amount of the residual particles having a large particle diameter, and the high frequency side corresponds to the amount of the residual particles having a small particle diameter. In this example, since the average residual particle size is large, the frequency corresponding to the residual particle having the maximum frequency particle size is out of the measurement range, and thus the bottom of the residual particle size distribution is visible. The average particle diameter of the residual particles obtained by measuring the test piece with a scanning electron microscope was 360 nm.
Met.

【0042】実施例2 実施例1と同配合の樹脂組成物を180℃に設定された
8インチテストロールで10分間混練し、厚さ1.1m
mの透明板状成形体を得た。この板状成形体を180℃
に設定された加圧プレス成型器を用いて厚さ1.0mm
の透明板状成形体を試験片として得た。
Example 2 A resin composition having the same composition as in Example 1 was kneaded with an 8-inch test roll set at 180 ° C. for 10 minutes, and the thickness was 1.1 m.
m was obtained. 180 ° C
1.0mm thick using a press molding machine set to
Was obtained as a test piece.

【0043】そして、実施例1と同様の測定を行った。
得られた測定結果を図3、4、表1に示す。
Then, the same measurement as in Example 1 was performed.
The obtained measurement results are shown in FIGS.

【0044】実施例1と同様の方法により求めたゲル化
度を表2に示す。
Table 2 shows the gelation degree obtained by the same method as in Example 1.

【0045】また、図4に示す活性化エネルギの周波数
分散は、残存粒子の平均粒子径が大きいため裾野が見え
ているが、実施例1よりは粒子径が小さく、低周波数側
にピークが見え始めており、残存粒子の平均粒子径が小
さくなる傾向が見られている。また、走査型電子顕微鏡
で測定することにより得られた残存粒子の平均粒子径は
210nmであった。
Further, in the frequency dispersion of the activation energy shown in FIG. 4, the tail is visible because the average particle diameter of the residual particles is large, but the particle diameter is smaller than that in Example 1 and a peak is seen on the low frequency side. The average particle diameter of the remaining particles has been decreasing. The average particle size of the residual particles obtained by measurement with a scanning electron microscope was 210 nm.

【0046】実施例3 実施例1と同配合の樹脂組成物を190℃に設定された
8インチテストロールで10分間混練し、厚さ1.1m
mの透明板状成形体を得た。この板状成形体を190℃
に設定された加圧プレス成型器を用いて厚さ1.0mm
の透明板状成形体を試験片として得た。
Example 3 A resin composition having the same composition as in Example 1 was kneaded with an 8-inch test roll set at 190 ° C. for 10 minutes, and the thickness was 1.1 m.
m was obtained. This plate-like molded body is heated at 190 ° C.
1.0mm thick using a press molding machine set to
Was obtained as a test piece.

【0047】そして、実施例1と同様の測定を行った。
得られた測定結果を図3、4、表1に示す。
Then, the same measurement as in Example 1 was performed.
The obtained measurement results are shown in FIGS.

【0048】実施例1と同様の方法により求めたゲル化
度を表2に示す。
Table 2 shows the gelation degree obtained by the same method as in Example 1.

【0049】また、図4に示す活性化エネルギの周波数
分散は、低周波数側にピークが見え始めており、その大
きさも実施例1,2と比較して小さくなっていることか
ら、残存粒子の平均粒子径が小さく且つその量も少なく
なっている。また、走査型電子顕微鏡で測定することに
より得られた残存粒子の平均粒子径は190nmであっ
た。
Further, the peak of the frequency dispersion of the activation energy shown in FIG. 4 starts to be seen on the low frequency side, and the size thereof is smaller than those of the first and second embodiments. The particle size is small and the amount is small. The average particle size of the residual particles obtained by measuring with a scanning electron microscope was 190 nm.

