JPH10282083A - Method for measuring ammonium ion in water - Google Patents

Method for measuring ammonium ion in water

Info

Publication number
JPH10282083A
JPH10282083A JP9036697A JP9036697A JPH10282083A JP H10282083 A JPH10282083 A JP H10282083A JP 9036697 A JP9036697 A JP 9036697A JP 9036697 A JP9036697 A JP 9036697A JP H10282083 A JPH10282083 A JP H10282083A
Authority
JP
Japan
Prior art keywords
water
dilution
sample water
pump
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9036697A
Other languages
Japanese (ja)
Inventor
Hiroshi Yotsumoto
浩 四元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP9036697A priority Critical patent/JPH10282083A/en
Publication of JPH10282083A publication Critical patent/JPH10282083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for measuring ammonium ion in water by which an accurate measured value can be obtained by minimizing measurement errors even in an area where the relative concentration of ammonium ions is high by using a flow injection method. SOLUTION: In a method for measuring ammonium ion in water, the concentration of ammonium ions in sample water in a high-concentration area B is measured by using a flow injection method after the sample water is diluted or shifted to a low-concentration area A by utilizing the flow rate characteristic. For diluting the sample water, a means which dilutes the sample water 2 by mixing the water 2 fed from a constant-flow pump with diluting water 12 fed from another constant-flow pump by using T- or Y-type connecting parts 13 and pump rotation controllers and control mechanisms respectively installed to the constant-flow pumps are provided and the flow rates of the sample water 2 and diluting water 12 from the pumps are controlled by selecting an appropriate rate of dilution out of the rates of dilution set in the control mechanisms and conveying the selected rate of dilution to the pump rotation controllers.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水中のアンモニウム
イオンの濃度をフローインジェクション分析法の原理を
用いて定量する測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration of ammonium ion in water using the principle of flow injection analysis.

【0002】[0002]

【従来の技術】一般に河川とか湖沼の水中に存在するア
ンモニウムイオン(NH4 +)の濃度を測定する方法とし
て、イオンクロマトグラフ法,比色法,中和滴定法,イ
オン電極法及びフローインジェクション方が従来から用
いられている。
2. Description of the Related Art In general, as a method for measuring the concentration of ammonium ion (NH 4 + ) existing in water of rivers and lakes, there are ion chromatography, colorimetry, neutralization titration, ion electrode method and flow injection method. Is conventionally used.

【0003】この中で機器分析に分類されるイオンクロ
マトグラフ法は、イオン交換カラムを用いた高速液体ク
ロマトグラフの一種であり、無機陰イオンや陽イオンの
系統分析用として開発されたものであって、従来から測
定分析に難点のあった各種無機陰イオンを定量すること
ができる。具体的には導電率検出器を用いてアンモニウ
ムイオンを数ppmから数10ppmレベルの濃度まで
測定可能であるが、測定時間は試料の導入後、数分から
10分程度を必要とする。定量範囲は0.1〜30(m
g/l)と比較的高濃度である。
[0003] Among them, ion chromatography, which is classified as instrumental analysis, is a type of high-performance liquid chromatography using an ion exchange column and has been developed for systematic analysis of inorganic anions and cations. Thus, various inorganic anions, which have conventionally been difficult to measure and analyze, can be quantified. Specifically, ammonium ions can be measured from a concentration of several ppm to several tens of ppm using a conductivity detector, but the measurement time requires several minutes to about 10 minutes after introduction of the sample. The quantification range is 0.1 to 30 (m
g / l).

【0004】比色法は試料としての検水に試薬を投入し
て測定対象物質と等量の化学反応式から特定波長の吸光
度を測定してアンモニウムイオンを連続測定する方法で
あり、アンモニウムイオンが次亜塩素酸イオンの共存の
もとでフェノールと反応して生じるインドフェノール青
の630nmでの吸光度を測定してアンモニウムイオン
濃度を定量するインドフェノール青吸光光度法が代表的
方法であり、定量範囲は1.6〜33(mg/l)と比
較的高濃度である。
[0004] The colorimetric method is a method in which a reagent is put into a water sample as a sample, and the absorbance at a specific wavelength is measured from a chemical reaction formula equivalent to the substance to be measured, thereby continuously measuring ammonium ions. A typical method is the indophenol blue absorption spectrophotometry for measuring the absorbance at 630 nm of indophenol blue produced by reacting with phenol in the coexistence of hypochlorite ion to determine the ammonium ion concentration. Has a relatively high concentration of 1.6 to 33 (mg / l).

【0005】中和滴定法は蒸留による前処理を行って抽
出したアンモニアを一定量の硫酸(25mmol/l)
中に吸収させた溶液について、50(mmol/l)水
酸化ナトリウム溶液で滴定してアンモニウムイオンを定
量する方法であり、定量範囲は0.3〜40(mg/
l)と比較的高濃度である。
In the neutralization titration method, ammonia extracted by performing a pretreatment by distillation is converted into a fixed amount of sulfuric acid (25 mmol / l).
This is a method for titrating ammonium ion by quantifying the solution absorbed therein with a 50 (mmol / l) sodium hydroxide solution, and the quantification range is from 0.3 to 40 (mg / l).
l) and relatively high concentration.

【0006】イオン電極法は前処理を行った試料に水酸
化ナトリウム溶液を加えてpHを11〜13に調節して
アンモニウムイオンをアンモニアに変え、指示電極(ア
ンモニア電極)を用いて電位を測定してアンモニウムイ
オンを定量す方法であり、定量範囲は0.1〜100
(mg/l)とかなり高濃度である。
In the ion electrode method, a sodium hydroxide solution is added to a pretreated sample to adjust the pH to 11 to 13 to change ammonium ions to ammonia, and the potential is measured using an indicator electrode (ammonia electrode). Method for quantifying ammonium ions by using a quantification range of 0.1 to 100.
(Mg / l), which is quite high.

【0007】フローインジェクション法は、図7の概要
図に示したように、反応試薬1の注入により試薬溶液
(次亜塩素酸ナトリウム,NaClO)を流路用細管2
1中で連続して流下させながら、この流れの中に、アン
モニウムイオンを含む試料水2を定流量ポンプP1の駆
動により連続投入し、同時に空気3を定流量ポンプP2
の駆動により連続投入して混合コイル4内で反応させ
る。得られた反応生成物は気化分離器5に入り、液相に
溶け込んでいる気体の気化分離作用により気体が気相側
に分離される。
In the flow injection method, as shown in the schematic diagram of FIG. 7, a reagent solution (sodium hypochlorite, NaClO) is injected into a reaction vessel 1 by injection of a reaction reagent 1.
While falling continuously in 1, in this flow, the sample water 2 containing ammonium ions sequentially fed by the driving of the constant flow rate pump P 1, at the same time air 3 constant flow rate pump P 2
Is driven continuously to cause a reaction in the mixing coil 4. The obtained reaction product enters the vaporizer 5 and the gas is separated into the gaseous phase by the vaporization and separation of the gas dissolved in the liquid phase.

【0008】得られたガス成分は加熱酸化炉6に入り、
気化分離器5の廃液はポンプP3の駆動により廃液7と
して排出される。このガス成分は加熱酸化炉6で加熱さ
れることによって一酸化窒素(NO)に転換され、この
試料気体が減圧タイプの化学発光検出器8に流入する。
4は排気ポンプであり、化学発光検出器8内の減圧と
測定後のガスの排気を行う。この化学発光検出器8には
オゾン発生器9で得られたオゾンガスが注入され、試料
気体中のNOとO3(オゾンガス)の反応によって生じ
る化学発光強度が検出されて、注入した反応試薬1の種
類と化学発光強度の関係に基づいて試料気体中に含まれ
るアンモニウムイオン濃度が計測され、信号出力20が
図外の演算制御部に入力されて濃度換算され、表示及び
プリンタ等に記録される。
[0008] The obtained gas components enter the heating oxidation furnace 6 and
Waste vaporizer separator 5 is discharged as waste fluid 7 by the driving of the pump P 3. This gas component is converted into nitric oxide (NO) by being heated in the heating oxidation furnace 6, and the sample gas flows into the decompression type chemiluminescence detector 8.
P 4 is an exhaust pump that reduces the pressure in the chemiluminescence detector 8 and exhausts the gas after measurement. The chemiluminescence detector 8 is injected with the ozone gas obtained by the ozone generator 9, detects the chemiluminescence intensity generated by the reaction between NO and O 3 (ozone gas) in the sample gas, and detects the intensity of the injected reaction reagent 1. The concentration of ammonium ions contained in the sample gas is measured based on the relationship between the type and the chemiluminescence intensity, and the signal output 20 is input to an arithmetic and control unit (not shown), converted into a concentration, and recorded on a display and a printer.

【0009】この信号出力20は、加熱酸化炉6の温度
調節、オゾン発生器9の運転/停止制御、反応試薬1の
注入制御、上記各ポンプP1,P2,P3,P4の運転/停
止制御信号としても用いられる。
The signal output 20 is used to control the temperature of the heating oxidation furnace 6, control the operation / stop of the ozone generator 9, control the injection of the reaction reagent 1, and operate the pumps P 1 , P 2 , P 3 and P 4 . / Stop control signal.

【0010】反応試薬1の注入操作とか発光強度の濃度
変換演算処理、あるいは自動計測の条件設定等は、図8
に示すシーケンサ10によって行われ、測定値の表示と
か校正操作等の機器操作は、インターフェースとしてグ
ラフィックタッチパネル11等が用いられる。このシー
ケンサ10にはアナログ信号Aとして測定信号、温度等
の機器管理信号が入力され、該シーケンサ10から制御
信号B,B′として各種電磁弁の動作とか反応試薬1の
注入量などを制御する信号が出力される。
The injection operation of the reaction reagent 1, the concentration conversion calculation processing of the luminescence intensity, and the setting of the conditions for automatic measurement are shown in FIG.
The device operation such as display of measured values and calibration operation is performed by a graphic touch panel 11 or the like as an interface. A measurement signal and a device management signal such as temperature are input to the sequencer 10 as an analog signal A, and signals for controlling the operation of various electromagnetic valves and the injection amount of the reaction reagent 1 and the like as control signals B and B ′ from the sequencer 10. Is output.

【0011】又、グラフィックタッチパネル11からシ
ーケンサ10に対して各種操作及び機器設定変更等の信
号Cが入力され、シーケンサ10からグラフィックタッ
チパネル11に対して測定値の表示信号及び機器管理情
報信号Dが出力される。
A signal C for various operations and device setting changes is input from the graphic touch panel 11 to the sequencer 10, and a display signal of measured values and a device management information signal D are output from the sequencer 10 to the graphic touch panel 11. Is done.

【0012】特にフローインジェクション法は河川等の
上水用原水に溶存する窒素形態のアンモニウムイオン濃
度を測定するのに有用であり、前記次亜塩素酸溶液以外
にヨウ化カリウム溶液とか三塩化チタン溶液等を試薬と
して試料水2中に順次添加して、化学発光式の一酸化窒
素検出器を用いてアンモニウムイオンに比例した一酸化
窒素濃度のピークとして化学発光量を検出することによ
り測定を実施する。
In particular, the flow injection method is useful for measuring the concentration of ammonium ions in the form of nitrogen dissolved in raw water for drinking water such as rivers. In addition to the hypochlorous acid solution, a potassium iodide solution or a titanium trichloride solution is used. Are sequentially added to the sample water 2 as reagents, and the measurement is carried out by detecting the amount of chemiluminescence as a peak of nitric oxide concentration proportional to ammonium ion using a chemiluminescent nitric oxide detector. .

【0013】このようなフローインジェクション法を用
いたアンモニウムイオンの測定法の特徴は、応答性がき
わめて速く、測定時間の大幅な短縮がはかれる上、検量
線の直線範囲が大きいことから測定レンジは低濃度から
高濃度まで極めて広く、高精度で且つ繰り返し再現性が
高い点にある。更に液相から分離された気相系での測定
であるため、試料水中に懸濁物等の不純物が含まれてい
る場合であっても、単に濾過等の前処理を実施すること
によって気化分離器5前段での配管系の汚れがなく、従
って下水処理水とか河川水,湖沼水等の外、これらより
も汚れの多い試料でも検出器本体に影響を及ぼすことな
く迅速に測定を実施することが可能となる。
The characteristics of such a method for measuring ammonium ions using the flow injection method are that the response is extremely fast, the measurement time is greatly reduced, and the measurement range is low because the linear range of the calibration curve is large. It is extremely wide from a high concentration to a high concentration, and has high accuracy and high reproducibility. Furthermore, since the measurement is performed in a gas phase system separated from the liquid phase, even when impurities such as suspensions are contained in the sample water, vaporization and separation are performed by simply performing pretreatment such as filtration. There is no contamination of the piping system at the front stage of the detector 5, and therefore, it is necessary to quickly measure samples other than sewage treatment water, river water, lake water, etc., and even more contaminated samples without affecting the detector body. Becomes possible.