【0050】〜参考例2〜 ポリ塩化ビニル((株)大洋塩ビ製、商品名TH70
0)100重量部に対して、熱安定剤(日東化成(株)
製、商品名TVS8901)3重量部、内滑剤(ヘンケ
ル白水(株)製、商品名ロキシオ−ルGH4)2重量
部、外滑剤(ヘキスト(株)製、商品名ホスタラブ)
0.3重量部、外滑剤(三井石油化学(株)製、商品名
Hi−wax200PF)0.1重量部を配合し、13
0℃、150℃、170℃、190℃、200℃の温度
条件に設定した8インチテストロールで1、2、5、1
0、15分間混練することにより、それぞれの混練条件
による厚さ1.1mmの板状成形体を得た。ただし、1
30℃、1分間の混練条件では板状成形体を得ることは
できなかった。また、210℃以上では1分以上混練す
るとポリ塩化ビニルの劣化が見られたため板状成形体を
得ることができなかった。そして、得られた板状成形体
を加圧プレス機を用いて厚さ1.0mmの板状成形体と
し試験片を得た。
Reference Example 2 Polyvinyl chloride (manufactured by Taiyo PVC Co., Ltd., trade name: TH70)
0) 100 parts by weight of heat stabilizer (Nitto Kasei Co., Ltd.)
(Trade name: TVS8901) 3 parts by weight, internal lubricant (Henkel Hakusui Co., Ltd., product name Roxyol GH4) 2 parts by weight, external lubricant (Hoechst Co., Ltd., product name Hostalab)
0.3 parts by weight and 0.1 part by weight of an outer lubricant (trade name: Hi-wax 200PF, manufactured by Mitsui Petrochemical Co., Ltd.)
1, 2, 5, 1 with an 8-inch test roll set to temperature conditions of 0 ° C., 150 ° C., 170 ° C., 190 ° C., and 200 ° C.
By kneading for 0 and 15 minutes, a plate-shaped molded body having a thickness of 1.1 mm under each kneading condition was obtained. However, 1
Under a kneading condition of 30 ° C. for 1 minute, a plate-like molded body could not be obtained. Further, at 210 ° C. or more, if kneaded for 1 minute or more, deterioration of polyvinyl chloride was observed, so that a plate-like molded product could not be obtained. Then, the obtained plate-like molded body was formed into a plate-like molded body having a thickness of 1.0 mm using a press machine to obtain a test piece.

【0051】この試料について参考例1と同様の測定を
行い、弾性率、損失正接、周波数−弾性率の対数プロッ
トの傾き、活性化エネルギの最大値、最小値を求めた。
表3にこの値を示す。配合が変わると弾性率、損失正
接、周波数−弾性率の対数プロットの傾きの値は大きく
変化するのに対し、活性化エネルギの最大値、最小値は
殆ど変化しない。
The same measurement as in Reference Example 1 was performed on this sample, and the elastic modulus, the loss tangent, the slope of a logarithmic plot of frequency-elastic modulus, and the maximum and minimum values of the activation energy were obtained.
Table 3 shows this value. When the composition is changed, the values of the elastic modulus, the loss tangent, and the slope of the logarithmic plot of the frequency-elastic modulus change greatly, whereas the maximum value and the minimum value of the activation energy hardly change.

【0052】実施例4 ポリ塩化ビニル((株)大洋塩ビ製、商品名TH70
0)100重量部に対して、熱安定剤(日東化成(株)
製、商品名TVS8901)3重量部、内滑剤(ヘンケ
ル白水(株)製、商品名ロキシオ−ルGH4)2重量
部、外滑剤(ヘキスト(株)製、商品名ホスタラブ)
0.3重量部、外滑剤(三井石油化学(株)製、商品名
Hi−wax200PF)0.1重量部を配合し、15
0℃に設定された8インチテストロールで5分間混練
し、厚さ1.1mmの半透明板状成形体を得た。該半透
明板状成形体を150℃に設定された加圧プレス機を用
いて厚さ1.0mmの半透明板状成形体とし試験片を得
た。
Example 4 Polyvinyl chloride (trade name: TH70, manufactured by Taiyo PVC Co., Ltd.)
0) 100 parts by weight of heat stabilizer (Nitto Kasei Co., Ltd.)
3 parts by weight (trade name TVS8901), 2 parts by weight of an internal lubricant (trade name: Roxyol GH4, manufactured by Henkel Hakusui Co., Ltd.), external lubricant (trade name: Hostalab, manufactured by Hoechst Co., Ltd.)
0.3 parts by weight and 0.1 part by weight of an outer lubricant (trade name: Hi-wax 200PF, manufactured by Mitsui Petrochemical Co., Ltd.)
The mixture was kneaded with an 8-inch test roll set at 0 ° C. for 5 minutes to obtain a translucent plate-shaped molded product having a thickness of 1.1 mm. The translucent plate-shaped molded body was formed into a 1.0 mm-thick translucent plate-shaped molded body using a press machine set at 150 ° C. to obtain a test piece.