【0014】[0014]

【発明が解決しようとする課題】前記した各種アンモニ
ウムイオン測定方法において、イオンクロマトグラフ法
の場合は定量範囲が比較的低濃度まで可能であるが、前
処理とか検量線作成時間を除く測定時間が数分から10
分程度とかなり長時間を必要とする上、検水中に懸濁物
質(水中の濁質成分等)とか有機成分等が存在すると測
定の妨害となるため、プレフィルタ等を用いて前処理す
る必要がある。更に水道水を除く河川水とか湖沼水、下
水処理水などの検水は、汚れに対する対応が十分とれな
いことに起因して連続測定は困難である。
In the above-mentioned various methods for measuring ammonium ions, in the case of ion chromatography, the quantification range can be made to a relatively low concentration, but the measurement time excluding the pretreatment and the time for preparing a calibration curve is required. A few minutes to 10
It requires a considerable amount of time, such as minutes, and the presence of suspended substances (such as turbid components in water) or organic components in the test water will interfere with the measurement. There is. In addition, continuous measurement of river water, lake marsh water, sewage treatment water, and the like except tap water is difficult due to insufficient response to dirt.

【0015】前記比色法は、試料としての検水に試薬を
投入して測定対象物質と等量の化学反応式から特定波長
の吸光度を測定してアンモニウムイオンを連続測定する
方法であるため、前処理、発色操作、吸光度測定と多く
の手分析操作を必要とするとともに検水用の試料が10
0ml程度という多量を必要とし、測定時間は全工程で
30分〜1時間以上もかかる上、特に比色を測定原理と
しているためにppmレベルでの測定は可能であるが、
ppbレベルでの測定の場合には、測定誤差が大きくな
ってしまうために実用化及び自動化は難しいという問題
点がある。
The colorimetric method is a method in which a reagent is put into a test water as a sample, and the absorbance at a specific wavelength is measured from a chemical reaction formula equivalent to the substance to be measured, thereby continuously measuring ammonium ions. Pretreatment, color development, absorbance measurement and many manual analysis operations are required.
A large amount of about 0 ml is required, and the measurement time is 30 minutes to 1 hour or more in all the steps. In addition, since the measurement principle is based on colorimetry, measurement at the ppm level is possible,
In the case of measurement at the ppb level, there is a problem that practical use and automation are difficult because the measurement error increases.

【0016】更に前記中和滴定法とか陰イオン電極法
は、何れも操作が煩瑣であって測定に長時間を要し、し
かも定量範囲がかなり高濃度であるため、能率面及び測
定精度の面での難点が存在する。
Furthermore, the neutralization titration method and the anion electrode method are both complicated in operation and require a long time for measurement, and the quantification range is considerably high. There are drawbacks.

【0017】一方、フローインジェクション法を用いた
測定法によれば、応答性が速くて測定時間の大幅な短縮
がはかれる上、測定レンジが低濃度から高濃度まで極め
て広く、高精度で且つ繰り返し再現性が高いという利点
があるが、図9のグラフに示したようにアンモニウムイ
オン濃度の相対値が高濃度領域では出力強度との相対値
との間に直線性が得られず、測定誤差が生じる惧れがあ
る。
On the other hand, according to the measurement method using the flow injection method, the responsiveness is fast, the measurement time is greatly reduced, and the measurement range is extremely wide from low to high concentrations, and the measurement is performed with high accuracy and repetition. However, as shown in the graph of FIG. 9, there is no linearity between the relative value of the ammonium ion concentration and the relative value with the output intensity in the high concentration region, and a measurement error occurs. There is fear.

【0018】通常のアンモニウムイオン濃度測定は、ゼ
ロ点とスパン点の2点を直線で結ぶ検量線を作成し、こ
の検量線を基にして測定値を求めるのが一般的である
が、図9のグラフに示した特性がある場合には多次近似
式を作成し、これを検量線として用いるのが普通であ
る。しかし近似式自体に誤差があると、この誤差が測定
誤差に反映される結果となり、正確な測定値が得られな
いという問題が生じる。
In the ordinary ammonium ion concentration measurement, it is general to prepare a calibration curve connecting two points, ie, a zero point and a span point, with a straight line, and obtain a measured value based on the calibration curve. In general, when the characteristic shown in the graph is present, a multi-order approximation formula is created and used as a calibration curve. However, if there is an error in the approximation formula itself, the error is reflected in the measurement error, and a problem arises in that an accurate measurement value cannot be obtained.

【0019】特に前記したように上水用原水に溶存する
窒素形態のアンモニウムイオン濃度もしくは下水での運
用にも適用可能であるため、運用法を考慮すると高濃度
領域での測定誤差が生じることには大きな問題点があ
る。
In particular, as described above, the present invention can be applied to the operation in the concentration of ammonium ions in the form of nitrogen dissolved in raw water for drinking water or in sewage. Has a big problem.

【0020】そこで本発明は上記に鑑みてなされたもの
であって、アンモニウムイオン濃度の相対値が高濃度領
域であっても測定誤差を最小限として、フローインジェ
クション法を用いて正確な測定値を得ることができる水
中のアンモニウムイオン測定方法を提供することを目的
とするものである。
In view of the above, the present invention has been made in view of the above. Even when the relative value of the ammonium ion concentration is in a high concentration region, the measurement error is minimized, and an accurate measurement value can be obtained by using a flow injection method. It is an object of the present invention to provide a method for measuring ammonium ions in water which can be obtained.

【0021】[0021]

【課題を解決するための手段】本発明は上記の目的を達
成するために、反応試薬を流路用細管中で流下させなが
ら、該反応試薬中にアンモニウムイオンを含有する試料
水を流体ポンプの駆動によって流入混合し、気化分離器
によって液相から分離したガス成分を加熱酸化炉で一酸
化窒素に転換した後、検出器により化学発光強度を検出
して気相中のアンモニウムイオンを定量するようにした
水中のアンモニウムイオン測定方法において、高濃度領
域にある試料水を希釈装置により最適な希釈倍率で希釈
することによって低濃度領域に移行してから前記フロー
インジェクション法によりアンモニウムイオンの濃度を
測定し、希釈倍率により逆算を行って測定値を求めるよ
うにしたアンモニウムイオン測定方法を提供する。
According to the present invention, in order to achieve the above object, a sample water containing ammonium ions in a reaction reagent is supplied to a fluid pump while the reaction reagent is caused to flow down in a flow channel capillary. After inflow mixing by driving, gas component separated from liquid phase by vaporization separator is converted to nitric oxide in heating oxidizing furnace, chemiluminescence intensity is detected by detector and ammonium ion in gas phase is quantified. In the method for measuring ammonium ions in water, the concentration of ammonium ions was measured by the flow injection method after the sample water in the high concentration region was shifted to the low concentration region by diluting the sample water at an optimal dilution ratio with a diluting device. The present invention provides a method for measuring ammonium ion, in which a measurement value is obtained by performing a back calculation according to a dilution factor.

【0022】上記希釈方法として、定流量ポンプで送り
込まれる試料水と希釈水とをT型あるいはY型の接続部
品を用いて混合・希釈する手段と、各定流量ポンプにポ
ンプ回転数コントローラと制御機構を設けて、該制御機
構に予め測定対象水の希釈倍率を複数段設定しておき、
これらの希釈倍率の中から適切な倍率を選択することに
より、制御機構から希釈倍率に応じた信号を出力してポ
ンプ回転数コントローラに伝え、試料水と希釈水の各定
流量ポンプの流量を制御するようにする。
As the above-mentioned dilution method, means for mixing and diluting the sample water and the dilution water fed by the constant flow rate pump using a T-type or Y-type connecting part, and a pump speed controller and control for each constant flow rate pump A mechanism is provided, and the dilution ratio of the water to be measured is set in a plurality of stages in advance in the control mechanism,
By selecting an appropriate magnification from among these dilution magnifications, a signal corresponding to the dilution magnification is output from the control mechanism and transmitted to the pump speed controller to control the flow rate of each constant flow pump for sample water and dilution water. To do it.

【0023】更に他の希釈方法として、試料水定量用の
分注器と希釈水定量用の分注器及び混合槽を用意して、
この試料水定量用の分注器による試料水の吸引・吐出動
作と、希釈水定量用の分注器による希釈水の吸引・吐出
動作により、混合槽内に試料水と希釈水の比率を適宜に
変更して注入する手段と、試料水用の定流量ポンプにポ
ンプ回転数コントローラと制御機構を設けて、該制御機
構に予めポンプ回転数を複数段設定しておき、これらの
ポンプ回転数の中から適切な回転数を選択することによ
り、制御機構から測定濃度範囲に応じた設定信号を出力
してポンプ回転数コントローラに伝え、試料水の定流量
ポンプの流量を制御する手段を用いる。
As still another dilution method, a dispenser for quantifying sample water, a dispenser for quantifying dilution water, and a mixing tank are prepared.
The suction / discharge operation of the sample water by the dispenser for quantifying the sample water and the suction / discharge operation of the diluent water by the dispenser for quantifying the dilution water appropriately adjust the ratio of the sample water and the dilution water in the mixing tank. A pump speed controller and a control mechanism are provided for a constant flow pump for sample water, and a plurality of stages of pump speeds are set in advance in the control mechanism, and these pump speeds are adjusted. By selecting an appropriate rotation speed from among them, a control signal is output from the control mechanism in accordance with the measured concentration range, transmitted to the pump rotation speed controller, and means for controlling the flow rate of the constant flow rate pump of the sample water is used.

【0024】かかるアンモニウムイオン測定方法によれ
ば、アンモニウムイオン濃度と発光強度の相対値の関係
からみて、試料水のアンモニウムイオン濃度が非直線性
を示す高濃度領域にある場合であっても、この高濃度領
域にある試料水を希釈装置により適切な希釈倍率で希釈
することによって直線性を有する低濃度領域に移行する
ので、フローインジェクション法によりアンモニウムイ
オン(NH4 +)の濃度を測定した後に希釈倍率に従って
逆算を行って測定値を求めることにより、測定誤差を最
小限として、正確な測定値を得ることができる。
According to the ammonium ion measurement method, even when the ammonium ion concentration of the sample water is in a high concentration region showing nonlinearity, it can be seen from the relationship between the ammonium ion concentration and the relative value of the emission intensity. The sample water in the high concentration region is shifted to a low concentration region having linearity by diluting the sample water at an appropriate dilution ratio with a diluting device. Therefore, the dilution is performed after measuring the concentration of ammonium ion (NH 4 + ) by the flow injection method. By calculating the measured value by performing an inverse operation according to the magnification, it is possible to obtain an accurate measured value while minimizing a measurement error.

【0025】更に試料水の流量特性を利用して試料水の
アンモニウムイオン濃度に直線性の範囲を変化させるこ
とが可能であり、任意の濃度を有する測定対象水を高い
直線性をもって正確に測定することができる。
Further, it is possible to change the range of linearity to the ammonium ion concentration of the sample water by utilizing the flow rate characteristics of the sample water, and to accurately measure the water to be measured having an arbitrary concentration with high linearity. be able to.

【0026】[0026]

【発明の実施の形態】以下本発明にかかる水中のアンモ
ニウムイオン測定方法の具体的な各種実施例を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various specific examples of the method for measuring ammonium ions in water according to the present invention will be described below.

【0027】図1はアンモニウムイオン濃度と出力強度
(発光強度)の相対値の関係を示すグラフであり、図中
のアンモニウムイオン濃度が略101(ppm)を境界
として直線性を示す低濃度領域(A)と非直線性を示す
高濃度領域(B)とに区分される。
FIG. 1 is a graph showing the relationship between the ammonium ion concentration and the relative value of the output intensity (emission intensity). In the graph, the ammonium ion concentration in the low-concentration region showing linearity with approximately 10 1 (ppm) as a boundary. (A) and a high-concentration region (B) showing nonlinearity.

【0028】本実施例では高濃度領域(B)が測定対象
とする試料水の領域である場合には、この高濃度領域
(B)にある試料水を以下に説明する希釈装置により適
切な希釈倍率で希釈することによって低濃度領域(A)
に移行してから前記フローインジェクション法によりア
ンモニウムイオン(NH4 +)の濃度を測定し、希釈倍率
に従って逆算を行って測定値を求めることが操作上の大
きな特徴となっている。このような操作を行うことによ
って、直線性を持たない高濃度領域(B)にある試料水
のアンモニウムイオン濃度を直線性を有する低濃度領域
(A)で測定することができる。
In this embodiment, when the high-concentration region (B) is the region of the sample water to be measured, the sample water in the high-concentration region (B) is appropriately diluted by a diluting device described below. Low concentration area (A)
The main feature of the operation is that the concentration of ammonium ion (NH 4 + ) is measured by the above-mentioned flow injection method after the shift to, and the measured value is obtained by performing an inverse calculation according to the dilution ratio. By performing such an operation, the ammonium ion concentration of the sample water in the high-concentration region (B) having no linearity can be measured in the low-concentration region (A) having linearity.

【0029】ここで希釈方法とその制御方法の各種実施
例を説明する。
Here, various embodiments of the dilution method and its control method will be described.