【0053】そして、実施例1と同様の測定を行った。
得られた測定結果を表3に示す。
Then, the same measurement as in Example 1 was performed.
Table 3 shows the obtained measurement results.

【0054】実施例1と同様の方法により求めたゲル化
度を表4に示す。
Table 4 shows the gelation degree obtained by the same method as in Example 1.

【0055】実施例5 実施例4と同配合の樹脂組成物を170℃に設定された
8インチテストロールで5分間混練し、厚さ1.1mm
の半透明板状成形体を得た。該半透明板状成形体を17
0℃に設定された加圧プレス機を用いて厚さ1.0mm
の半透明板状成形体とし試験片を得た。
Example 5 A resin composition having the same composition as in Example 4 was kneaded with an 8-inch test roll set at 170 ° C. for 5 minutes, and the thickness was 1.1 mm.
Was obtained. The translucent plate-like molded product was
1.0 mm thick using a press machine set at 0 ° C
And a test piece was obtained.

【0056】そして、実施例1と同様の測定を行った。
得られた測定結果を表3に示す。
Then, the same measurement as in Example 1 was performed.
Table 3 shows the obtained measurement results.

【0057】実施例1と同様の方法により求めたゲル化
度を表4に示す。
Table 4 shows the gelation degree obtained by the same method as in Example 1.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】[0060]

【表3】 [Table 3]

【0061】[0061]

【表4】 [Table 4]

【0062】[0062]

【発明の効果】本発明の測定方法は、どのような作業者
によっても熟練を要せず、簡便にしかも定量的にポリ塩
化ビニルのゲル化度及び残存粒子径分布を測定すること
ができる。
The measurement method of the present invention does not require any skill by any worker, and can easily and quantitatively measure the gelation degree and the residual particle size distribution of polyvinyl chloride.

【図面の簡単な説明】[Brief description of the drawings]

【図1】弾性率の活性化エネルギを求めるための説明図
で、弾性率の周波数依存性を各温度にて測定した結果の
一例である。
FIG. 1 is an explanatory diagram for obtaining activation energy of an elastic modulus, and is an example of a result obtained by measuring a frequency dependence of an elastic modulus at each temperature.

【図2】弾性率の活性化エネルギを求める操作の説明図
で、シフト量を温度の逆数に対してプロットした一例で
ある。
FIG. 2 is an explanatory diagram of an operation for obtaining activation energy of an elastic modulus, and is an example in which a shift amount is plotted with respect to a reciprocal of a temperature.

【図3】ポリ塩化ビニルの弾性率の周波数依存性を測定
した結果の一例である。
FIG. 3 is an example of the result of measuring the frequency dependence of the elastic modulus of polyvinyl chloride.

【図4】弾性率の活性化エネルギの周波数依存性の一例
である。
FIG. 4 is an example of frequency dependence of activation energy of elastic modulus.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ポリ塩化ビニルに力学的刺激を与えること
によりゲル化度を求めることを特徴とするポリ塩化ビニ
ルのゲル化度の測定方法。
1. A method for measuring the degree of gelation of polyvinyl chloride, wherein the degree of gelation is determined by applying a mechanical stimulus to the polyvinyl chloride.
【請求項2】ポリ塩化ビニルに力学的刺激を与えること
により得られる弾性率又は弾性率の損失正接よりゲル化
度を求めることを特徴とするポリ塩化ビニルのゲル化度
の測定方法。
2. A method for measuring the degree of gelation of polyvinyl chloride, wherein the degree of gelation is determined from an elastic modulus or a loss tangent of the elastic modulus obtained by applying a mechanical stimulus to the polyvinyl chloride.
【請求項3】ポリ塩化ビニルに異なる周波数の力学的刺
激を与えることにより得られる弾性率の周波数依存性よ
りゲル化度を求めることを特徴とする請求項1又は2の
いずれかに記載のポリ塩化ビニルのゲル化度の測定方
法。
3. The method according to claim 1, wherein the degree of gelation is determined from the frequency dependence of the elastic modulus obtained by applying mechanical stimuli of different frequencies to polyvinyl chloride. A method for measuring the degree of gelation of vinyl chloride.
【請求項4】ポリ塩化ビニルに温度が異なる条件下で力
学的刺激を与えることにより得られる弾性率の温度依存
性から求めた弾性率の活性化エネルギよりゲル化度を求
めることを特徴とする請求項1又は2のいずれかに記載
のポリ塩化ビニルのゲル化度の測定方法。
4. A gelling degree is obtained from activation energy of an elastic modulus obtained from a temperature dependence of an elastic modulus obtained by applying a mechanical stimulus to polyvinyl chloride under different temperature conditions. A method for measuring the degree of gelation of polyvinyl chloride according to claim 1.
【請求項5】ポリ塩化ビニルに周波数及び温度が異なる
条件下で力学的刺激を与えることにより得られる弾性率
の温度依存性から求めた弾性率の活性化エネルギの周波
数依存性から残存粒子径分布を求めることを特徴とする
塩化ビニル中の残存粒子径分布の測定方法。
5. The residual particle size distribution based on the frequency dependence of the activation energy of the elastic modulus obtained from the temperature dependence of the elastic modulus obtained by applying a mechanical stimulus to polyvinyl chloride under different frequency and temperature conditions. A method for measuring the distribution of residual particle diameters in vinyl chloride, characterized by determining the particle size distribution.
JP9087951A 1997-04-07 1997-04-07 Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution Pending JPH10282088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087951A JPH10282088A (en) 1997-04-07 1997-04-07 Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087951A JPH10282088A (en) 1997-04-07 1997-04-07 Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution

Publications (1)

Publication Number Publication Date
JPH10282088A true JPH10282088A (en) 1998-10-23

Family

ID=13929201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087951A Pending JPH10282088A (en) 1997-04-07 1997-04-07 Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution

Country Status (1)

Country Link
JP (1) JPH10282088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086062A (en) * 2005-08-26 2007-04-05 Shiseido Co Ltd Method of evaluating permeability of fluid through material containing resin, method of treating material containing biodegradable resin, material containing biodegradable resin, and biodegradable resin molding
CN113996252A (en) * 2021-10-28 2022-02-01 西安交通大学 Activation system for PVC gel activation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086062A (en) * 2005-08-26 2007-04-05 Shiseido Co Ltd Method of evaluating permeability of fluid through material containing resin, method of treating material containing biodegradable resin, material containing biodegradable resin, and biodegradable resin molding
CN113996252A (en) * 2021-10-28 2022-02-01 西安交通大学 Activation system for PVC gel activation

Similar Documents

Publication Publication Date Title
Bresson et al. Statistical aspects of the mechanical behaviour a paste adhesive
Parikh et al. Tensile properties of free films cast from aqueous ethylcellulose dispersions
JPH10282088A (en) Method for measuring extent of gelation of polyvinyl chloride and residual grain size distribution
JP7183735B2 (en) Method for estimating tensile fatigue properties of vulcanized rubber materials
Dessi et al. Dynamic mechanical analysis with torsional rectangular geometry: A critical assessment of constrained warping models
Jerrams et al. The significance of equi-biaxial bubble inflation in determining elastomeric fatigue properties
US9459197B2 (en) Method for measuring dynamic viscoelasticity of particulate material
EP1172641A1 (en) Method of testing rubber composition for kneaded state and process for producing rubber composition
JP2004077274A (en) Method and device for evaluating workability of visco-elastic material, working condition setting method and working device, and working management method
Fradet et al. Instrumented indentation of an elastomeric material, protocol and application to vulcanization gradient
Connelly et al. Prediction of peel adhesion using extensional rheometry
JP3600929B2 (en) Method and apparatus for measuring the degree of gelation of polyvinyl chloride
JPH0361835A (en) Evaluation of quality of gelatinized starch gel
Barrès et al. Recent developments in shear rheometry of uncured rubber compounds: I. Design, construction and validation of a sliding cylinder rheometer
JP2006343221A (en) Method for evaluating degree of thermal degradation of sheathed electric wire
JPS61190547A (en) Manufacture of vibration-controlling and sound-insulating high polymer material formed body
JPH08285761A (en) Method for measuring bonding strength of coating
Steinhaus et al. Correlating mechanical rubber properties with moving die rheometer vulcanization curves under consideration of the material composition
SU1307311A1 (en) Method of determining operation compatibility of multicomponent polymer systems
Jiantao et al. Correction of compliance errors in the dynamic shear modulus of bituminous binders data
Daniels Optimization of plastisol processes by dynamic mechanical analysis
Nakajima et al. Mixing and Extrusion of High Silica and all Silica-natural Rubber Compounds
JPH02234037A (en) Measuring method for dynamical anisotropy of structure
Stocek et al. Focus on future trends in experimental determination of crack initiation in reinforced rubber
Griepentrog Size effects in electrodeposited Ni-coatings