【0030】〔第1実施例〕希釈方法は図2に示したよ
うにT型あるいはY型の接続部品13を用いて実施す
る。即ち、フローインジェクション法の場合、試料水2
は定流量ポンプP1で常に通水されている。第1実施例
では希釈用として更に1台の定流量ポンプP5を設置し
て、この定流量ポンプP5により蒸留水を用いた希釈水
12を通水し、試料水2と希釈水12とを前記T型ある
いはY型の接続部品13を用いて混合・希釈する。この
ような混合・希釈以後の操作は従来のフローインジェク
ション法によるアンモニウムイオン濃度の測定操作と同
様に実施する。
[First Embodiment] The dilution method is carried out using a T-type or Y-type connecting part 13 as shown in FIG. That is, in the case of the flow injection method, the sample water 2
It is always passed through at a constant flow rate pump P 1. In the first embodiment by installing constant flow pump P 5 further one as a diluent, and passed through the diluting water 12 with distilled water by the constant flow rate pump P 5, and the sample water 2 and the diluting water 12 Is mixed and diluted using the T-type or Y-type connection part 13. The operation after such mixing / dilution is performed in the same manner as the conventional operation for measuring the concentration of ammonium ion by the flow injection method.

【0031】この第1実施例では、試料水2と希釈水1
2を送出する定流量ポンプP1とP5に設定された液送出
量を変えるだけで試料水2の希釈倍率を変更することが
可能であるため、アンモニウムイオン濃度測定時に試料
水2の水質に応じて非直線性を示す濃度領域(B)から
直線性を示す濃度領域(A)への変更が容易であるとと
もに、試料水2の水質の相違によって希釈装置自体を交
換する等の操作は不要であり、簡便に測定操作を実施す
ることができる。
In the first embodiment, sample water 2 and dilution water 1
Since it is possible to change the dilution ratio of the sample water 2 only by changing the liquid sending amounts set in the constant flow pumps P 1 and P 5 for sending the sample water 2, the water quality of the sample water 2 is measured at the time of measuring the ammonium ion concentration. Accordingly, it is easy to change from the concentration region (B) exhibiting non-linearity to the concentration region (A) exhibiting linearity, and it is not necessary to replace the diluting device itself due to a difference in the quality of the sample water 2. Thus, the measurement operation can be easily performed.

【0032】〔第2実施例〕第2実施例は、上記第1実
施例の機能を有するアンモニウムイオン測定方法であ
り、第1実施例において測定対象とする試料水2の定流
量ポンプP1と、希釈水の定流量ポンプP5の流量が常に
一定の場合には、季節とか気候及び天候などに起因して
測定対象となる試料水の水質変化、あるいは測定対象水
が上水か下水かによって最適な希釈倍率にならないケー
スが予想される。
[Second Embodiment] The second embodiment relates to a method for measuring ammonium ions having the function of the first embodiment. The constant flow pump P 1 for the sample water 2 to be measured in the first embodiment is used. in the case of always flow constant flow pump P 5 dilution water is constant, water change of the sample water to be measured due like seasonal Toka climate and weather, or measured water depending on whether tap water or sewage It is expected that the optimal dilution ratio will not be obtained.

【0033】そこで第2実施例では、図3に示したよう
に制御機構としてのシーケンサ10とインターフェース
としてのタッチパネル11を用いることによって最適な
希釈倍率を実現する方法を得ることが主眼となってい
る。
Therefore, in the second embodiment, the main purpose is to obtain a method for realizing an optimal dilution ratio by using the sequencer 10 as a control mechanism and the touch panel 11 as an interface as shown in FIG. .

【0034】即ち、シーケンサ10に予め測定対象水の
希釈倍率a,b,c,dを複数段設定しておき、作業者
がタッチパネル11によりこれらの希釈倍率の中から適
切な倍率を選択し、シーケンサ10に入力する。シーケ
ンサ10は選択された希釈倍率a,b,c,dに応じた
信号をポンプ回転数コントローラ14に伝えて試料水の
定流量ポンプP1と希釈水の定流量ポンプP5の流量を制
御する信号を出力する。
That is, a plurality of dilution factors a, b, c, and d of the water to be measured are set in advance in the sequencer 10, and the operator selects an appropriate magnification from these dilution factors using the touch panel 11. Input to the sequencer 10. The sequencer 10 controls the flow rate of the dilution factor a, b, c, constant flow pump P 5 of the constant flow rate pump P 1 and dilution water sample water conveys a signal corresponding to d in the pump speed controller 14 selected Output a signal.

【0035】ポンプ回転数コントローラ14に伝える信
号はアナログ信号である必要はなく、接点信号でもよ
い。そして定流量ポンプP1,P5の制御部は接点信号に
応じて試料水2と希釈水12の送液量を変更し、希釈倍
率が変更される。
The signal transmitted to the pump speed controller 14 need not be an analog signal, but may be a contact signal. Then, the control units of the constant flow pumps P 1 and P 5 change the amounts of the sample water 2 and the dilution water 12 to be sent in accordance with the contact signals, thereby changing the dilution ratio.

【0036】〔第3実施例〕第3実施例は希釈方法とし
て高い定量性を有する2個の分注器(シリンジ)と希釈
混合槽を用いることが特徴となっている。前記したよう
に希釈操作時の誤差はそのまま測定誤差となるため、精
度のよい希釈装置が必要であり、従って一定比率の希釈
倍率に固定されているのが通例である。
[Third Embodiment] The third embodiment is characterized in that two dispensers (syringes) having a high quantitative property and a dilution mixing tank are used as a dilution method. As described above, the error at the time of the dilution operation becomes a measurement error as it is, so that a high-precision dilution device is required. Therefore, it is customary that the dilution ratio is fixed at a fixed ratio.

【0037】図4により第3実施例を説明する。図中の
15は試料水定量用の分注器であり、容積を(a)とす
る。16は希釈水定量用の分注器であり、容積を(b)
とする。17は混合槽であり、容積(a)+容積(b)
よりも大きな容積(c)を有している。M1は分注器1
5を駆動するモータ、M2は分注器16を駆動するモー
タである。又、SV1は試料水2用の3方電磁弁、SV
2は希釈水12用の3方電磁弁であり、P1は得られた
試料水の定流量ポンプである。
The third embodiment will be described with reference to FIG. Reference numeral 15 in the figure denotes a dispenser for quantifying sample water, and its volume is set to (a). Reference numeral 16 denotes a dispenser for diluting water quantification.
And Reference numeral 17 denotes a mixing tank having a volume (a) + a volume (b)
It has a larger volume (c). M 1 is the dispenser 1
5 is a motor for driving the dispenser 16, and M 2 is a motor for driving the dispenser 16. SV1 is a three-way solenoid valve for sample water 2, SV1
2 is a three-way solenoid valve for dilution water 12, P 1 is a constant flow pump of the sample water obtained.

【0038】混合槽17に注入する試料水2と希釈水1
2の比率が1:1である場合を基本希釈倍率をxとすれ
ば、この比率を適宜に変更することによって希釈倍率を
任意に変更することができる。
Sample water 2 and dilution water 1 to be injected into the mixing tank 17
If the basic dilution ratio is x when the ratio of 2 is 1: 1, the dilution ratio can be arbitrarily changed by appropriately changing this ratio.

【0039】以下にその動作を説明すると、3方電磁弁
SV1,SV2は分注器側が「常時開」であり、他は試
料水2側(又は希釈水12側)のうちの一方が「開」と
なっている。分注器15,16が定量動作、即ち、シリ
ンジ内に吸引する場合には、SV1とSV2の試料水2
側及び希釈水12側が「開」となっている。
The operation will be described below. In the three-way solenoid valves SV1 and SV2, the dispenser side is "normally open", and the other one of the sample water 2 side (or the dilution water 12 side) is "open". It has become. When the dispensers 15 and 16 perform a quantitative operation, that is, when aspirating into the syringe, the sample water 2 of SV1 and SV2 is used.
Side and the dilution water 12 side are “open”.

【0040】モータM1,M2の駆動によって分注器1
5,16が試料水2と希釈水12を吸引した後、SV1
とSV2は混合槽17側が「開」となり、分注器15,
16が注入動作、即ち、シリンジ内から液を吐出するこ
とによって混合槽17内に試料水2と希釈水12が注入
される。
The dispenser 1 is driven by driving the motors M 1 and M 2.
After sucking the sample water 2 and the dilution water 12, the SV1
And SV2 are open on the mixing tank 17 side, and the dispenser 15,
The sample water 2 and the dilution water 12 are injected into the mixing tank 17 by the injection operation 16, that is, by discharging the liquid from the syringe.

【0041】上記の動作1回によって試料水の濃度は
(a)/{(a)+(b)}となり、更に分注器16の
希釈水12側だけを同様に操作することによって試料水
がさらに希釈される。これらの操作は前記シーケンサ1
0等のコントロールユニットを用いて自動的に実施する
ことができるので、簡便な操作で様々な希釈倍率の試料
水を得ることができる。
By the above operation, the concentration of the sample water becomes (a) / {(a) + (b)}. Further, by operating the diluting water 12 side of the dispenser 16 in the same manner, the sample water is reduced. It is further diluted. These operations are performed by the sequencer 1
Since it can be automatically performed using a control unit such as 0, sample water with various dilution ratios can be obtained by a simple operation.

【0042】〔第4実施例〕第4実施例は試料水の流量
特性を利用して高濃度のアンモニウムイオンを測定する
方法である。
[Fourth Embodiment] The fourth embodiment is a method for measuring high-concentration ammonium ions using the flow rate characteristics of sample water.

【0043】図5はアンモニウムイオン濃度と出力強度
(発光強度)の相対値の関係において、特にアンモニウ
ムイオン測定での試料水の流量特性を示すグラフであ
り、符号Qは相対流量であって、Q=5が最も試料水の
流量が大きく、Q=1が同流量が最も小となっている。
図5によれば、試料水の相対流量Qを小さくすると、ア
ンモニウムイオンが高濃度まで直線性を示していること
がわかる。
FIG. 5 is a graph showing the flow rate characteristics of the sample water particularly in the ammonium ion measurement in relation to the relative value of the ammonium ion concentration and the output intensity (emission intensity). = 5 has the highest flow rate of the sample water, and Q = 1 has the lowest flow rate.
FIG. 5 shows that when the relative flow rate Q of the sample water is reduced, the ammonium ion exhibits linearity up to a high concentration.

【0044】しかし試料水の流量を小さくすることは、
相対感度,即ち出力強度が低下して、特に低濃度でのア
ンモニウムイオンの濃度が測定できなくなり、分析装置
としての定量下限濃度が高くなってしまうという問題が
生じる。
However, reducing the flow rate of the sample water
The relative sensitivity, that is, the output intensity is lowered, and the concentration of ammonium ion at a low concentration in particular cannot be measured, which causes a problem that the lower limit of quantification as an analyzer increases.

【0045】そこで試料水の測定濃度範囲に適した試料
水流量の設定が必要であり、その方法を以下による説明
する。前記したように図7に示したフローインジェクシ
ョン法とは、アンモニウムイオンを含む試料水2を定流
量ポンプP1の駆動により試薬溶液の流れの中に連続投
入する手段を採るが、この定流量ポンプP1の駆動を可
変速とすることによって試料水の流量を変更することが
できる。
Therefore, it is necessary to set the flow rate of the sample water suitable for the measurement concentration range of the sample water, and the method will be described below. The flow injection method shown in FIG. 7 as described above, but taking means for continuously charged into the flow of the drive with a reagent solution of a water sample 2 constant flow pump P 1 containing ammonium ions, the constant flow pump the driving of the P 1 can change the flow rate of the water sample by a variable speed.

【0046】そこで図6に示したように、シーケンサ1
0とインターフェースとしてのタッチパネル11を用い
て、このシーケンサ10にポンプ回転数a′,b′,
c′,d′をいくつか設定しておき、作業者がタッチパ
ネル11により測定範囲を選択してシーケンサ10に入
力する。シーケンサ10は選択されたポンプ回転数
a′,b′,c′,d′に応じた信号をポンプ回転数コ
ントローラ14に伝えて、試料水の測定濃度範囲に適し
た定流量ポンプP1の流量を制御する信号を出力する。
Therefore, as shown in FIG.
0 and a touch panel 11 as an interface, pump speeds a ′, b ′,
Some c 'and d' are set, and the operator selects a measurement range on the touch panel 11 and inputs it to the sequencer 10. The sequencer 10 pump speed a which is selected ', b', c ', d' conveys a signal corresponding to the pump speed controller 14, a constant flow rate of the pump P 1 suitable for measuring the concentration range of the sample water Output a signal that controls

【0047】ポンプ回転数コントローラ14に伝える信
号はアナログ信号である必要はなく、接点信号でもよ
い。そして定流量ポンプP1の制御部は接点信号に応じ
て試料水の送液量を変更し、その結果として試料水の流
量を変更することができる。
The signal transmitted to the pump speed controller 14 does not need to be an analog signal, but may be a contact signal. The control unit of the constant flow pump P 1 changes the feed volume of the water sample in response to the contact signal, it is possible to change the flow rate of the water sample as a result.

【0048】[0048]

【発明の効果】以上詳細に説明したように、本発明にか
かる水中のアンモニウムイオンの測定方法によれば、ア
ンモニウムイオン濃度と発光強度の相対値の関係から試
料水のアンモニウムイオン濃度が非直線性を示す高濃度
領域にある場合であっても、試料水を適切な希釈倍率で
希釈することにより、直線性を有する低濃度領域に移行
させてからフローインジェクション法によりアンモニウ
ムイオンの濃度を測定し、希釈倍率に沿う逆算により測
定値を求めたため、特にアンモニウムイオン濃度が高濃
度領域にある場合の測定誤差を最小限として、かなり正
確な測定値を得ることができる。
As described in detail above, according to the method for measuring ammonium ions in water according to the present invention, the non-linearity of the ammonium ion concentration in the sample water is determined from the relationship between the ammonium ion concentration and the relative value of the emission intensity. Even when in the high concentration region indicating, by diluting the sample water at an appropriate dilution factor, the concentration of ammonium ions is measured by a flow injection method after shifting to a low concentration region having linearity, Since the measured value is obtained by back calculation along the dilution ratio, a fairly accurate measured value can be obtained by minimizing a measurement error particularly when the ammonium ion concentration is in a high concentration region.

【0049】本発明は上水用原水に溶存するアンモニウ
ムイオン濃度に限らず、下水での運用にも適用可能であ
るため、特に高濃度領域での測定誤差を低減させる効果
が大きい。
The present invention can be applied not only to the concentration of ammonium ions dissolved in the raw water for drinking water but also to the operation in sewage, so that the effect of reducing the measurement error particularly in the high concentration region is great.

【0050】試料水の希釈手段として、請求項2〜請求
項4に記載した各方法が採用可能であって、試料水に応
じて各方法から選択して希釈することができる。又、請
求項5に記載したように試料水の流量特性を利用して試
料水のアンモニウムイオン濃度に直線性の範囲を変化さ
せることが可能であるため、任意の濃度を有する測定対
象水を高い直線性をもって正確に測定することができ
る。
As the means for diluting the sample water, any of the methods described in claims 2 to 4 can be adopted, and the method can be selected and diluted according to the sample water. Further, since the linearity range can be changed to the ammonium ion concentration of the sample water using the flow rate characteristics of the sample water as described in claim 5, the water to be measured having an arbitrary concentration can be increased. It can be measured accurately with linearity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アンモニウムイオン濃度と出力強度(発光強
度)の相対値の関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the ammonium ion concentration and the relative value of output intensity (emission intensity).

【図2】本発明で採用した試料水の希釈方法の第1実施
例をを示す概要図。
FIG. 2 is a schematic diagram showing a first embodiment of a method for diluting sample water employed in the present invention.

【図3】試料水の希釈方法の第2実施例をを示す概要
図。
FIG. 3 is a schematic diagram showing a second embodiment of a method for diluting a sample water.

【図4】試料水の希釈方法の第3実施例をを示す概要
図。
FIG. 4 is a schematic diagram showing a third embodiment of a method for diluting sample water.

【図5】アンモニウムイオン測定での試料水の流量特性
を示すグラフ。
FIG. 5 is a graph showing flow rate characteristics of sample water in ammonium ion measurement.

【図6】試料水の希釈方法の第4実施例をを示す概要
図。
FIG. 6 is a schematic diagram showing a fourth embodiment of a method for diluting a sample water.

【図7】フローインジェクション法によるアンモニウム
イオンの測定装置例を示す概要図。
FIG. 7 is a schematic diagram showing an example of an apparatus for measuring ammonium ions by a flow injection method.

【図8】図7の測定装置における制御の一例を示す概要
図。
FIG. 8 is a schematic diagram showing an example of control in the measuring device of FIG. 7;

【図9】アンモニウムイオン濃度の相対値と出力強度の
相対値の関係を示すグラフ。
FIG. 9 is a graph showing a relationship between a relative value of ammonium ion concentration and a relative value of output intensity.

【符号の説明】[Explanation of symbols]

1…反応試薬 2…試料水 3…空気 4…混合コイル 5…気化分離器 6…加熱酸化炉 7…廃液 8…化学発光検出器 9…オゾン発生機 10…シーケンサ 11…タッチパネル 12…希釈水 13…接続部品 14…ポンプ回転数コントローラ 15,16…分注器 17…混合槽 21…流路用細管 DESCRIPTION OF SYMBOLS 1 ... Reaction reagent 2 ... Sample water 3 ... Air 4 ... Mixing coil 5 ... Vaporization separator 6 ... Heating oxidation furnace 7 ... Waste liquid 8 ... Chemiluminescence detector 9 ... Ozone generator 10 ... Sequencer 11 ... Touch panel 12 ... Dilution water 13 ... Connecting parts 14 ... Pump rotation speed controller 15,16 ... Dispenser 17 ... Mixing tank 21 ... Flow tube

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 反応試薬を流路用細管中で流下させなが
ら、該反応試薬中にアンモニウムイオンを含有する試料
水を流体ポンプの駆動によって流入混合し、気化分離器
によって液相から分離したガス成分を加熱酸化炉で一酸
化窒素に転換した後、検出器により化学発光強度を検出
して気相中のアンモニウムイオンを定量するようにした
フローインジェクション法による水中のアンモニウムイ
オン測定方法において、 高濃度領域にある試料水を希釈装置により最適な希釈倍
率で希釈することによって低濃度領域に移行してから前
記フローインジェクション法によりアンモニウムイオン
の濃度を測定し、希釈倍率により逆算を行って測定値を
求めることを特徴とする水中のアンモニウムイオン測定
方法。
1. A gas separated and separated from a liquid phase by a vaporization separator while flowing a sample water containing ammonium ions into the reaction reagent while flowing the reaction reagent down in the flow channel capillary. After the components are converted to nitric oxide in a heating and oxidizing furnace, the concentration of ammonium ions in water by the flow injection method, in which the chemiluminescence intensity is detected by a detector and the amount of ammonium ions in the gas phase is determined, The sample water in the region is shifted to the low concentration region by diluting the sample water at the optimal dilution ratio with a diluting device, and then measuring the ammonium ion concentration by the flow injection method, and performing a back calculation by the dilution ratio to obtain a measured value. A method for measuring ammonium ions in water.
【請求項2】 前記希釈方法として、定流量ポンプで送
り込まれる試料水と希釈水とをT型あるいはY型の接続
部品を用いて混合・希釈するようにした請求項1記載の
水中のアンモニウムイオン測定方法。
2. The ammonium ion in water according to claim 1, wherein the dilution method comprises mixing and diluting sample water and dilution water fed by a constant flow pump using a T-type or Y-type connection part. Measuring method.
【請求項3】 前記各定流量ポンプにポンプ回転数コン
トローラと制御機構を設けて、該制御機構に予め測定対
象水の希釈倍率を複数段設定しておき、これらの希釈倍
率の中から適切な倍率を選択することにより、制御機構
から希釈倍率に応じた設定信号を出力してポンプ回転数
コントローラに伝え、試料水と希釈水の各定流量ポンプ
の流量を制御するようにした請求項1記載の水中のアン
モニウムイオン測定方法。
3. A pump rotation speed controller and a control mechanism are provided in each of said constant flow pumps, and a plurality of dilution ratios of water to be measured are set in advance in said control mechanisms. 2. The method according to claim 1, wherein a selection signal is output from the control mechanism to the pump rotational speed controller by selecting a magnification to control the flow rate of each of the constant flow pumps. For measuring ammonium ion in water.
【請求項4】 試料水定量用の分注器と希釈水定量用の
分注器及び混合槽を用意して、この試料水定量用の分注
器による試料水の吸引・吐出動作と、希釈水定量用の分
注器による希釈水の吸引・吐出動作により、混合槽内に
試料水と希釈水の比率を適宜に変更して注入するように
した請求項1記載の水中のアンモニウムイオン測定方
法。
4. A dispenser for quantifying sample water, a dispenser for quantifying dilution water, and a mixing tank are prepared, and a suction / discharge operation of the sample water by the dispenser for quantifying sample water and dilution are performed. 2. The method for measuring ammonium ions in water according to claim 1, wherein the ratio of the sample water to the dilution water is appropriately changed and injected into the mixing tank by a suction / discharge operation of the dilution water by a water dispenser. .
【請求項5】 試料水用の定流量ポンプにポンプ回転数
コントローラと制御機構を設けて、該制御機構に予めポ
ンプ回転数を複数段設定しておき、これらのポンプ回転
数の中から適切な回転数を選択することにより、制御機
構から測定濃度範囲に応じた設定信号を出力してポンプ
回転数コントローラに伝え、試料水の定流量ポンプの流
量を制御するようにした請求項1記載の水中のアンモニ
ウムイオン測定方法。
5. A constant flow pump for sample water, comprising a pump rotation speed controller and a control mechanism, wherein a plurality of pump rotation speeds are set in advance in the control mechanism, and an appropriate one of these pump rotation speeds is selected. 2. The underwater water according to claim 1, wherein by selecting the number of revolutions, the control mechanism outputs a setting signal corresponding to the measured concentration range and transmits the setting signal to the pump revolution number controller to control the flow rate of the constant flow rate pump of the sample water. Ammonium ion measurement method.
JP9036697A 1997-04-09 1997-04-09 Method for measuring ammonium ion in water Pending JPH10282083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9036697A JPH10282083A (en) 1997-04-09 1997-04-09 Method for measuring ammonium ion in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9036697A JPH10282083A (en) 1997-04-09 1997-04-09 Method for measuring ammonium ion in water

Publications (1)

Publication Number Publication Date
JPH10282083A true JPH10282083A (en) 1998-10-23

Family

ID=13996557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9036697A Pending JPH10282083A (en) 1997-04-09 1997-04-09 Method for measuring ammonium ion in water

Country Status (1)

Country Link
JP (1) JPH10282083A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936910A (en) * 2010-08-04 2011-01-05 聚光科技(杭州)股份有限公司 Method and device for analyzing water toxicity
CN102565433A (en) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 High dilution factor water sample analysis method and device thereof
WO2017010021A1 (en) * 2015-07-16 2017-01-19 株式会社三菱化学アナリテック Nitrogen analysis method and nitrogen analysis device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936910A (en) * 2010-08-04 2011-01-05 聚光科技(杭州)股份有限公司 Method and device for analyzing water toxicity
CN102565433A (en) * 2011-12-31 2012-07-11 聚光科技(杭州)股份有限公司 High dilution factor water sample analysis method and device thereof
WO2017010021A1 (en) * 2015-07-16 2017-01-19 株式会社三菱化学アナリテック Nitrogen analysis method and nitrogen analysis device
EP3141895A4 (en) * 2015-07-16 2017-06-21 Mitsubishi Chemical Analytech Co., Ltd. Nitrogen analysis method and nitrogen analysis device

Similar Documents

Publication Publication Date Title
US7704457B2 (en) Automatic, field portable analyzer using discrete sample aliquots
US10126246B2 (en) Lab-on-a-chip for alkalinity analysis
US5205988A (en) Apparatus for measuring gaseous aldehyde
WO2005080963A1 (en) Flow analysis system capable of measuring element in sample quantitatively or semi-quantitatively
US5668014A (en) Device and method for estimating three nitrogen-including ionic substances in water
Van Staden et al. Determination of lead (II), copper (II), zinc (II), cobalt (II), cadmium (II), iron (III), mercury (II) using sequential injection extractions
US5849592A (en) Carrierless sequential injection analysis
JPH10282083A (en) Method for measuring ammonium ion in water
US20210033562A1 (en) Method for calibrating an analytical measuring device and measuring point for analyzing a process medium and for calibrating an analytical measuring device
CN112305034B (en) Method for calibrating an analytical measurement device and measurement points of an analytical measurement device
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
van Staden Solving the problems of sequential injection systems as process analyzers
JP3329071B2 (en) Method and apparatus for analyzing nitrate and nitrite ions
JP3911820B2 (en) Ion concentration measuring device
JP2000146942A (en) Device for measuring concentration of nitrogen in water
JPH11304711A (en) Automatic calibration method and apparatus in three-phase nitrogen analysis in water
Cerdá et al. Automatic water and wastewater quality monitoring systems
JP3896795B2 (en) Nitrogen concentration measuring device
JPH1010050A (en) Gasifying separator of three-form nitrometer
JP3911821B2 (en) Ion concentration measuring device
JP2001124757A (en) Self diagnosis method of system in trimorphic nitrogen- analyzing system
TW201915470A (en) A method for determining chemical oxygen demand of a water sample
JP4085122B2 (en) Flow analysis system that can quantitatively or semi-quantitatively measure elements in a sample
Blakeley et al. Wet-chemistry and Autotitrator Analyzers
JP2001021491A (en) Device for measuring concentration of dissolved ozone in gaseous phase by ultraviolet ray absorbing method